1
|
Jayathilake NJ, Phan TT, Kim J, Lee KP, Park JM. Modulating neuroplasticity for chronic pain relief: noninvasive neuromodulation as a promising approach. Exp Mol Med 2025; 57:501-514. [PMID: 40025172 PMCID: PMC11958754 DOI: 10.1038/s12276-025-01409-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 03/04/2025] Open
Abstract
Chronic neuropathic pain is a debilitating neuroplastic disorder that notably impacts the quality of life of millions of people worldwide. This complex condition, encompassing various manifestations, such as sciatica, diabetic neuropathy and postherpetic neuralgia, arises from nerve damage or malfunctions in pain processing pathways and involves various biological, physiological and psychological processes. Maladaptive neuroplasticity, known as central sensitization, plays a critical role in the persistence of chronic neuropathic pain. Current treatments for neuropathic pain include pharmacological interventions (for example, antidepressants and anticonvulsants), invasive procedures (for example, deep brain stimulation) and physical therapies. However, these approaches often have limitations and potential side effects. In light of these challenges, interest in noninvasive neuromodulation techniques as alternatives or complementary treatments for neuropathic pain is increasing. These methods aim to induce analgesia while reversing maladaptive plastic changes, offering potential advantages over conventional pharmacological practices and invasive methods. Recent technological advancements have spurred the exploration of noninvasive neuromodulation therapies, such as repetitive transcranial magnetic stimulation, transcranial direct current stimulation and transcranial ultrasound stimulation, as well as innovative transformations of invasive techniques into noninvasive methods at both the preclinical and clinical levels. Here this review aims to critically examine the mechanisms of maladaptive neuroplasticity in chronic neuropathic pain and evaluate the efficacy of noninvasive neuromodulation techniques in pain relief. By focusing on optimizing these techniques, we can better assess their short-term and long-term effects, refine treatment variables and ultimately improve the quality of neuropathic pain management.
Collapse
Affiliation(s)
- Nishani Jayanika Jayathilake
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Tien Thuy Phan
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jeongsook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea.
- Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Tang M, Zheng Y, Zhang X, Fan X. Non-invasive neuromodulation treatment for depression in adolescents: A systematic review and meta-analysis. Psychiatry Res 2025; 344:116329. [PMID: 39719809 DOI: 10.1016/j.psychres.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Synthesized evidence regarding the effectiveness of non-invasive neuromodulation treatment for adolescents remains scarce. This study aimed to perform the first meta-analysis of the impact of neuromodulation treatment on depressive symptoms in adolescents. METHODS According to the PRISMA guidelines, a comprehensive review covering databases in English and Chinese from their inception to November 30, 2023, was conducted. Data were pooled to compute the standardized mean difference (SMD) and risk ratio (RR), along with their respective 95 % confidence intervals (CI). RESULTS A total of 27 studies involving 2075 participants were included and examined. Noninvasive neuromodulation treatment demonstrated significant positive effects on depression symptoms compared with controlled conditions (Hamilton Depression Scale (HAMD) 17: SMD = 3.503, 95 % CI = 2.404-4.602, p < 0.001; HAMD 24: SMD = 3.375, 95 % CI = 2.437-4.314, p < 0.001). High heterogeneity was observed (I2 = 95.2 % and 97.2 %, p < 0.01), along with a substantial risk of publication bias (p < 0.05). In terms of the treatment response, the RR reached 1.39 (95 % CI = 1.29-1.50, p < 0.001), with low heterogeneity (I2 = 35 %, p = 0.07). CONCLUSIONS Noninvasive neuromodulation treatment significant alleviated depressive symptoms in adolescents. Future research should prioritize conducting high-quality clinical trials to determine the suitable selection of adolescent patients for this treatment. In addition, these trials can help guide precision medicine approaches for stimulation protocols.
Collapse
Affiliation(s)
- Mingcong Tang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, PR China
| | - Yi Zheng
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, PR China
| | - Xiwen Zhang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, PR China
| | - Xiwang Fan
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, PR China.
| |
Collapse
|
3
|
Cox SS, Connolly DJ, Peng X, Badran BW. A Comprehensive Review of Low-Intensity Focused Ultrasound Parameters and Applications in Neurologic and Psychiatric Disorders. Neuromodulation 2025; 28:1-15. [PMID: 39230530 PMCID: PMC11700779 DOI: 10.1016/j.neurom.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES Low-intensity focused ultrasound (LIFU) is gaining increased interest as a potential therapeutic modality for a range of neuropsychiatric diseases. Current neuromodulation modalities often require a choice between high spatial fidelity or invasiveness. LIFU is unique in this regard because it provides high spatial acuity of both superficial and deep neural structures while remaining noninvasive. This new form of noninvasive brain stimulation may provide exciting potential treatment options for a variety of neuropsychiatric disorders involving aberrant neurocircuitry within deep brain structures, including pain and substance use disorders. Furthermore, LIFU is compatible with noninvasive neuroimaging techniques, such as functional magnetic resonance imaging and electroencephalography, making it a useful tool for more precise clinical neuroscience research to further understand the central nervous system. MATERIALS AND METHODS In this study, we provide a review of the most recent LIFU literature covering three key domains: 1) the history of focused ultrasound technology, comparing it with other forms of neuromodulation, 2) the parameters and most up-to-date proposed mechanisms of LIFU, and finally, 3) a consolidation of the current literature to date surrounding the clinical research that has used LIFU for the modification or amelioration of several neuropsychiatric conditions. RESULTS The impact of LIFU including poststroke motor changes, pain, mood disorders, disorders of consciousness, dementia, and substance abuse is discussed. CONCLUSIONS Although still in its infancy, LIFU is a promising tool that has the potential to change the way we approach and treat neuropsychiatric disorders. In this quickly evolving field, this review serves as a snapshot of the current understanding of LIFU in neuropsychiatric research.
Collapse
Affiliation(s)
- Stewart S Cox
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA.
| | - Dillon J Connolly
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Zakibakhsh N, Basharpoor S, Ghalyanchi Langroodi H, Narimani M, Nitsche MA, Salehinejad MA. Repeated prefrontal tDCS for improving mental health and cognitive deficits in multiple sclerosis: a randomized, double-blind, parallel-group study. J Transl Med 2024; 22:843. [PMID: 39272101 PMCID: PMC11397099 DOI: 10.1186/s12967-024-05638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is an autoimmune disease associated with physical disability, psychological impairment, and cognitive dysfunctions. Consequently, the disease burden is substantial, and treatment choices are limited. In this randomized, double-blind study, we conducted repeated prefrontal electrical stimulation in 40 patients with MS to evaluate mental health variables (quality of life, sleep difficulties, psychological distress) and cognitive dysfunctions (psychomotor speed, working memory, attention/vigilance), marking it as the third largest sample size tDCS research conducted in MS to date. METHODS The patients were randomly assigned (block randomization method) to two groups of sham (n = 20), or 1.5-mA (n = 20) transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (F3) and right frontopolar cortex (Fp2) with anodal and cathodal stimulation respectively (electrode size: 25 cm2). The treatment included 10 sessions of 20 min of stimulation delivered every other day. Outcome measures were MS quality of life, sleep quality, psychological distress, and performance on a neuropsychological test battery dedicated to cognitive dysfunctions in MS (psychomotor speed, working memory, and attention). All outcome measures were evaluated at the pre-intervention and post-intervention assessments. Both patients and technicians delivering the stimulation were unaware of the type of stimulation being used. RESULTS Repeated prefrontal real tDCS significantly improved quality of life and reduced sleep difficulties and psychological distress compared to the sham group. It, furthermore, improved psychomotor speed, attention, and vigilance compared to the sham protocol. Improvement in mental health outcome variables and cognitive outperformance were interrelated and could predict each other. CONCLUSIONS Repeated prefrontal and frontopolar tDCS ameliorates secondary clinical symptoms related to mental health and results in beneficial cognitive effects in patients with MS. These results support applying prefrontal tDCS in larger trials for improving mental health and cognitive dysfunctions in MS. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06401928.
Collapse
Affiliation(s)
- Nasim Zakibakhsh
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sajjad Basharpoor
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
| | | | - Mohammad Narimani
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zorns S, Sierzputowski C, Ash S, Skowron M, Minervini A, LaVarco A, Pardillo M, Keenan JP. Attraction is altered via modulation of the medial prefrontal cortex without explicit knowledge. Front Hum Neurosci 2024; 18:1333733. [PMID: 39206424 PMCID: PMC11349520 DOI: 10.3389/fnhum.2024.1333733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Previous studies have demonstrated that brain stimulation can alter an individual's physical appearance via dysregulation of the medial prefrontal cortex (MPFC). In this study, we attempted to determine if individuals who receive repetitive transcranial magnetic stimulation (rTMS) delivered to the MPFC were rated as more attractive by others. It has been previously reported that 1 hertz (Hz) (inhibitory) TMS can alter one's facial expressions such that frontal cortex inhibition can increase expressiveness. These alterations, detected by external observation, remain below the level of awareness of the subject itself. In Phase I, subjects (N = 10) received MPFC rTMS and had their photographs taken after each of the five stimulation conditions, in addition to making self-ratings across a number of variables, including attractiveness. In Phase II, participants (N = 430) rated five pictures of each of the Phase 1 individuals on attractiveness. It was found that there were no significant differences in self-assessment following rTMS (Phase I). However, attractiveness ratings differed significantly in Phase II. There was a significant difference found between 10 Hz TMS delivered to the MPFC (p < 0.001), such that individuals were rated as less attractive. Furthermore, 1 Hz TMS to the MPFC increased the number of 'Most Attractive' ratings, while 10Hz TMS decreased the number of 'Most Attractive' ratings (p < 0.001). These results suggest that the MPFC plays a role in attractiveness ratings to others. These data also support research showing that one's appearance can be altered below the level of awareness via rTMS. To our knowledge, this is the first investigation to examine how brain stimulation influences one's attractiveness.
Collapse
Affiliation(s)
- Samantha Zorns
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Claudia Sierzputowski
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Sydney Ash
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Molly Skowron
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Anthony Minervini
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Adriana LaVarco
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Matthew Pardillo
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Julian Paul Keenan
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| |
Collapse
|
6
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
7
|
Deng ZD, Robins PL, Regenold W, Rohde P, Dannhauer M, Lisanby SH. How electroconvulsive therapy works in the treatment of depression: is it the seizure, the electricity, or both? Neuropsychopharmacology 2024; 49:150-162. [PMID: 37488281 PMCID: PMC10700353 DOI: 10.1038/s41386-023-01677-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
We have known for nearly a century that triggering seizures can treat serious mental illness, but what we do not know is why. Electroconvulsive Therapy (ECT) works faster and better than conventional pharmacological interventions; however, those benefits come with a burden of side effects, most notably memory loss. Disentangling the mechanisms by which ECT exerts rapid therapeutic benefit from the mechanisms driving adverse effects could enable the development of the next generation of seizure therapies that lack the downside of ECT. The latest research suggests that this goal may be attainable because modifications of ECT technique have already yielded improvements in cognitive outcomes without sacrificing efficacy. These modifications involve changes in how the electricity is administered (both where in the brain, and how much), which in turn impacts the characteristics of the resulting seizure. What we do not completely understand is whether it is the changes in the applied electricity, or in the resulting seizure, or both, that are responsible for improved safety. Answering this question may be key to developing the next generation of seizure therapies that lack these adverse side effects, and ushering in novel interventions that are better, faster, and safer than ECT.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paul Rohde
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Moritz Dannhauer
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Zhang DW, Johnstone SJ, Sauce B, Arns M, Sun L, Jiang H. Remote neurocognitive interventions for attention-deficit/hyperactivity disorder - Opportunities and challenges. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110802. [PMID: 37257770 DOI: 10.1016/j.pnpbp.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Improving neurocognitive functions through remote interventions has been a promising approach to developing new treatments for attention-deficit/hyperactivity disorder (AD/HD). Remote neurocognitive interventions may address the shortcomings of the current prevailing pharmacological therapies for AD/HD, e.g., side effects and access barriers. Here we review the current options for remote neurocognitive interventions to reduce AD/HD symptoms, including cognitive training, EEG neurofeedback training, transcranial electrical stimulation, and external cranial nerve stimulation. We begin with an overview of the neurocognitive deficits in AD/HD to identify the targets for developing interventions. The role of neuroplasticity in each intervention is then highlighted due to its essential role in facilitating neuropsychological adaptations. Following this, each intervention type is discussed in terms of the critical details of the intervention protocols, the role of neuroplasticity, and the available evidence. Finally, we offer suggestions for future directions in terms of optimizing the existing intervention protocols and developing novel protocols.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Department of Psychology/Center for Place-Based Education, Yangzhou University, Yangzhou, China; Department of Psychology, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Stuart J Johnstone
- School of Psychology, University of Wollongong, Wollongong, Australia; Brain & Behaviour Research Institute, University of Wollongong, Australia
| | - Bruno Sauce
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, Netherlands; Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands; NeuroCare Group, Nijmegen, Netherlands
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Han Jiang
- College of Special Education, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
9
|
Zhang S, Qin Y, Wang J, Yu Y, Wu L, Zhang T. Noninvasive Electrical Stimulation Neuromodulation and Digital Brain Technology: A Review. Biomedicines 2023; 11:1513. [PMID: 37371609 PMCID: PMC10295338 DOI: 10.3390/biomedicines11061513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
We review the research progress on noninvasive neural regulatory systems through system design and theoretical guidance. We provide an overview of the development history of noninvasive neuromodulation technology, focusing on system design. We also discuss typical cases of neuromodulation that use modern noninvasive electrical stimulation and the main limitations associated with this technology. In addition, we propose a closed-loop system design solution of the "time domain", "space domain", and "multi-electrode combination". For theoretical guidance, this paper provides an overview of the "digital brain" development process used for noninvasive electrical-stimulation-targeted modeling and the development of "digital human" programs in various countries. We also summarize the core problems of the existing "digital brain" used for noninvasive electrical-stimulation-targeted modeling according to the existing achievements and propose segmenting the tissue. For this, the tissue parameters of a multimodal image obtained from a fresh cadaver were considered as an index. The digital projection of the multimodal image of the brain of a living individual was implemented, following which the segmented tissues could be reconstructed to obtain a "digital twin brain" model with personalized tissue structure differences. The "closed-loop system" and "personalized digital twin brain" not only enable the noninvasive electrical stimulation of neuromodulation to achieve the visualization of the results and adaptive regulation of the stimulation parameters but also enable the system to have individual differences and more accurate stimulation.
Collapse
Affiliation(s)
- Shuang Zhang
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
- The High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, Chengdu 610056, China
| | - Yuping Qin
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
| | - Jiujiang Wang
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
| | - Yuanyu Yu
- The School of Artificial Intelligence, Neijiang Normal University, Neijiang 641000, China
- The NJNU-OMNISKY Smart Medical Engineering Applications Joint Laboratory, Neijiang Normal University, Neijiang 641004, China
| | - Lin Wu
- The School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- The High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, Chengdu 610056, China
| | - Tao Zhang
- The School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- The High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, Chengdu 610056, China
- The Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu 610056, China
| |
Collapse
|
10
|
Xu LX, Geng XM, Zhang JL, Guo XY, Potenza MN, Zhang JT. Neuromodulation treatments of problematic use of the Internet. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Subramaniam A, Liu S, Lochhead L, Appelbaum LG. A systematic review of transcranial direct current stimulation on eye movements and associated psychological function. Rev Neurosci 2022; 34:349-364. [PMID: 36310385 DOI: 10.1515/revneuro-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Abstract
The last decades have seen a rise in the use of transcranial direct current stimulation (tDCS) approaches to modulate brain activity and associated behavior. Concurrently, eye tracking (ET) technology has improved to allow more precise quantitative measurement of gaze behavior, offering a window into the mechanisms of vision and cognition. When combined, tDCS and ET provide a powerful system to probe brain function and measure the impact on visual function, leading to an increasing number of studies that utilize these techniques together. The current pre-registered, systematic review seeks to describe the literature that integrates these approaches with the goal of changing brain activity with tDCS and measuring associated changes in eye movements with ET. The literature search identified 26 articles that combined ET and tDCS in a probe-and-measure model and are systematically reviewed here. All studies implemented controlled interventional designs to address topics related to oculomotor control, cognitive processing, emotion regulation, or cravings in healthy volunteers and patient populations. Across these studies, active stimulation typically led to changes in the number, duration, and timing of fixations compared to control stimulation. Notably, half the studies addressed emotion regulation, each showing hypothesized effects of tDCS on ET metrics, while tDCS targeting the frontal cortex was widely used and also generally produced expected modulation of ET. This review reveals promising evidence of the impact of tDCS on eye movements and associated psychological function, offering a framework for effective designs with recommendations for future studies.
Collapse
Affiliation(s)
- Ashwin Subramaniam
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Sicong Liu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liam Lochhead
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Lawrence Gregory Appelbaum
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
12
|
Xie JX, Cui JJ, Cao Y, Gu YW, Fan JW, Ren L, Liu XF, Zhao SW, Shi WH, Yang Q, Jin YC, Li FZ, Song L, Yin H, Cao F, Li B, Cui LB. Commentary: Targeting the MRI-mapped psychopathology of major psychiatric disorders with neurostimulation. Front Psychiatry 2022; 13:990512. [PMID: 36213932 PMCID: PMC9540217 DOI: 10.3389/fpsyt.2022.990512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jia-Xin Xie
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Jin-Jin Cui
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Cao
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yue-Wen Gu
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Jing-Wen Fan
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Lei Ren
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Fan Liu
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Shu-Wan Zhao
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Wang-Hong Shi
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Qun Yang
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yin-Chuan Jin
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Feng-Zhan Li
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Lei Song
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Baojuan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Fiocchi S, Chiaramello E, Marrella A, Bonato M, Parazzini M, Ravazzani P. Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study. J Neural Eng 2022; 19. [PMID: 36075197 DOI: 10.1088/1741-2552/ac9085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/08/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recently developed magnetoelectric nanoparticles (MENPs) provide a potential tool to enable different biomedical applications. They could be used to overcome the intrinsic constraints posed by traditional neurostimulation techniques, namely the invasiveness of electrodes-based techniques, the limited spatial resolution, and the scarce efficiency of magnetic stimulation. APPROACH By using computational electromagnetic techniques, we modelled the behavior of recently designed biocompatible MENPs injected, in the shape of clusters, in specific cortical targets of a highly detailed anatomical head model. The distributions and the tissue penetration of the electric fields induced by MENPs clusters in each tissue will be compared to the distributions induced by traditional TMS coils for non-invasive brain stimulation positioned on the left prefrontal cortex of a highly detailed anatomical head model. MAIN RESULTS MENPs clusters can induce highly focused electric fields with amplitude close to the neural activation threshold in all the brain tissues of interest for the treatment of most neuropsychiatric disorders. Conversely, TMS coils can induce electric fields of several tens of V/m over a broad volume of the prefrontal cortex, but they are unlikely able to efficiently stimulate even small volumes of subcortical and deep tissues. SIGNIFICANCE Our numerical results suggest that the use of MENPs for brain stimulation may potentially led to a future pinpoint treatment of neuropshychiatric disorders, in which an impairment of electric activity of specific cortical and subcortical tissues and networks has been assumed to play a crucial role.
Collapse
Affiliation(s)
- Serena Fiocchi
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Emma Chiaramello
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Alessandra Marrella
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Area della Ricerca, via de Marini 6, Genova, 16149, ITALY
| | - Marta Bonato
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| | - Paolo Ravazzani
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, 20133, ITALY
| |
Collapse
|
14
|
Pan Y, Zhang H, Xie Y, Chai Y. Role of coupling distances in a coupled thalamocortical network for regulation of epilepsy. J Theor Biol 2022; 550:111206. [PMID: 35850254 DOI: 10.1016/j.jtbi.2022.111206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
The recent theoretical modeling of coupled cortical thalamic network is an important advance toward the spatiotemporal dynamics of the brain. However, the diversity of coupling distances is ignored, and the better choice of deep brain stimulation (DBS) parameters to control epilepsy is still a challenge so far. A modeling object of this paper is to establish a coupled cortical thalamic model with uncertain coupling distances including nine combinations. Based on the pathways formed by pyramidal neuronal population (PY), thalamic reticular nucleus (RE) and thalamic relay nucleus (TC), we simulate the spike-wave discharges (SWD) at 2-4Hz which are the main manifestations of absence episodes. It is demonstrated that combination (1/3, 1/9) between the left and right ventricles is the optimal coupling distance of the proposed model by analyzing the percentage of SWD. A stimulating object of this paper is to find an optimum parameter range of DBS. One of the important results is that the number of SWD is inversely proportional to the amplitude, another one is that the number of SWD shows a U-shaped trend with the change of frequency. The present study has laidtheoryfoundationforthebrainplasticity, which will provide an important theoretical basis and direction for the treatment of absence epilepsy in the future. In brief, hopefully our simulation results will provide some help to patients.
Collapse
Affiliation(s)
- Yufeng Pan
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Hudong Zhang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Yan Xie
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China.
| |
Collapse
|
15
|
Noda Y, Kizaki J, Takahashi S, Mimura M. TMS Database Registry Consortium Research Project in Japan (TReC-J) for Future Personalized Psychiatry. J Pers Med 2022; 12:844. [PMID: 35629266 PMCID: PMC9147312 DOI: 10.3390/jpm12050844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
The registry project led by the Japanese Society for Clinical Transcranial Magnetic Stimulation (TMS) Research aims to establish a centralized database of epidemiological, clinical, and biological data on TMS therapy for refractory psychiatric disorders, including treatment-resistant depression, as well as to contribute to the elucidation of the therapeutic mechanism of TMS therapy and to the validation of its efficacy by analyzing and evaluating these data in a systematic approach. The objective of this registry project is to collect a wide range of complex data linked to patients with various neuropsychiatric disorders who received TMS therapy throughout Japan, and to make effective use of these data to promote cross-sectional and longitudinal exploratory observational studies. Research utilizing this registry project will be conducted in a multicenter, non-invasive, retrospective, and prospective observational research study design, regardless of the framework of insurance medical care, private practice, or clinical research. Through the establishment of the registry, which aims to make use of data, we will advance the elucidation of treatment mechanisms and identification of predictors of therapeutic response to TMS therapy for refractory psychiatric disorders on a more real-world research basis. Furthermore, as a future vision, we aim to develop novel neuromodulation medical devices, algorithms for predicting treatment efficacy, and digital therapeutics based on the knowledge generated from this TMS registry database.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan;
| | | | - Shun Takahashi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
- Clinical Research and Education Center, Asakayama General Hospital, Osaka 590-0018, Japan
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan;
| |
Collapse
|
16
|
Morrow CB, Chaney GAS, Capuzzi D, Bakker A, Onyike CU, Kamath V. Hyperorality in Frontotemporal Dementia: Cognitive and Psychiatric Symptom Profiles in Early-Stage Disease. J Alzheimers Dis 2022; 89:1203-1209. [PMID: 36093697 PMCID: PMC11533145 DOI: 10.3233/jad-220443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hyperorality is a distinctive feature of the behavioral variant of frontotemporal dementia (bvFTD), but little is known about its significance in early-stage disease. This study examined the cognitive and psychiatric symptom profiles associated with hyperorality, using data from subjects with early-stage bvFTD enrolled in Alzheimer's Disease Research Centers. We found that hyperorality was not associated with cognitive performance, but was associated with psychosis, elation, and disinhibition. Hyperorality may share neurobiology with a subset of early psychiatric symptoms, a finding which could help identify targets for future treatment.
Collapse
Affiliation(s)
- Christopher B. Morrow
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Daniel Capuzzi
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Arnold Bakker
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chiadi U. Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|