1
|
Kas MJH, Hyman S, Williams LM, Hidalgo-Mazzei D, Huys QJM, Hotopf M, Cuthbert B, Lewis CM, De Picker LJ, Lalousis PA, Etkin A, Modinos G, Marston HM. Towards a consensus roadmap for a new diagnostic framework for mental disorders. Eur Neuropsychopharmacol 2025; 90:16-27. [PMID: 39341044 DOI: 10.1016/j.euroneuro.2024.08.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Current nosology claims to separate mental disorders into distinct categories that do not overlap with each other. This nosological separation is not based on underlying pathophysiology but on convention-based clustering of qualitative symptoms of disorders which are typically measured subjectively. Yet, clinical heterogeneity and diagnostic overlap in disease symptoms and dimensions within and across different diagnostic categories of mental disorders is huge. While diagnostic categories provide the basis for general clinical management, they do not describe the underlying neurobiology that gives rise to individual symptomatic presentations. The ability to incorporate neurobiology into the diagnostic framework and to stratify patients accordingly will be a critical step forward for the development of new treatments for mental disorders. Furthermore, it will also allow physicians to provide patients with a better understanding of their illness's complexities and management. To realize this ambition, a paradigm shift is needed to build an understanding of how neuropsychiatric conditions can be defined more precisely using quantitative (multimodal) biological processes and markers and thus to significantly improve treatment success. The ECNP New Frontiers Meeting 2024 set out to develop a consensus roadmap for building a new diagnostic framework for mental disorders by discussing its rationale, outlook, and consequences with all stakeholders involved. This framework would instantiate a set of principles and procedures by which research could continuously improve precision diagnostics while moving away from traditional nosology. In this meeting report, the speakers' summaries from their presentations are combined to address three key elements for generating such a roadmap, namely, the application of innovative technologies, understanding the biology of mental illness, and translating biological understanding into new approaches. In general, the meeting indicated a crucial need for a biology-informed framework to establish more precise diagnosis and treatment for mental disorders to facilitate bringing the right treatment to the right patient at the right time.
Collapse
Affiliation(s)
- Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | - Steven Hyman
- Harvard University and Stanley Center, Broad Institute of MIT and Harvard, USA
| | - Leanne M Williams
- Stanford Center for Precision Mental Health and Wellness, Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA
| | - Diego Hidalgo-Mazzei
- Bipolar and Depressive disorders unit, Department of Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Quentin J M Huys
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry Psychology & Neuroscience, King's College London, London2, United Kingdom
| | - Bruce Cuthbert
- Contractor for the Research Domain Criteria project, National Institute of Mental Health (NIMH), USA
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Belgium; SINAPS, University Psychiatric Hospital Duffel, Belgium
| | - Paris A Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Amit Etkin
- Alto Neuroscience Inc, Los Altos, CA, USA; Stanford University, Stanford, CA, USA
| | - Gemma Modinos
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Hugh M Marston
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| |
Collapse
|
2
|
Livingston NR, Kiemes A, Devenyi GA, Knight S, Lukow PB, Jelen LA, Reilly T, Dima A, Nettis MA, Casetta C, Agyekum T, Zelaya F, Spencer T, De Micheli A, Fusar-Poli P, Grace AA, Williams SCR, McGuire P, Egerton A, Chakravarty MM, Modinos G. Effects of diazepam on hippocampal blood flow in people at clinical high risk for psychosis. Neuropsychopharmacology 2024; 49:1448-1458. [PMID: 38658738 PMCID: PMC11250854 DOI: 10.1038/s41386-024-01864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Elevated hippocampal perfusion has been observed in people at clinical high risk for psychosis (CHR-P). Preclinical evidence suggests that hippocampal hyperactivity is central to the pathophysiology of psychosis, and that peripubertal treatment with diazepam can prevent the development of psychosis-relevant phenotypes. The present experimental medicine study examined whether diazepam can normalize hippocampal perfusion in CHR-P individuals. Using a randomized, double-blind, placebo-controlled, crossover design, 24 CHR-P individuals were assessed with magnetic resonance imaging (MRI) on two occasions, once following a single oral dose of diazepam (5 mg) and once following placebo. Regional cerebral blood flow (rCBF) was measured using 3D pseudo-continuous arterial spin labeling and sampled in native space using participant-specific hippocampus and subfield masks (CA1, subiculum, CA4/dentate gyrus). Twenty-two healthy controls (HC) were scanned using the same MRI acquisition sequence, but without administration of diazepam or placebo. Mixed-design ANCOVAs and linear mixed-effects models were used to examine the effects of group (CHR-P placebo/diazepam vs. HC) and condition (CHR-P diazepam vs. placebo) on rCBF in the hippocampus as a whole and by subfield. Under the placebo condition, CHR-P individuals (mean [±SD] age: 24.1 [±4.8] years, 15 F) showed significantly elevated rCBF compared to HC (mean [±SD] age: 26.5 [±5.1] years, 11 F) in the hippocampus (F(1,41) = 24.7, pFDR < 0.001) and across its subfields (all pFDR < 0.001). Following diazepam, rCBF in the hippocampus (and subfields, all pFDR < 0.001) was significantly reduced (t(69) = -5.1, pFDR < 0.001) and normalized to HC levels (F(1,41) = 0.4, pFDR = 0.204). In conclusion, diazepam normalized hippocampal hyperperfusion in CHR-P individuals, consistent with evidence implicating medial temporal GABAergic dysfunction in increased vulnerability for psychosis.
Collapse
Affiliation(s)
- Nicholas R Livingston
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Amanda Kiemes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Samuel Knight
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Paulina B Lukow
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Luke A Jelen
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Thomas Reilly
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Aikaterini Dima
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Maria Antonietta Nettis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Cecilia Casetta
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Tyler Agyekum
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Thomas Spencer
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
| | - Andrea De Micheli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
3
|
Logue JB, Vilmont V, Zhang J, Wu Y, Zhou Y. Inhibition of 14-3-3 proteins increases the intrinsic excitability of mouse hippocampal CA1 pyramidal neurons. Eur J Neurosci 2024; 59:3309-3321. [PMID: 38646841 DOI: 10.1111/ejn.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
14-3-3 proteins are a family of regulatory proteins that are abundantly expressed in the brain and enriched at the synapse. Dysfunctions of these proteins have been linked to neurodevelopmental and neuropsychiatric disorders. Our group has previously shown that functional inhibition of these proteins by a peptide inhibitor, difopein, in the mouse brain causes behavioural alterations and synaptic plasticity impairment in the hippocampus. Recently, we found an increased cFOS expression in difopein-expressing dorsal CA1 pyramidal neurons, indicating enhanced neuronal activity by 14-3-3 inhibition in these cells. In this study, we used slice electrophysiology to determine the effects of 14-3-3 inhibition on the intrinsic excitability of CA1 pyramidal neurons from a transgenic 14-3-3 functional knockout (FKO) mouse line. Our data demonstrate an increase in intrinsic excitability associated with 14-3-3 inhibition, as well as reveal action potential firing pattern shifts after novelty-induced hyperlocomotion in the 14-3-3 FKO mice. These results provide novel information on the role 14-3-3 proteins play in regulating intrinsic and activity-dependent neuronal excitability in the hippocampus.
Collapse
Affiliation(s)
- Jordan B Logue
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Violet Vilmont
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Jiajing Zhang
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yuying Wu
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yi Zhou
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
4
|
Li M, Liu Y, Sun M, Yang Y, Zhang L, Liu Y, Li F, Liu H. SEP-363856 exerts neuroprotection through the PI3K/AKT/GSK-3β signaling pathway in a dual-hit neurodevelopmental model of schizophrenia-like mice. Drug Dev Res 2024; 85:e22225. [PMID: 38879781 DOI: 10.1002/ddr.22225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 10/11/2024]
Abstract
Schizophrenia (SZ) is a serious, destructive neurodevelopmental disorder. Antipsychotic medications are the primary therapy approach for this illness, but it's important to pay attention to the adverse effects as well. Clinical studies for SZ are currently in phase ΙΙΙ for SEP-363856 (SEP-856)-a new antipsychotic that doesn't work on dopamine D2 receptors. However, the underlying action mechanism of SEP-856 remains unknown. This study aimed to evaluate the impact and underlying mechanisms of SEP-856 on SZ-like behavior in a perinatal MK-801 treatment combined with social isolation from the weaning to adulthood model (MK-SI). First, we created an animal model that resembles SZ that combines the perinatal MK-801 with social isolation from weaning to adulthood. Then, different classical behavioral tests were used to evaluate the antipsychotic properties of SEP-856. The levels of proinflammatory cytokines (tumor necrosis factor-α, interleukin-6, and interleukin-1β), apoptosis-related genes (Bax and Bcl-2), and synaptic plasticity-related genes (brain-derived neurotrophic factor [BDNF] and PSD-95) in the hippocampus were analyzed by quantitative real-time PCR. Hematoxylin and eosin staining were used to observe the morphology of neurons in the hippocampal DG subregions. Western blot was performed to detect the protein expression levels of BDNF, PSD-95, Bax, Bcl-2, PI3K, p-PI3K, AKT, p-AKT, GSK-3β, p-GSK-3β in the hippocampus. MK-SI neurodevelopmental disease model studies have shown that compared with sham group, MK-SI group exhibit higher levels of autonomic activity, stereotyped behaviors, withdrawal from social interactions, dysregulated sensorimotor gating, and impaired recognition and spatial memory. These findings imply that the MK-SI model can mimic symptoms similar to those of SZ. Compared with the MK-SI model, high doses of SEP-856 all significantly reduced increased activity, improved social interaction, reduced stereotyping behavior, reversed sensorimotor gating dysregulation, and improved recognition memory and spatial memory impairment in MK-SI mice. In addition, SEP-856 can reduce the release of proinflammatory factors in the MK-SI model, promote the expression of BDNF and PSD-95 in the hippocampus, correct the Bax/Bcl-2 imbalance, turn on the PI3K/AKT/GSK-3β signaling pathway, and ultimately help the MK-SI mice's behavioral abnormalities. SEP-856 may play an antipsychotic role in MK-SI "dual-hit" model-induced SZ-like behavior mice by promoting synaptic plasticity recovery, decreasing death of hippocampal neurons, lowering the production of pro-inflammatory substances in the hippocampal region, and subsequently initiating the PI3K/AKT/GSK-3β signaling cascade.
Collapse
Affiliation(s)
- Mengdie Li
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yunxiao Liu
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Meng Sun
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yating Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuexia Liu
- The Second People's Hospital of Huizhou, Huizhou, Guangdong, China
| | - Fujin Li
- The Second People's Hospital of Huizhou, Huizhou, Guangdong, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
6
|
Kiemes A, Serrano Navacerrada ME, Kim E, Randall K, Simmons C, Rojo Gonzalez L, Petrinovic MM, Lythgoe DJ, Rotaru D, Di Censo D, Hirschler L, Barbier EL, Vernon AC, Stone JM, Davies C, Cash D, Modinos G. Erbb4 Deletion From Inhibitory Interneurons Causes Psychosis-Relevant Neuroimaging Phenotypes. Schizophr Bull 2023; 49:569-580. [PMID: 36573631 PMCID: PMC10154722 DOI: 10.1093/schbul/sbac192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND HYPOTHESIS Converging lines of evidence suggest that dysfunction of cortical GABAergic inhibitory interneurons is a core feature of psychosis. This dysfunction is thought to underlie neuroimaging abnormalities commonly found in patients with psychosis, particularly in the hippocampus. These include increases in resting cerebral blood flow (CBF) and glutamatergic metabolite levels, and decreases in ligand binding to GABAA α5 receptors and to the synaptic density marker synaptic vesicle glycoprotein 2A (SV2A). However, direct links between inhibitory interneuron dysfunction and these neuroimaging readouts are yet to be established. Conditional deletion of a schizophrenia susceptibility gene, the tyrosine kinase receptor Erbb4, from cortical and hippocampal inhibitory interneurons leads to synaptic defects, and behavioral and cognitive phenotypes relevant to psychosis in mice. STUDY DESIGN Here, we investigated how this inhibitory interneuron disruption affects hippocampal in vivo neuroimaging readouts. Adult Erbb4 conditional mutant mice (Lhx6-Cre;Erbb4F/F, n = 12) and their wild-type littermates (Erbb4F/F, n = 12) were scanned in a 9.4T magnetic resonance scanner to quantify CBF and glutamatergic metabolite levels (glutamine, glutamate, GABA). Subsequently, we assessed GABAA receptors and SV2A density using quantitative autoradiography. RESULTS Erbb4 mutant mice showed significantly elevated ventral hippccampus CBF and glutamine levels, and decreased SV2A density across hippocampus sub-regions compared to wild-type littermates. No significant GABAA receptor density differences were identified. CONCLUSIONS These findings demonstrate that specific disruption of cortical inhibitory interneurons in mice recapitulate some of the key neuroimaging findings in patients with psychosis, and link inhibitory interneuron deficits to non-invasive measures of brain function and neurochemistry that can be used across species.
Collapse
Affiliation(s)
- Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Maria Elisa Serrano Navacerrada
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Eugene Kim
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Karen Randall
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Loreto Rojo Gonzalez
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Marija-Magdalena Petrinovic
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Diana Rotaru
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Davide Di Censo
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Lydiane Hirschler
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Diana Cash
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
7
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
8
|
McCoy AM, Prevot TD, Mian MY, Cook JM, Frazer A, Sibille EL, Carreno FR, Lodge DJ. Positive Allosteric Modulation of α5-GABAA Receptors Reverses Stress-Induced Alterations in Dopamine System Function and Prepulse Inhibition of Startle. Int J Neuropsychopharmacol 2022; 25:688-698. [PMID: 35732272 PMCID: PMC9380714 DOI: 10.1093/ijnp/pyac035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Up to 64% of patients diagnosed with posttraumatic stress disorder (PTSD) experience psychosis, likely attributable to aberrant dopamine neuron activity. We have previously demonstrated that positive allosteric modulators of α5-GABAARs can selectively decrease hippocampal activity and reverse psychosis-like physiological and behavioral alterations in a rodent model used to study schizophrenia; however, whether this approach translates to a PTSD model remains to be elucidated. METHODS We utilized a 2-day inescapable foot shock (IS) procedure to induce stress-related pathophysiology in male Sprague-Dawley rats. We evaluated the effects of intra-ventral hippocampus (vHipp) administration GL-II-73, an α5-GABAAR, or viral overexpression of the α5 subunit, using in vivo electrophysiology and behavioral measures in control and IS-treated rats. RESULTS IS significantly increased ventral tegmental area dopamine neuron population activity, or the number of dopamine neurons firing spontaneously (n = 6; P = .016), consistent with observation in multiple rodent models used to study psychosis. IS also induced deficits in sensorimotor gating, as measured by reduced prepulse inhibition of startle (n = 12; P = .039). Interestingly, intra-vHipp administration of GL-II-73 completely reversed IS-induced increases in dopamine neuron population activity (n = 6; P = .024) and deficits in prepulse inhibition (n = 8; P = .025), whereas viral overexpression of the α5 subunit in the vHipp was not effective. CONCLUSIONS Our results demonstrate that pharmacological intervention augmenting α5-GABAAR function, but not α5 overexpression in itself, can reverse stress-induced deficits related to PTSD in a rodent model, providing a potential site of therapeutic intervention to treat comorbid psychosis in PTSD.
Collapse
Affiliation(s)
- Alexandra M McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Md Yenus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Alan Frazer
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Etienne L Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Flavia R Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, USA
| |
Collapse
|