1
|
Wei S, Zhao S, Yang W, Zhou J, Xu G, Zhang C, Wang M, Xiao H, Feng Y, Shang L, Pan C, Yu C, Chen M, Ma Y. EHF promotes liver cancer progression by meditating IL-6 secretion through transcription regulation of KDM2B in TAMs. Cell Signal 2025; 129:111670. [PMID: 39971220 DOI: 10.1016/j.cellsig.2025.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Macrophages are key immune cell types in liver, which are thought to be involved in tumor development. Recent studies indicated that TAMs exhibit M2 phenotypes. However, the mechanism of macrophages related to tumor progression in liver cancer is largely unknown. We aim to investigate the mechanism of EHF in TAMs associated with liver cancer progression. METHODS The differently expressed genes of M0, M1, and M2 macrophages were analyzed by RNA sequencing. Cytokine array was used to detect the differently expressed cytokines in M2 macrophages. We performed CUT-Tag analysis for the identification of promoter regions that interacting with EHF protein. ChIP and luciferase analysis were used to verify the interaction between EHF and KDM2B. RESULTS EHF was overexpressed in M2 macrophages. Knockdown of EHF in M2 macrophages could inhibit migration and invasion of MHCC97-L cells co-cultured with M2 macrophages in vitro and in vivo. The level of IL-6 was decreased in M2 macrophages with lower expression of EHF. EHF could bind the promoter region of KDM2B. The transcription level of KDM2B was down-regulated by knockdown of EHF in M2 macrophages. The results of this study indicated that EHF could promote liver cancer cell metastasis by IL-6 through regulating the transcription level of KDM2B in M2 macrophages. CONCLUSION Our study revealed a novel aspect of macrophages in liver cancer and showed EHF could be a promising therapeutic target of liver cancer.
Collapse
Affiliation(s)
- Song Wei
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Siqi Zhao
- Department of Surgery, the Second Afliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Weijun Yang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gaoxin Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chenwei Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hua Xiao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yongheng Feng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Longcheng Shang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Pan
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Yu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - MinJie Chen
- Department of Surgery, the Second Afliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yong Ma
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Palmer EP, Cronise KE, Haines LA, Das S, Offermann A, Easton CP, Regan DP. Osteosarcoma Exosome Priming of Primary Human Lung Fibroblasts Induces an Immune Modulatory and Protumorigenic Phenotype. CANCER RESEARCH COMMUNICATIONS 2025; 5:594-608. [PMID: 40099972 PMCID: PMC11987067 DOI: 10.1158/2767-9764.crc-24-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/07/2024] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
SIGNIFICANCE These findings provide a critical first step in characterizing the capacity of OS-derived exosomes to reprogram primary LFs toward a tumor-promoting inflammatory phenotype in vitro, offering novel molecular targets for the modulation of fibroblasts in the lung microenvironment as potential therapeutic strategies to prevent OS metastasis.
Collapse
Affiliation(s)
- Eric P. Palmer
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Kathryn E. Cronise
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Laurel A. Haines
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Sunetra Das
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Aaron Offermann
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Carina P. Easton
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Daniel P. Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
3
|
Fu Q, Wu X, Lu Z, Chang Y, Jin Q, Jin T, Zhang M. TMEM205 induces TAM/M2 polarization to promote cisplatin resistance in gastric cancer. Gastric Cancer 2024; 27:998-1015. [PMID: 38850316 PMCID: PMC11335886 DOI: 10.1007/s10120-024-01517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Cisplatin (DDP) is a basic chemotherapy drug for gastric cancer (GC). With the increase of DDP drug concentration in clinical treatment, cancer cells gradually became resistant. Therefore, it is necessary to find effective therapeutic targets to enhance the sensitivity of GC to DDP. Studies have shown that Transmembrane protein 205 (TMEM205) is overexpressed in DDP-resistant human epidermoid carcinoma cells and correlates with drug resistance, and database analyses show that TMEM 205 is also overexpressed in GC, but its role in cisplatin-resistant gastric cancer remains unclear. In this study, we chose a variety of experiments in vivo and vitro, aiming to investigate the role of TMEM 205 in cisplatin resistance in gastric cancer. The results showed that TMEM 205 promoted proliferation, stemness, epithelial-mesenchymal transition (EMT), migration and angiogenesis of gastric cancer cells through activation of the Wnt/β-catenin signaling pathway. In addition, TMEM205 promotes GC progression by inducing M2 polarization of tumor-associated macrophages (TAMs). These results suggest that TMEM205 may be an effective target to regulate the sensitivity of GC to DDP, providing a new therapeutic direction for clinical treatment.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Xuwei Wu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
- Department of Pathology, Chifeng Municipal Hospital, Chifeng, 024000, China
| | - Zhongqi Lu
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Ying Chang
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Meihua Zhang
- Department of Health Examination Centre, Yanbian University Hospital, Yanji, 133002, China.
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China.
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| |
Collapse
|
4
|
Hu D, Zhao T, Xu C, Pan X, Zhou Z, Wang S. Epigenetic Modifiers in Cancer Metastasis. Biomolecules 2024; 14:916. [PMID: 39199304 PMCID: PMC11352731 DOI: 10.3390/biom14080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Metastasis is the primary cause of cancer-related death, with the dissemination and colonization of primary tumor cells at the metastatic site facilitated by various molecules and complex pathways. Understanding the biological mechanisms underlying the metastatic process is critical for the development of effective interventions. Several epigenetic modifications have been identified that play critical roles in regulating cancer metastasis. This review aims to provide a comprehensive summary of recent advances in understanding the role of epigenetic modifiers, including histone modifications, DNA methylation, non-coding RNAs, enhancer reprogramming, chromatin accessibility, and N6-methyladenosine, in metastasis-associated processes, such as epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. In particular, this review provides a detailed and in-depth description of the role of crosstalk between epigenetic regulators in tumor metastasis. Additionally, we explored the potential and limitations of epigenetics-related target molecules in the diagnosis, treatment, and prognosis of cancer metastasis.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Tianci Zhao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China;
| | - Chenxing Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Xinyi Pan
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Zhengyu Zhou
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Liu W, Liu Y, Chen S, Hui J, He S. AURKB promotes immunogenicity and immune infiltration in clear cell renal cell carcinoma. Discov Oncol 2024; 15:286. [PMID: 39014265 PMCID: PMC11252114 DOI: 10.1007/s12672-024-01141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Chromatin regulators (CRs) are capable of causing epigenetic alterations, which are significant features of cancer. However, the function of CRs in controlling Clear Cell Renal Cell Carcinoma (ccRCC) is not well understood. This research aims to discover a CRs prognostic signature in ccRCC and to elucidate the roles of CRs-related genes in tumor microenvironment (TME). METHODS Expression profiles and relevant clinical annotations were retrieved from the Cancer Genome Atlas (TCGA) and UCSC Xena platform for progression-free survival (PFS) data. The R package "limma" was used to identify differentially expressed CRs. A predictive model based on five CRs was developed using LASSO-Cox analysis. The model's predictive power and applicability were validated using K-M curves, ROC curves, nomograms, comparisons with other models, stratified survival analyses, and validation with the ICGC cohort. GO and GSEA analyses were performed to investigate mechanisms differentiating low and high riskScore groups. Immunogenicity was assessed using Tumor Mutational Burden (TMB), immune cell infiltrations were inferred, and immunotherapy was evaluated using immunophenogram analysis and the expression patterns of human leukocyte antigen (HLA) and checkpoint genes. Differentially expressed CRs (DECRs) between low and high riskScore groups were identified using log2|FC|> 1 and FDR < 0.05. AURKB, one of the high-risk DECRs and a component of our prognostic model, was selected for further analysis. RESULTS We constructed a 5 CRs signature, which demonstrated a strong capacity to predict survival and greater applicability in ccRCC. Elevated immunogenicity and immune infiltration in the high riskScore group were associated with poor prognosis. Immunotherapy was more effective in the high riskScore group, and certain chemotherapy medications, including cisplatin, docetaxel, bleomycin, and axitinib, had lower IC50 values. Our research shows that AURKB is critical for the immunogenicity and immune infiltration of the high riskScore group. CONCLUSION Our study produced a reliable prognostic prediction model using only 5 CRs. We found that AURKB promotes immunogenicity and immune infiltration. This research provides crucial support for the development of prognostic biomarkers and treatment strategies for ccRCC.
Collapse
Affiliation(s)
- Weihao Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Liu
- Department of Oncology, Huadu District People's Hospital of Guangzhou, Guangzhou, 510810, Guangdong, China
| | - Shisheng Chen
- Department of Urology, Dongguan Tungwah Hospital, Dongguan, 523110, Guangdong, China
| | - Jialiang Hui
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Shuhua He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Wen H, Liu XB, Zhu ZD, Jin S, Gao YJ, Tong Q, Li SB. TET2 Is Downregulated in Early Esophageal Squamous Cell Carcinoma and Promotes Esophageal Squamous Cell Malignant Behaviors. Dig Dis Sci 2024; 69:2462-2476. [PMID: 38653944 DOI: 10.1007/s10620-024-08311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/22/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE To explore the expression of the ten eleven translocation (TET) 2 protein in early esophageal squamous cell carcinoma (EESCC), precancerous lesions, and cell lines and to evaluate the effect of TET2 on the functional behavior of EC109 esophageal cancer cells. METHODS Thirty-one samples of EESCC and precancerous lesions collected via endoscopic submucosal dissection at Taihe Hospital, Shiyan, from February 1, 2017, to February 1, 2019, were analyzed. The study involved evaluating TET2 expression levels in lesion tissue and adjacent normal epithelium, correlating these with clinical pathological features. Techniques including 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide, cell scratch assays, flow cytometry for propidium iodide (PI) staining, Hoechst 333258/PI double staining, and nude mouse tumorigenesis experiments were employed to assess the effect of TET2 on the proliferation, migration, cell cycle, apoptosis, and tumorigenic ability of esophageal cancer cells. RESULTS TET2 expression was notably reduced in early esophageal cancer tissue and correlated with tumor invasion depth (P < 0.05). Overexpression of TET2 enhanced the proliferation and migration of esophageal cancer cells, increased the cell population in the G0 phase, decreased it in the S phase, and intensified cell necrosis (P < 0.05). There was a partial increase in tumorigenic ability (P = 0.087). CONCLUSION TET2 downregulation in ESCC potentially influences the necrosis, cell cycle, and tumorigenic ability of esophageal cancer cells, suggesting a role in the onset and progression of esophageal cancer.
Collapse
Affiliation(s)
- Hui Wen
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Xiao-Bo Liu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Department of Gastroenterology, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Zhao-di Zhu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Yuan-Jun Gao
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Qiang Tong
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Sheng-Bao Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
8
|
Zhou J, Lan F, Liu M, Wang F, Ning X, Yang H, Sun H. Hypoxia inducible factor-1ɑ as a potential therapeutic target for osteosarcoma metastasis. Front Pharmacol 2024; 15:1350187. [PMID: 38327979 PMCID: PMC10847273 DOI: 10.3389/fphar.2024.1350187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Osteosarcoma (OS) is a malignant tumor originating from mesenchymal tissue. Pulmonary metastasis is usually present upon initial diagnosis, and metastasis is the primary factor affecting the poor prognosis of patients with OS. Current research shows that the ability to regulate the cellular microenvironment is essential for preventing the distant metastasis of OS, and anoxic microenvironments are important features of solid tumors. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) expression levels and stability increase. Increased HIF-1α promotes tumor vascular remodeling, epithelial-mesenchymal transformation (EMT), and OS cells invasiveness; this leads to distant metastasis of OS cells. HIF-1α plays an essential role in the mechanisms of OS metastasis. In order to develop precise prognostic indicators and potential therapeutic targets for OS treatment, this review examines the molecular mechanisms of HIF-1α in the distant metastasis of OS cells; the signal transduction pathways mediated by HIF-1α are also discussed.
Collapse
Affiliation(s)
- Jianghu Zhou
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengjun Lan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengyan Wang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Zhou Z, Li Q. The Role of Pyroptosis in the Pathogenesis of Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:443-458. [PMID: 38089443 PMCID: PMC10712988 DOI: 10.1159/000531642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/12/2023] [Indexed: 01/21/2025]
Abstract
BACKGROUND Recently, in addition to apoptosis and necrosis, several other forms of cell death have been discovered, such as necroptosis, autophagy, pyroptosis, and ferroptosis. These cell death modalities play diverse roles in kidney diseases. Pyroptosis is a newly described type of proinflammatory programmed necrosis. Further exploring pyroptosis is helpful to slow the progression of kidney diseases and reduce their complications. SUMMARY Pyroptosis is mainly mediated by the cleavage of gasdermin D (GSDMD) along with downstream inflammasome activation. Activated caspase-1 induces the release of cytokines by cleaving GSDMD. Inflammation is a major pathogenic mechanism for kidney diseases. Increasing evidence corroborated that pyroptosis was closely related to the progression of renal diseases, including acute kidney injury, renal fibrosis, diabetic nephropathy, and kidney cancer. In this paper, we reviewed the role and the therapeutic treatment of pyroptosis in renal diseases. KEY MESSAGES The better understanding of the progress and new intervention approaches of pyroptosis in kidney diseases may pave the way for new therapeutic opportunities in clinical practice.
Collapse
Affiliation(s)
- Zhuanli Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Guo K, Zhao Y, Cao Y, Li Y, Yang M, Tian Y, Dai J, Song L, Ren S, Wang Z. Exploring the key genetic association between chronic pancreatitis and pancreatic ductal adenocarcinoma through integrated bioinformatics. Front Genet 2023; 14:1115660. [PMID: 37501719 PMCID: PMC10369079 DOI: 10.3389/fgene.2023.1115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/19/2023] [Indexed: 07/29/2023] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) develops rapidly and has a poor prognosis. It has been demonstrated that pancreatic ductal adenocarcinoma and chronic pancreatitis (CP) have a close connection. However, the underlying mechanisms for chronic pancreatitis transforming into pancreatic ductal adenocarcinoma are still unclear. The purpose of this study was to identify real hub genes in the development of chronic pancreatitis and pancreatic ductal adenocarcinoma. Methods: RNA-seq data of chronic pancreatitis and pancreatic ductal adenocarcinoma were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network between chronic pancreatitis and pancreatic ductal adenocarcinoma. GEO2R and a Venn diagram were used to identify differentially expressed genes. Then visualized networks were constructed with ClueGO, and modules of PPI network were calculated by MCODE plugin. Further validation of the results was carried out in two additional cohorts. Analyses of CEL-coexpressed genes and regulators including miRNAs and transcription factors were performed by using the corresponding online web tool. Finally, the influence of CEL in the tumor immune microenvironment (TIME) was assessed by immune contextual analysis. Results: With the help of WGCNA and GEO2R, four co-expression modules and six hub genes were identified, respectively. ClueGO enrichment analysis and MCODE cluster analysis revealed that the dysfunctional transport of nutrients and trace elements might contribute to chronic pancreatitis and pancreatic ductal adenocarcinoma development. The real hub gene CEL was identified with a markedly low expression in pancreatic ductal adenocarcinoma in external validation sets. According to the miRNA-gene network construction, hsa-miR-198 may be the key miRNA. A strong correlation exists between CEL and TIME after an evaluation of the influence of CEL in TIME. Conclusion: Our study revealed the dysfunctional transport of nutrients and trace elements may be common pathogenesis of pancreatic ductal adenocarcinoma and chronic pancreatitis. Examination on these common pathways and real hub genes may shed light on the underlying mechanism.
Collapse
Affiliation(s)
- Kai Guo
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yatong Zhao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Cao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Li
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng Yang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianmeng Dai
- School of Medicine, Tongji University, Shanghai, China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Pires SF, de Barros JS, da Costa SS, de Oliveira Scliar M, Van Helvoort Lengert A, Boldrini É, da Silva SRM, Tasic L, Vidal DO, Krepischi ACV, Maschietto M. DNA methylation patterns suggest the involvement of DNMT3B and TET1 in osteosarcoma development. Mol Genet Genomics 2023; 298:721-733. [PMID: 37020053 DOI: 10.1007/s00438-023-02010-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
DNA methylation may be involved in the development of osteosarcomas. Osteosarcomas commonly arise during the bone growth and remodeling in puberty, making it plausible to infer the involvement of epigenetic alterations in their development. As a highly studied epigenetic mechanism, we investigated DNA methylation and related genetic variants in 28 primary osteosarcomas aiming to identify deregulated driver alterations. Methylation and genomic data were obtained using the Illumina HM450K beadchips and the TruSight One sequencing panel, respectively. Aberrant DNA methylation was spread throughout the osteosarcomas genomes. We identified 3146 differentially methylated CpGs comparing osteosarcomas and bone tissue samples, with high methylation heterogeneity, global hypomethylation and focal hypermethylation at CpG islands. Differentially methylated regions (DMR) were detected in 585 loci (319 hypomethylated and 266 hypermethylated), mapped to the promoter regions of 350 genes. These DMR genes were enriched for biological processes related to skeletal system morphogenesis, proliferation, inflammatory response, and signal transduction. Both methylation and expression data were validated in independent groups of cases. Six tumor suppressor genes harbored deletions or promoter hypermethylation (DLEC1, GJB2, HIC1, MIR149, PAX6, and WNT5A), and four oncogenes presented gains or hypomethylation (ASPSCR1, NOTCH4, PRDM16, and RUNX3). Our analysis also revealed hypomethylation at 6p22, a region that contains several histone genes. Copy-number changes in DNMT3B (gain) and TET1 (loss), as well as overexpression of DNMT3B in osteosarcomas provide a possible explanation for the observed phenotype of CpG island hypermethylation. While the detected open-sea hypomethylation likely contributes to the well-known osteosarcoma genomic instability, enriched CpG island hypermethylation suggests an underlying mechanism possibly driven by overexpression of DNMT3B likely resulting in silencing of tumor suppressors and DNA repair genes.
Collapse
Affiliation(s)
- Sara Ferreira Pires
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marília de Oliveira Scliar
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ljubica Tasic
- Laboratory of Biological Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
- Research Center, Boldrini Children's Hospital, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Li Q, Chen G, Jiang H, Dai H, Li D, Zhu K, Zhang K, Shen H, Xu H, Li S. ITGB3 promotes cisplatin resistance in osteosarcoma tumors. Cancer Med 2023; 12:8452-8463. [PMID: 36772869 PMCID: PMC10134362 DOI: 10.1002/cam4.5585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVE Osteosarcoma is the most malignant and common primary bone tumor with a high rate of recurrence that mainly occurs in children and young adults. Therefore, it is vital to facilitate the development of novel effective therapeutic means and improve the overall prognosis of osteosarcoma patients via a deeper understanding of the mechanisms of chemoresistance in osteosarcoma progression. METHODS In this research, the relationship between ITGB3 and the clinical characteristics of patients was detected through analysis of publicly available clinical datasets. The expression of ITGB3 was analysis in collected human osteosarcoma tissues. In addition, the potential functions of ITGB3 in the cisplatin resistance of osteosarcoma cells were investigated in vitro and in tumor xenotransplantation. Finally, the molecular mechanism of ITGB3 in the progression and recurrence of osteosarcoma were explored via transcriptome analysis. RESULTS ITGB3 was identified as a potential regulator of tumorigenicity and cisplatin resistance in relapsed osteosarcoma. Furthermore, the decreased osteosarcoma cell proliferation and migration ability in ITGB3 knockout osteosarcoma cells were related to increased apoptosis and slowing cell cycle progression. In addition, ITGB3 had a positive correlation with cisplatin resistance in cells and tumor xenografts in mice. Accordingly, ITGB3 performed the functions of proliferation and cisplatin resistance in osteosarcoma through the MAPK and VEGF signaling pathways. CONCLUSION Our results will contribute to a better understanding of the function and mechanism of ITGB3 in osteosarcoma cisplatin resistance and provide a novel therapeutic target to decrease cisplatin resistance and tumor recurrence in osteosarcoma patients.
Collapse
Affiliation(s)
- Qian Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Guangyou Chen
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Huachai Jiang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Haoping Dai
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Dongdong Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Kai Zhu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Kaiquan Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Huarui Shen
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Houping Xu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Sen Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
13
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
15
|
Herrador-Cañete G, Zalacain M, Labiano S, Laspidea V, Puigdelloses M, Marrodan L, Garcia-Moure M, Gonzalez-Huarriz M, Marco-Sanz J, Ausejo-Mauleon I, de la Nava D, Hernández-Osuna R, Martínez-García J, Silva-Pilipich N, Gurucega E, Patiño-García A, Hernández-Alcoceba R, Smerdou C, Alonso MM. Galectin-3 inhibition boosts the therapeutic efficacy of Semliki Forest virus in pediatric osteosarcoma. Mol Ther Oncolytics 2022; 26:246-264. [PMID: 35949950 PMCID: PMC9345771 DOI: 10.1016/j.omto.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
The outcomes of metastatic and nonresponder pediatric osteosarcoma patients are very poor and have not improved in the last 30 years. These tumors harbor a highly immunosuppressive environment, making existing immunotherapies ineffective. Here, we evaluated the use of Semliki Forest virus (SFV) vectors expressing galectin-3 (Gal3) inhibitors as therapeutic tools, since both the inhibition of Gal3, which is involved in immunosuppression and metastasis, and virotherapy based on SFV have been demonstrated to reduce tumor progression in different tumor models. In vitro, inhibitors based on the Gal3 amino-terminal domain alone (Gal3-N) or fused to a Gal3 peptide inhibitor (Gal3-N-C12) were able to block the binding of Gal3 to the surface of activated T cells. In vivo, SFV expressing Gal3-N-C12 induced strong antitumor responses in orthotopic K7M2 and MOS-J osteosarcoma tumors, leading to complete regressions in 47% and 30% of mice, respectively. Pulmonary metastases were also reduced in K7M2 tumor-bearing mice after treatment with SFV-Gal3-N-C12. Both the antitumor and antimetastatic responses were dependent on modulation of the immune system, primarily including an increase in tumor-infiltrating lymphocytes and a reduction in the immunosuppressive environment inside tumors. Our results demonstrated that SFV-Gal3-N-C12 could constitute a potential therapeutic agent for osteosarcoma patients expressing Gal3.
Collapse
Affiliation(s)
- Guillermo Herrador-Cañete
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Montserrat Puigdelloses
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Lucía Marrodan
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Marc Garcia-Moure
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Marisol Gonzalez-Huarriz
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Javier Marco-Sanz
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Iker Ausejo-Mauleon
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Reyes Hernández-Osuna
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Javier Martínez-García
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Noelia Silva-Pilipich
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Elisabeth Gurucega
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Bioinformatics Platform, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Ana Patiño-García
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Rubén Hernández-Alcoceba
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Cristian Smerdou
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Marta M Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| |
Collapse
|
16
|
Zhang Z, Fang T, Lv Y. A novel lactate metabolism-related signature predicts prognosis and tumor immune microenvironment of breast cancer. Front Genet 2022; 13:934830. [PMID: 36171887 PMCID: PMC9511350 DOI: 10.3389/fgene.2022.934830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lactate, an intermediate product of glycolysis, has become an essential regulator of tumor maintenance, development, and metastasis. Lactate can drive tumors by changing the microenvironment of tumor cells. Because of lactate's important role in cancer, we aim to find a novel prognostic signature based on lactate metabolism-related genes (LMRGs) of breast cancer (BC). Methods: RNA-sequencing data and clinical information of BC were enrolled from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We obtained LMRGs from the Molecular Signature Database v7.4 and articles, and then we compared candidate genes with TCGA data to get differential genes. Univariate analysis and most minor absolute shrinkage and selector operator (LASSO) Cox regression were employed to filter prognostic genes. A novel lactate metabolism-related risk signature was constructed using a multivariate Cox regression analysis. The signature was validated by time-dependent ROC curve analyses and Kaplan-Meier analyses in TCGA and GEO cohorts. Then, we further investigated in depth the function of the model's immune microenvironment. Results: We constructed a 3-LMRG-based risk signature. Kaplan-Meier curves confirmed that high-risk score subgroups had a worse prognosis in TCGA and GEO cohorts. Then a nomogram to predict the probability of survival for BC was constructed. We also performed Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway function analysis. The function analysis showed that the lactate metabolism-related signature was significantly related to immune response. A significant correlation was observed between prognostic LMRGs and tumor mutation burden, checkpoints, and immune cell infiltration. An mRNA-miRNA network was built to identify an miR-203a-3p/LDHD/LYRM7 regulatory axis in BC. Conclusion: In conclusion, we constructed a novel 3-LMRG signature and nomogram that can be used to predict the prognosis of BC patients. In addition, the signature is closely related to the immune microenvironment, which may provide new insight into future anticancer therapies.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Thyroid Breast Surgery, Xi’an NO. 3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Tian Fang
- Department of Medical Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yonggang Lv
- Department of Thyroid Breast Surgery, Xi’an NO. 3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, China
| |
Collapse
|
17
|
Pronier E, Imanci A, Selimoglu-Buet D, Badaoui B, Itzykson R, Roger T, Jego C, Naimo A, Francillette M, Breckler M, Wagner-Ballon O, Figueroa ME, Aglave M, Gautheret D, Porteu F, Bernard OA, Vainchenker W, Delhommeau F, Solary E, Droin NM. Macrophage migration inhibitory factor is overproduced through EGR1 in TET2 low resting monocytes. Commun Biol 2022; 5:110. [PMID: 35115654 PMCID: PMC8814058 DOI: 10.1038/s42003-022-03057-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Somatic mutation in TET2 gene is one of the most common clonal genetic events detected in age-related clonal hematopoiesis as well as in chronic myelomonocytic leukemia (CMML). In addition to being a pre-malignant state, TET2 mutated clones are associated with an increased risk of death from cardiovascular disease, which could involve cytokine/chemokine overproduction by monocytic cells. Here, we show in mice and in human cells that, in the absence of any inflammatory challenge, TET2 downregulation promotes the production of MIF (macrophage migration inhibitory factor), a pivotal mediator of atherosclerotic lesion formation. In healthy monocytes, TET2 is recruited to MIF promoter and interacts with the transcription factor EGR1 and histone deacetylases. Disruption of these interactions as a consequence of TET2-decreased expression favors EGR1-driven transcription of MIF gene and its secretion. MIF favors monocytic differentiation of myeloid progenitors. These results designate MIF as a chronically overproduced chemokine and a potential therapeutic target in patients with clonal TET2 downregulation in myeloid cells. To improve our understanding of the pathological role of TET2 mutations, Pronier, Imanci et al. use mice and human cells to show that TET2 downregulation promotes the production of macrophage migration inhibitory factor (MIF). In addition they show that whilst TET2 is recruited to the MIF promoter in healthy monocytes, decreased TET2 expression results in chronic overproduction of MIF - suggesting that MIF signaling could therefore constitute a potential therapeutic target for conditions associated with TET2 mutations.
Collapse
Affiliation(s)
- Elodie Pronier
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Owkin Lab, Owkin, Inc., New York, NY, 10003, USA
| | - Aygun Imanci
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Dorothée Selimoglu-Buet
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Bouchra Badaoui
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Département d'Hématologie et Immunologie Biologiques, 94000, Créteil, France
| | - Raphael Itzykson
- AP-HP, Service Hématologie Adultes, Hôpital Saint-Louis, 75010, Paris, France
| | - Thierry Roger
- Infectious Disease Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011, Lausanne, Switzerland
| | - Chloé Jego
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Audrey Naimo
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Maëla Francillette
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Marie Breckler
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Orianne Wagner-Ballon
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Département d'Hématologie et Immunologie Biologiques, 94000, Créteil, France.,Université Paris Est Créteil, INSERM, IMRB, Equipe 9, 94010, Créteil, France
| | - Maria E Figueroa
- Human Genetics, University of Miami Miller School of Medicine, 33136, Miami, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 33136, Miami, USA
| | - Marine Aglave
- INSERM US23, CNRS UMS 3655, AMMICa, Bioinformatic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Daniel Gautheret
- INSERM US23, CNRS UMS 3655, AMMICa, Bioinformatic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Françoise Porteu
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Olivier A Bernard
- Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France.,INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - William Vainchenker
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - François Delhommeau
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, 75012, Paris, France.,AP-HP, Sorbonne Université, Hôpital Saint-Antoine, Service d'Hématologie et Immunologie Biologique, 75012, Paris, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France.,Hematology department, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Nathalie M Droin
- INSERM U1287, Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France. .,INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France.
| |
Collapse
|
18
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
The Release of Inflammatory Mediators from Acid-Stimulated Mesenchymal Stromal Cells Favours Tumour Invasiveness and Metastasis in Osteosarcoma. Cancers (Basel) 2021; 13:cancers13225855. [PMID: 34831016 PMCID: PMC8616358 DOI: 10.3390/cancers13225855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary We aimed to validate the correlation between tumour glycolysis/acidosis and inflammation in osteosarcoma-associated mesenchymal stromal cells and investigate the role of acidity-induced inflammation in the development of metastasis in this very aggressive cancer. We confirmed the presence of an acidic microenvironment in osteosarcoma xenografts, both subcutaneous and orthotopic, using state-of-the-art imaging technologies; corroborated the correlation between tumour glycolysis, acidosis, and inflammatory markers in human patients; and finally, explored the use of anti-IL6 antibody to target these pathogenic pathways, using advanced 3D microfluidic models. In the future, advanced imaging systems for the measurement of tumour glycolysis and/or pH may help identify osteosarcoma patients who would benefit from anti-IL6 therapies to complement conventional therapy. Abstract Osteosarcoma is the most frequent primary malignant bone tumour with an impressive tendency to metastasise. Highly proliferative tumour cells release a remarkable amount of protons into the extracellular space that activates the NF-kB inflammatory pathway in adjacent stromal cells. In this study, we further validated the correlation between tumour glycolysis/acidosis and its role in metastases. In patients, at diagnosis, we found high circulating levels of inflammatory mediators (IL6, IL8 and miR-136-5p-containing extracellular vesicles). IL6 serum levels significantly correlated with disease-free survival and 18F-FDG PET/CT uptake, an indirect measurement of tumour glycolysis and, hence, of acidosis. In vivo subcutaneous and orthotopic models, co-injected with mesenchymal stromal (MSC) and osteosarcoma cells, formed an acidic tumour microenvironment (mean pH 6.86, as assessed by in vivo MRI-CEST pH imaging). In these xenografts, we enlightened the expression of both IL6 and the NF-kB complex subunit in stromal cells infiltrating the tumour acidic area. The co-injection with MSC also significantly increased lung metastases. Finally, by using 3D microfluidic models, we directly showed the promotion of osteosarcoma invasiveness by acidosis via IL6 and MSC. In conclusion, osteosarcoma-associated MSC react to intratumoural acidosis by triggering an inflammatory response that, in turn, promotes tumour invasiveness at the primary site toward metastasis development.
Collapse
|
20
|
Zheng D, Yang K, Chen X, Li Y, Chen Y. Analysis of Immune-Stromal Score-Based Gene Signature and Molecular Subtypes in Osteosarcoma: Implications for Prognosis and Tumor Immune Microenvironment. Front Genet 2021; 12:699385. [PMID: 34630511 PMCID: PMC8495166 DOI: 10.3389/fgene.2021.699385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Infiltrating immune and stromal cells are essential for osteosarcoma progression. This study set out to analyze immune–stromal score-based gene signature and molecular subtypes in osteosarcoma. Methods: The immune and stromal scores of osteosarcoma specimens from the TARGET cohort were determined by the ESTIMATE algorithm. Then, immune-stromal score-based differentially expressed genes (DEGs) were screened, followed by univariate Cox regression analysis. A LASSO regression analysis was applied for establishing a prognostic model. The predictive efficacy was verified in the GSE21257 dataset. Associations between the risk scores and chemotherapy drug sensitivity, immune/stromal scores, PD-1/PD-L1 expression, immune cell infiltrations were assessed in the TARGET cohort. NMF clustering analysis was employed for characterizing distinct molecular subtypes based on immune-stromal score-based DEGs. Results: High immune/stromal scores exhibited the prolonged survival duration of osteosarcoma patients. Based on 85 prognosis-related stromal–immune score-based DEGs, a nine-gene signature was established. High-risk scores indicated undesirable prognosis of osteosarcoma patients. The AUCs of overall survival were 0.881 and 0.849 in the TARGET cohort and GSE21257 dataset, confirming the well predictive performance of this signature. High-risk patients were more sensitive to doxorubicin and low-risk patients exhibited higher immune/stromal scores, PD-L1 expression, and immune cell infiltrations. Three molecular subtypes were characterized, with distinct clinical outcomes and tumor immune microenvironment. Conclusion: This study developed a robust prognostic gene signature as a risk stratification tool and characterized three distinct molecular subtypes for osteosarcoma patients based on immune–stromal score-based DEGs, which may assist decision-making concerning individualized therapy and follow-up project.
Collapse
Affiliation(s)
- Dingzhao Zheng
- Department of Rehabilitation Medicine, The Fifth Hospital of Xiamen, Xiamen, China
| | - Kaichun Yang
- Emergency Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Xinjiang Chen
- Department of Orthopaedics, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yongwu Li
- Emergency Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yongchun Chen
- Department of Orthopaedics, The Fifth Hospital of Xiamen, Xiamen, China
| |
Collapse
|
21
|
Sun Z, Jing C, Guo X, Zhang M, Kong F, Wang Z, Jiang S, Wang H. Comprehensive Analysis of the Immune Infiltrates of Pyroptosis in Kidney Renal Clear Cell Carcinoma. Front Oncol 2021; 11:716854. [PMID: 34568046 PMCID: PMC8459616 DOI: 10.3389/fonc.2021.716854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) has long been identified as a highly immune-infiltrated tumor. However, the underlying role of pyroptosis in the tumor microenvironment (TME) of KIRC remains poorly described. Herein, we systematically analyzed the prognostic value, role in the TME, response to ICIs, and drug sensitivity of pyroptosis-related genes (PRGs) in KIRC patients based on The Cancer Genome Atlas (TCGA) database. Cluster 2, by consensus clustering for 24 PRGs, presented a poor prognosis, likely because malignancy-related hallmarks were remarkably enriched. Additionally, we constructed a prognostic prediction model that discriminated well between high- and low-risk patients and was further confirmed in external E-MTAB-1980 cohort and HSP cohort. By further analyzing the TME based on the risk model, higher immune cell infiltration and lower tumor purity were found in the high-risk group, which presented a poor prognosis. Patients with high risk scores also exhibited higher ICI expression, indicating that these patients may be more prone to profit from ICIs. The sensitivity to anticancer drugs that correlated with model-related genes was also identified. Collectively, the pyroptosis-related prognosis risk model may improve prognostic information and provide directions for current research investigations on immunotherapeutic strategies for KIRC patients.
Collapse
Affiliation(s)
- Zhuolun Sun
- Department of Urology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changying Jing
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Xudong Guo
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingxiao Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng Kong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenqing Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaobo Jiang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hanbo Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Zhang M, Bai Y, Xu C, Qi Y, Meng J, Zhang W, Su H, Yan W. Blockage of Extracellular Signal-Regulated Kinase Exerts an Antitumor Effect via Regulating Energy Metabolism and Enhances the Efficacy of Autophagy Inhibitors by Regulating Transcription Factor EB Nuclear Translocation in Osteosarcoma. Front Cell Dev Biol 2021; 9:650846. [PMID: 34414176 PMCID: PMC8369911 DOI: 10.3389/fcell.2021.650846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence suggests that extracellular signal-regulated kinase (ERK) is a valuable target molecule for cancer. However, antitumor drugs targeting ERK are still in their clinical phase and no FDA-approved medications exist. In this study, we identified an ERK inhibitor (ERKi; Vx-11e) with potential antitumor activities, which was reflected by the inhibition in the survival and proliferation of Osteosarcoma (OS) cells. Mechanistically, the ERKi regulated autophagic flux by promoting the translocation of transcription factor EB (TFEB) in OS cells, thereby increasing the dependence of OS cells on autophagy and sensitivity to treatment with autophagy inhibitors in OS. Besides, we also found that the ERKi could regulate mitochondrial apoptosis through the ROS/mitochondria pathway and aerobic glycolysis in OS, which also increases the dependence of OS cells on autophagy to clear metabolites to a certain extent. These results may provide a reference for the clinically improved efficacy of ERKis in combination with autophagy inhibitors in the treatment of OS and indicate its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Man Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yang Bai
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chang Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahong Meng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Su
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
23
|
Dono A, Takayasu T, Yan Y, Bundrant BE, Arevalo O, Lopez-Garcia CA, Esquenazi Y, Ballester LY. Differences in Genomic Alterations Between Brain Metastases and Primary Tumors. Neurosurgery 2021; 88:592-602. [PMID: 33369669 DOI: 10.1093/neuros/nyaa471] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Brain metastases (BMs) occur in ∼1/3 of cancer patients and are associated with poor prognosis. Genomic alterations contribute to BM development; however, mutations that predispose and promote BM development are poorly understood. OBJECTIVE To identify differences in genomic alterations between BM and primary tumors. METHODS A retrospective cohort of 144 BM patients were tested for genomic alterations (85 lung, 21 breast, 14 melanoma, 4 renal, 4 colon, 3 prostate, 4 others, and 9 unknown carcinomas) by a next-generation sequencing assay interrogating 315 genes. The differences in genomic alterations between BM and primary tumors from COSMIC and TCGA were evaluated by chi-square or Fisher's exact test. Overall survival curves were plotted using the Kaplan-Meier method. RESULTS The comparison of BM and primary tumors revealed genes that were mutated in BM with increased frequency: TP53, ATR, and APC (lung adenocarcinoma); ARID1A and FGF10 (lung small-cell); PIK3CG, NOTCH3, and TET2 (lung squamous); ERBB2, BRCA2, and AXL1 (breast carcinoma); CDKN2A/B, PTEN, RUNX1T1, AXL, and FLT4 (melanoma); and ATM, AR, CDKN2A/B, TERT, and TSC1 (renal clear-cell carcinoma). Moreover, our results indicate that lung adenocarcinoma BM patients with CREBBP, GPR124, or SPTA1 mutations have a worse prognosis. Similarly, ERBB2, CDK12, or TP53 mutations are associated with worse prognosis in breast cancer BM patients. CONCLUSION The present study demonstrates significant differences in the frequency of mutations between primary tumors and BM and identifies targetable alterations and genes that correlate with prognosis. Identifying the genomic alterations that are enriched in metastatic central nervous system tumors could help our understanding of BM development and improve patient management.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Takeshi Takayasu
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Bethany E Bundrant
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Octavio Arevalo
- Department of Diagnostic and Inteventional Imaging, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Carlos A Lopez-Garcia
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Memorial Hermann Hospital-TMC, Houston, Texas
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Memorial Hermann Hospital-TMC, Houston, Texas
| |
Collapse
|
24
|
TETology: Epigenetic Mastermind in Action. Appl Biochem Biotechnol 2021; 193:1701-1726. [PMID: 33694104 DOI: 10.1007/s12010-021-03537-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a well-explored epigenetic modification mediated by DNA methyltransferases (DNMTs) which are considered "methylation writers"; cytosine methylation is a reversible process. The process of removal of methyl groups from DNA remained unelucidated until the discovery of ten-eleven translocation (TET) proteins which are now considered "methylation editors." TET proteins are a family of Fe(II) and alpha-ketoglutarate-dependent 5-methyl cytosine dioxygenases-they convert 5-methyl cytosine to 5-hydroxymethyl cytosine, and to further oxidized derivatives. In humans, there are three TET paralogs with tissue-specific expression, namely TET1, TET2, and TET3. Among the TETs, TET2 is highly expressed in hematopoietic stem cells where it plays a pleiotropic role. The paralogs also differ in their structure and DNA binding. TET2 lacks the CXXC domain which mediates DNA binding in the other paralogs; thus, TET2 requires interactions with other proteins containing DNA-binding domains for effectively binding to DNA to bring about the catalysis. In addition to its role as methylation editor of DNA, TET2 also serves as methylation editor of RNA. Thus, TET2 is involved in epigenetics as well as epitranscriptomics. TET2 mutations have been found in various malignant hematological disorders like acute myeloid leukemia, and non-malignant hematological disorders like myelodysplastic syndromes. Increasing evidence shows that TET2 plays an important role in the non-hematopoietic system as well. Hepatocellular carcinoma, gastric cancer, prostate cancer, and melanoma are some non-hematological malignancies in which a role of TET2 has been implicated. Loss of TET2 is also associated with atherosclerotic vascular lesions and endometriosis. The current review elaborates on the role of structure, catalysis, physiological functions, pathological alterations, and methods to study TET2, with specific emphasis on epigenomics and epitranscriptomics.
Collapse
|
25
|
Peng D, Lin B, Xie M, Zhang P, Guo Q, Li Q, Gu Q, Yang S, Sen L. Histone demethylase KDM5A promotes tumorigenesis of osteosarcoma tumor. Cell Death Discov 2021; 7:9. [PMID: 33436536 PMCID: PMC7803953 DOI: 10.1038/s41420-020-00396-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a primary bone malignancy with a high rate of recurrence and poorer prognosis. Therefore, it is of vital importance to explore novel prognostic molecular biomarkers and targets for more effective therapeutic approaches. Previous studies showed that histone demethylase KDM5A can increase the proliferation and metastasis of several cancers. However, the function of KDM5A in the carcinogenesis of osteosarcoma is not clear. In the current study, KDM5A was highly expressed in osteosarcoma than adjacent normal tissue. Knockdown of KDM5A suppressed osteosarcoma cell proliferation and induced apoptosis. Moreover, knockdown of KDM5A could increase the expression level of P27 (cell-cycle inhibitor) and decrease the expression of Cyclin D1. Furthermore, after knockout of KDM5A in osteosarcoma cells by CRISPR/Cas9 system, the tumor size and growth speed were inhibited in tumor-bearing nude mice. RNA-Seq of KDM5A-KO cells indicated that interferon, epithelial–mesenchymal transition (EMT), IL6/JAK/STAT3, and TNF-α/NF-κB pathway were likely involved in the regulation of osteosarcoma cell viability. Taken together, our research established a role of KDM5A in osteosarcoma tumorigenesis and progression.
Collapse
Affiliation(s)
- Daohu Peng
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Birong Lin
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Mingzhong Xie
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Ping Zhang
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - QingXi Guo
- The affiliated hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, 646015, Luzhou City, Sichuan, P. R. China
| | - Qian Li
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Qinwen Gu
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China
| | - Sijin Yang
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China.
| | - Li Sen
- Hospital (T.C.M) Affiliated to Southwest Medical University, 182 Chunhui Road, Longmatan District, 64600, Luzhou City, Sichuan, P. R. China.
| |
Collapse
|
26
|
Lu Y, Li W, Liu G, Yang Y, Xiao E, Mu S, Guo Y, Li D, Yan G. Identification of critical pathways and potential therapeutic targets in poorly differentiated duodenal papilla adenocarcinoma. Cancer Cell Int 2021; 21:9. [PMID: 33407508 PMCID: PMC7789135 DOI: 10.1186/s12935-020-01709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Background Duodenal papilla carcinoma (DPC) is a rare malignancy of the gastrointestinal tract with high recurrence rate, and the pathogenesis of this highly malignant neoplasm is yet to be fully elucidated. This study aims to identify key genes to further understand the biology and pathogenesis underlying the molecular alterations driving DPC, which could be potential diagnostic or therapeutic targets. Methods Tumor samples of three DPC patients were collected and integrating RNA-seq analysis of tumor tissues and matched normal tissues were performed to discover differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were carried out to understand the potential bio-functions of the DPC differentially expressed genes (DEGs). Protein–protein interaction (PPI) network was constructed for functional modules analysis and identification of hub genes. qRT-PCR of clinical samples was conducted to validate the expression level of the hub genes. Results A total of 110 DEGs were identified from our RNA-seq data, GO and KEGG analyses showed that the DEGs were mainly enriched in multiple cancer-related functions and pathways, such as cell proliferation, IL-17signaling pathway, Jak-STAT signaling pathway, PPAR signaling pathway. The PPI network screened out five hub genes including IL-6, LCN2, FABP4, LEP and MMP1, which were identified as core genes in the network and the expression value were validated by qRT-PCR. The hub genes identified in this work were suggested to be potential therapeutic targets of DPC. Discussion The current study may provide new insight into the exploration of DPC pathogenesis and the screened hub genes may serve as potential diagnostic indicator and novel therapeutic target.
Collapse
Affiliation(s)
- Yuanxiang Lu
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.,School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Wensen Li
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Ge Liu
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.,School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yongbo Yang
- Department of Pharmacy, Zhongmou People's Hospital, Zhengzhou, China
| | - Erwei Xiao
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Senmao Mu
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yuqi Guo
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.,School of Clinical Medicine, Henan University, Kaifeng, China
| | - Deyu Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China. .,School of Clinical Medicine, Zhengzhou University, Zhengzhou, China.
| | - Guoyi Yan
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China. .,School of Clinical Medicine, Henan University, Kaifeng, China.
| |
Collapse
|
27
|
Li HJ, Wang Y, Li BX, Yang Y, Guan F, Pang XC, Li X. Roles of ten-eleven translocation family proteins and their O-linked β-N-acetylglucosaminylated forms in cancer development. Oncol Lett 2020; 21:1. [PMID: 33240407 PMCID: PMC7681232 DOI: 10.3892/ol.2020.12262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Members of the ten-eleven translocation (TET) protein family of which three mammalian TET proteins have been discovered so far, catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine which serve an important role in embryonic development and tumor progression. O-GlcNAcylation (O-linked β-N-acetylglucosaminylation) is a reversible post-translational modification known to serve important roles in tumorigenesis and metastasis especially in hematopoietic malignancies such as myelodysplastic syndromes, chronic myelomonocytic leukemia and acute myeloid leukemia. O-GlcNAcylation activity requires only two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT catalyzes attachment of GlcNAc sugar to serine, threonine and cytosine residues in proteins, while OGA hydrolyzes O-GlcNAc attached to proteins. Numerous recent studies have demonstrated that TETs can be O-GlcNAcylated by OGT, with consequent alteration of TET activity and stability. The present review focuses on the cellular, biological and biochemical functions of TET and its O-GlcNAcylated form and proposes a model of the role of TET/OGT complex in regulation of target proteins during cancer development. In addition, the present review provides directions for future research in this area.
Collapse
Affiliation(s)
- Hong-Jiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi 710069, P.R. China
| | - Bing-Xin Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xing-Chen Pang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Hematology Institute, School of Medicine, Northwest University, Xi'an, Shaanxi 710069, P.R. China.,Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
28
|
Francescangeli F, De Angelis ML, Baiocchi M, Rossi R, Biffoni M, Zeuner A. COVID-19-Induced Modifications in the Tumor Microenvironment: Do They Affect Cancer Reawakening and Metastatic Relapse? Front Oncol 2020; 10:592891. [PMID: 33194755 PMCID: PMC7649335 DOI: 10.3389/fonc.2020.592891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) causes an uncontrolled activation of the innate immune response, resulting in acute respiratory distress syndrome and systemic inflammation. The effects of COVID-19-induced inflammation on cancer cells and their microenvironment are yet to be elucidated. Here, we formulate the hypothesis that COVID-19-associated inflammation may generate a microenvironment favorable to tumor cell proliferation and particularly to the reawakening of dormant cancer cells (DCCs). DCCs often survive treatment of primary tumors and populate premetastatic niches in the lungs and other organs, retaining the potential for metastatic outgrowth. DCCs reawakening may be promoted by several events associated to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including activation of neutrophils and monocytes/macrophages, lymphopenia and an uncontrolled production of pro-inflammatory cytokines. Among pro-inflammatory factors produced during COVID-19, neutrophil extracellular traps (NETs) released by activated neutrophils have been specifically shown to activate premetastatic cancer cells disseminated in the lungs, suggesting they may be involved in DCCs reawakening in COVID-19 patients. If confirmed by further studies, the links between COVID-19, DCCs reactivation and tumor relapse may support the use of specific anti-inflammatory and anti-metastatic therapies in patients with COVID-19 and an active or previous cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
29
|
Liang Y, Zeng J, Luo B, Li W, He Y, Zhao W, Hu N, Jiang N, Luo Y, Xian Y, Liu J, Zheng X. TET2 promotes IL-1β expression in J774.1 cell through TLR4/MAPK signaling pathway with demethylation of TAB2 promoter. Mol Immunol 2020; 126:136-142. [PMID: 32823238 DOI: 10.1016/j.molimm.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-1β produced by macrophages plays an important role in inflammation development. However, the underlying mechanism in epigenetic regulation of IL-1β production is not fully addressed. Though DNA methylcytosine dioxygenase ten-eleven translocation 2 (TET2) is known to be involved in the regulation of inflammatory factors by oxidizing 5-methylcytosine (5mC), the underlying molecular mechanism is largely unknown. In this study, we found that the expression of both IL-1β and TET2 is upregulated by lipopolysaccharide (LPS)-stimulated mononuclear macrophage. We then knocked down TET2 in mouse macrophagelike cell line (J774.1) and found that LPS-induced IL-1β is also downregulated. In addition, LPS-stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) signaling pathway and intracellular effectors of the toll-like receptor 4 (TLR4) signaling pathway were also suppressed in TET2-knockdown cells. The methylation status in the promoter regions of myeloid differentiation primary response gene (MyD)88 and TAK1 binding protein 2 (TAB2) were estimated by bisulfite polymerase chain reaction. Compared with that of the control, the 5mC level on the TAB2 promoter is downregulated in the LPS-stimulated cells which can be reversed by TET2-knockdown. These findings altogether suggest that LPS-upregulated TET2 enhances IL-1β expression through demethylating the promoter region of TAB2, the key member of the TLR4/MAPK signaling pathway, a previously unreported molecular mechanism in TET2-regulated expression of inflammatory factors.
Collapse
Affiliation(s)
- Yu Liang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jingyuan Zeng
- College of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Bo Luo
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Wei Li
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yancheng He
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Wenjing Zhao
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Nan Hu
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Nan Jiang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yujiao Luo
- College of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yujun Xian
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jiajia Liu
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Xiaoli Zheng
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
30
|
Rothzerg E, Ho XD, Xu J, Wood D, Märtson A, Maasalu K, Kõks S. Alternative splicing of leptin receptor overlapping transcript in osteosarcoma. Exp Biol Med (Maywood) 2020; 245:1437-1443. [PMID: 32787464 DOI: 10.1177/1535370220949139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPACT STATEMENT Osteosarcoma (OS, also known as osteogenic sarcoma) is the most common primary malignancy of bone in children and adolescents. The molecular mechanisms of OS are extremely complicated and its molecular mediators remain to be elucidated. We sequenced total RNA from 18 OS bone samples (paired normal-tumor biopsies). We found statistically significant (FDR <0.05) 26 differentially expressed transcript variants of LEPROT gene with different expressions in normal and tumor samples. These findings contribute to the understanding of molecular mechanisms of OS development and provide encouragement to pursue further research.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Xuan D Ho
- Department of Oncology, College of Medicine and Pharmacy, Hue University, Hue 53000, Vietnam
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, Tartu 50411, Estonia
| | - Katre Maasalu
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, Tartu 50411, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
31
|
Rosenberg T, Kisliouk T, Cramer T, Shinder D, Druyan S, Meiri N. Embryonic Heat Conditioning Induces TET-Dependent Cross-Tolerance to Hypothalamic Inflammation Later in Life. Front Genet 2020; 11:767. [PMID: 32849788 PMCID: PMC7419591 DOI: 10.3389/fgene.2020.00767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Early life encounters with stress can lead to long-lasting beneficial alterations in the response to various stressors, known as cross-tolerance. Embryonic heat conditioning (EHC) of chicks was previously shown to mediate resilience to heat stress later in life. Here we demonstrate that EHC can induce cross-tolerance with the immune system, attenuating hypothalamic inflammation. Inflammation in EHC chicks was manifested, following lipopolysaccharide (LPS) challenge on day 10 post-hatch, by reduced febrile response and reduced expression of LITAF and NFκB compared to controls, as well as nuclear localization and activation of NFκB in the hypothalamus. Since the cross-tolerance effect was long-lasting, we assumed that epigenetic mechanisms are involved. We focused on the role of ten-eleven translocation (TET) family enzymes, which are the mediators of active CpG demethylation. Here, TET transcription during early life stress was found to be necessary for stress resilience later in life. The expression of the TET family enzymes in the midbrain during conditioning increased in parallel to an elevation in concentration of their cofactor α-ketoglutarate. In-ovo inhibition of TET activity during EHC, by the α-ketoglutarate inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES), resulted in reduced total and locus specific CpG demethylation in 10-day-old chicks and reversed both thermal and inflammatory resilience. In addition, EHC attenuated the elevation in expression of the stress markers HSP70, CRHR1, and CRHR2, during heat challenge on day 10 post-hatch. This reduction in expression was reversed by BPTES. Similarly, the EHC-dependent reduction of inflammatory gene expression during LPS challenge was eliminated in BPTES-treated chicks. Thus, TET family enzymes and CpG demethylation are essential for the embryonic induction of stress cross-tolerance in the hypothalamus.
Collapse
Affiliation(s)
- Tali Rosenberg
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tatiana Kisliouk
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Tomer Cramer
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dmitry Shinder
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Shelly Druyan
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Noam Meiri
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| |
Collapse
|
32
|
Epigenetics in Inflammatory Breast Cancer: Biological Features and Therapeutic Perspectives. Cells 2020; 9:cells9051164. [PMID: 32397183 PMCID: PMC7291154 DOI: 10.3390/cells9051164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence has emerged implicating epigenetic alterations in inflammatory breast cancer (IBC) origin and progression. IBC is a rare and rapidly progressing disease, considered the most aggressive type of breast cancer (BC). At clinical presentation, IBC is characterized by diffuse erythema, skin ridging, dermal lymphatic invasion, and peau d'orange aspect. The widespread distribution of the tumor as emboli throughout the breast and intra- and intertumor heterogeneity is associated with its poor prognosis. In this review, we highlighted studies documenting the essential roles of epigenetic mechanisms in remodeling chromatin and modulating gene expression during mammary gland differentiation and the development of IBC. Compiling evidence has emerged implicating epigenetic changes as a common denominator linking the main risk factors (socioeconomic status, environmental exposure to endocrine disruptors, racial disparities, and obesity) with IBC development. DNA methylation changes and their impact on the diagnosis, prognosis, and treatment of IBC are also described. Recent studies are focusing on the use of histone deacetylase inhibitors as promising epigenetic drugs for treating IBC. All efforts must be undertaken to unravel the epigenetic marks that drive this disease and how this knowledge could impact strategies to reduce the risk of IBC development and progression.
Collapse
|
33
|
Maloney C, Kallis MP, Edelman M, Tzanavaris C, Lesser M, Soffer SZ, Symons M, Steinberg BM. Gefitinib Inhibits Invasion and Metastasis of Osteosarcoma via Inhibition of Macrophage Receptor Interacting Serine-Threonine Kinase 2. Mol Cancer Ther 2020; 19:1340-1350. [PMID: 32371577 DOI: 10.1158/1535-7163.mct-19-0903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 11/16/2022]
Abstract
Most patients with osteosarcoma have subclinical pulmonary micrometastases at diagnosis. Mounting evidence suggests that macrophages facilitate metastasis. As the EGFR has been implicated in carcinoma-macrophage cross-talk, in this study, we asked whether gefitinib, an EGFR inhibitor, reduces osteosarcoma invasion and metastatic outgrowth using the K7M2-Balb/c syngeneic murine model. Macrophages enhanced osteosarcoma invasion in vitro, which was suppressed by gefitinib. Oral gefitinib inhibited tumor extravasation in the lung and reduced the size of metastatic foci, resulting in reduced metastatic burden. Gefitinib also altered pulmonary macrophage phenotype, increasing MHCII and decreasing CD206 expression compared with controls. Surprisingly, these effects are mediated through inhibition of macrophage receptor interacting protein kinase 2 (RIPK2), rather than EGFR. Supporting this, lapatinib, a highly specific EGFR inhibitor that does not inhibit RIPK2, had no effect on macrophage-promoted invasion, and RIPK2-/- macrophages failed to promote invasion. The selective RIPK2 inhibitor WEHI-345 blocked tumor cell invasion in vitro and reduced metastatic burden in vivo In conclusion, our results indicate that gefitinib blocks macrophage-promoted invasion and metastatic extravasation by reprogramming macrophages through inhibition of RIPK2.
Collapse
Affiliation(s)
- Caroline Maloney
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York
- Karches Center for Oncology, The Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Michelle P Kallis
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York
- Karches Center for Oncology, The Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Morris Edelman
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Christopher Tzanavaris
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Martin Lesser
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York
- The Feinstein Institutes for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Samuel Z Soffer
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York
- Karches Center for Oncology, The Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Marc Symons
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York
- Karches Center for Oncology, The Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Bettie M Steinberg
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York.
- Karches Center for Oncology, The Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
34
|
Guo M, Xu C, Chen YZ, Sun QW, Zhao XY, Liu X, Yang Y, Hu YY, Li FF, Liu SL. Associations of CXCL1 gene 5'UTR variations with ovarian cancer. J Ovarian Res 2020; 13:43. [PMID: 32326946 PMCID: PMC7181480 DOI: 10.1186/s13048-020-00640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are about 2.4 hundred thousand new cases and 1.5 hundred thousand deaths of ovarian cancer (OC) annually in the world. Chronic inflammation is a risk factor for OC. C-X-C motif chemokine ligand 1 (CXCL1) defects may facilitate inflammation and transactivate EGFR in ovarian cancer, but the precise haplotypes associated with the potential diseases remained largely unknown. In this work, we characterized CXCL1 gene variations to elucidate their possible associations with OC. METHODS We analyzed the CXCL1 gene for 300 OC patients with 400 healthy participants as controls. The statistical analyses and Hardy-Weinberg equilibrium tests of the patients and control populations were conducted using the SPSS software (version 19.0) and Plink (version 1.9). RESULTS The variants rs11547681, rs201090116, rs199791199, rs181868085, rs4074 and rs1814092 within or near the CXCL1 gene were characterized. The genetic heterozygosity of rs11547681 and rs4074 was very high. Statistical analysis showed that the variant rs11547681 in the gene was closely associated with the risk of OC in the Chinese Han population, although this variant was not associated with FIGO stages or pathological grades of the patients. CONCLUSIONS Rs11547681 in CXCL1 gene was associated with the risk of OC in the Chinese Han population.
Collapse
Affiliation(s)
- Man Guo
- Genomics Research Center, College of Pharmacy (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,Department of Gynaecology and Obstetrics of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chao Xu
- Genomics Research Center, College of Pharmacy (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.,Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yan-Zhe Chen
- Genomics Research Center, College of Pharmacy (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Qi-Wen Sun
- Genomics Research Center, College of Pharmacy (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Xin-Ying Zhao
- Department of Blood Dialysis, Heilongjiang Agricultural Reclamation Bureau General Hospital, Harbin, China
| | - Xin Liu
- Fifth Hospital Gynecology the City of Xiamen, Xiamen, Fujian, China
| | - Yi Yang
- Genomics Research Center, College of Pharmacy (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Yi-Yan Hu
- Genomics Research Center, College of Pharmacy (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Fei-Feng Li
- Genomics Research Center, College of Pharmacy (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Hegang, Heilongjiang, China.
| | - Shu-Lin Liu
- Genomics Research Center, College of Pharmacy (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Hegang, Heilongjiang, China. .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
35
|
Cancer Stem Cells and Osteosarcoma: Opportunities and Limitations. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
36
|
Benedicto A, Herrero A, Romayor I, Marquez J, Smedsrød B, Olaso E, Arteta B. Liver sinusoidal endothelial cell ICAM-1 mediated tumor/endothelial crosstalk drives the development of liver metastasis by initiating inflammatory and angiogenic responses. Sci Rep 2019; 9:13111. [PMID: 31511625 PMCID: PMC6739321 DOI: 10.1038/s41598-019-49473-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
The prometastatic stroma generated through tumor cells/host cells interaction is critical for metastatic growth. To elucidate the role of ICAM-1 on the crosstalk between tumor and primary liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), implicated in tumor adhesion and angiogenesis, we performed in vitro cocultures and an in vivo model of liver metastasis of colorectal cancer (CRC). ICAM-1 blockade in the LSECs decreased the adhesion and transmigration of tumor cells through an LSEC in vitro and vivo. Cocultures of C26 cells and LSECs contained higher amounts of IL-1β, IL-6, PGE-2, TNF-α and ICAM-1 than monocultures. C26 cells incubated with sICAM-1 secreted higher amounts of PGE-2, IL-6, VEGF, and MMPs, while enhanced the migration of LSECs and HSCs. HSCs cultures activated by media from C26 cells pretreated with sICAM-1 contained the largest amounts of VEGF and MMPs. C26 cell activation with sICAM-1 enhanced their metastasizing potential in vivo, while tumor LFA-1 blockade reduced tumor burden and LSECs and HSC-derived myofibroblasts recruitment. In vivo ICAM-1 silencing produced similar results. These findings uncover LSEC ICAM-1 as a mediator of the CRC metastatic cascade in the liver and identifies it as target for the inhibition of liver colonization and metastatic progression.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain.
| | - Alba Herrero
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| | - Irene Romayor
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| | - Joana Marquez
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| | - Bård Smedsrød
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø, Tromsø, Norway
| | - Elvira Olaso
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| | - Beatriz Arteta
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| |
Collapse
|
37
|
Marx S, Dal Maso T, Chen JW, Bury M, Wouters J, Michiels C, Le Calvé B. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin Cancer Biol 2019; 60:96-106. [PMID: 31454669 DOI: 10.1016/j.semcancer.2019.08.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/02/2023]
Abstract
The majority of cancer-associated deaths are related to secondary tumor formation. This multistep process involves the migration of cancer cells to anatomically distant organs. Metastasis formation relies on cancer cell dissemination and survival in the circulatory system, as well as adaptation to the new tissue notably through genetic and/or epigenetic alterations. A large number of proteins are clearly identified to play a role in the metastatic process but the structures and modes of action of these proteins are essentially unknown or poorly described. In this review, we detail the involvement of members of the transmembrane (TMEM) protein family in the formation of metastases or in the mechanisms leading to cancer cell dissemination such as migration and extra-cellular matrix remodelling. While the phenotype associated with TMEM over or down-expression is clear, the mechanisms by which these proteins allow cancer cell spreading remain, for most of them, unclear. In parallel, the 3D structures of these proteins are presented. Moreover, we proposed that TMEM proteins could be used as prognostic markers in different types of cancers and could represent potential targets for cancer treatment. A better understanding of this heterogeneous family of poorly characterized proteins thus opens perspectives for better cancer patient care.
Collapse
Affiliation(s)
- Sébastien Marx
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thomas Dal Maso
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Jia-Wei Chen
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Marina Bury
- de Duve Institute, 75 Avenue Hippocrate, 1200 Bruxelles, Belgium
| | - Johan Wouters
- Department of Chemistry, NAmur MEdicine & Drug Innovation Center (NAMEDIC-NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Carine Michiels
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Benjamin Le Calvé
- URBC - NARILIS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
38
|
Schiavone K, Garnier D, Heymann MF, Heymann D. The Heterogeneity of Osteosarcoma: The Role Played by Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:187-200. [PMID: 31134502 DOI: 10.1007/978-3-030-14366-4_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is the most common bone sarcoma and is one of the cancer entities characterized by the highest level of heterogeneity in humans. This heterogeneity takes place not only at the macroscopic and microscopic levels, with heterogeneous micro-environmental components, but also at the genomic, transcriptomic and epigenetic levels. Recent investigations have revealed the existence in osteosarcoma of cancer cells with stemness properties. Cancer stem cells are characterized by their specific phenotype and low cycling capacity, and are linked to drug resistance, tumour growth and the metastatic process. In addition, cancer stem cells contribute to the enrichment of tumour heterogeneity. The present manuscript will describe the main characteristic features of cancer stem cells in osteosarcoma and will discuss their impact on maintaining tumour heterogeneity. Their clinical implications will also be briefly addressed.
Collapse
Affiliation(s)
- Kristina Schiavone
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Delphine Garnier
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Marie-Francoise Heymann
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Dominique Heymann
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France.
| |
Collapse
|
39
|
Danieau G, Morice S, Rédini F, Verrecchia F, Royer BBL. New Insights about the Wnt/β-Catenin Signaling Pathway in Primary Bone Tumors and Their Microenvironment: A Promising Target to Develop Therapeutic Strategies? Int J Mol Sci 2019; 20:ijms20153751. [PMID: 31370265 PMCID: PMC6696068 DOI: 10.3390/ijms20153751] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation specifically for Ewing sarcoma, associated with tumor resection. However, patient survival has not evolved for the past decade and remains closely related to the response of tumor cells to chemotherapy, reaching around 75% at 5 years for patients with localized forms of osteosarcoma or Ewing sarcoma but less than 30% in metastatic diseases and patients resistant to initial chemotherapy. Despite Ewing sarcoma being characterized by specific EWSR1-ETS gene fusions resulting in oncogenic transcription factors, currently, no targeted therapy could be implemented. It seems even more difficult to develop a targeted therapeutic strategy in osteosarcoma which is characterized by high complexity and heterogeneity in genomic alterations. Nevertheless, the common point between these different bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Therefore, targeting different actors of the bone tumor microenvironment has been hypothesized to develop new therapeutic strategies. In this context, it is well known that the Wnt/β-catenin signaling pathway plays a key role in cancer development, including osteosarcoma and Ewing sarcoma as well as in bone remodeling. Moreover, recent studies highlight the implication of the Wnt/β-catenin pathway in angiogenesis and immuno-surveillance, two key mechanisms involved in metastatic dissemination. This review focuses on the role played by this signaling pathway in the development of primary bone tumors and the modulation of their specific microenvironment.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Agents/therapeutic use
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/immunology
- Bone Neoplasms/mortality
- Bone and Bones
- Child
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis
- Molecular Targeted Therapy/methods
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/mortality
- Neovascularization, Pathologic/prevention & control
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/immunology
- Osteosarcoma/drug therapy
- Osteosarcoma/genetics
- Osteosarcoma/immunology
- Osteosarcoma/mortality
- Proto-Oncogene Proteins c-ets/antagonists & inhibitors
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/immunology
- RNA-Binding Protein EWS/antagonists & inhibitors
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/immunology
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/immunology
- Sarcoma, Ewing/mortality
- Survival Analysis
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Wnt Signaling Pathway/drug effects
- Young Adult
- beta Catenin/antagonists & inhibitors
- beta Catenin/genetics
- beta Catenin/immunology
Collapse
Affiliation(s)
- Geoffroy Danieau
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Sarah Morice
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Françoise Rédini
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Franck Verrecchia
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France
| | - Bénédicte Brounais-Le Royer
- Université de Nantes, INSERM, UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, 44035 Nantes, France.
| |
Collapse
|
40
|
Kurahashi R, Kadomatsu T, Baba M, Hara C, Itoh H, Miyata K, Endo M, Morinaga J, Terada K, Araki K, Eto M, Schmidt LS, Kamba T, Linehan WM, Oike Y. MicroRNA-204-5p: A novel candidate urinary biomarker of Xp11.2 translocation renal cell carcinoma. Cancer Sci 2019; 110:1897-1908. [PMID: 31006167 PMCID: PMC6549932 DOI: 10.1111/cas.14026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/02/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Xp11.2 translocation renal cell carcinoma (Xp11 tRCC) is a rare sporadic pediatric kidney cancer caused by constitutively active TFE3 fusion proteins. Tumors in patients with Xp11 tRCC tend to recur and undergo frequent metastasis, in part due to lack of methods available to detect early‐stage disease. Here we generated transgenic (Tg) mice overexpressing the human PRCC‐TFE3 fusion gene in renal tubular epithelial cells, as an Xp11 tRCC mouse model. At 20 weeks of age, mice showed no histological abnormalities in kidney but by 40 weeks showed Xp11 tRCC development and related morphological and histological changes. MicroRNA (miR)‐204‐5p levels in urinary exosomes of 40‐week‐old Tg mice showing tRCC were significantly elevated compared with levels in control mice. MicroRNA‐204‐5p expression also significantly increased in primary renal cell carcinoma cell lines established both from Tg mouse tumors and from tumor tissue from 2 Xp11 tRCC patients. All of these lines secreted miR‐204‐5p‐containing exosomes. Notably, we also observed increased miR‐204‐5p levels in urinary exosomes in 20‐week‐old renal PRCC‐TFE3 Tg mice prior to tRCC development, and those levels were equivalent to those in 40‐week‐old Tg mice, suggesting that miR‐204‐5p increases follow expression of constitutively active TFE3 fusion proteins in renal tubular epithelial cells prior to overt tRCC development. Finally, we confirmed that miR‐204‐5p expression significantly increases in noncancerous human kidney cells after overexpression of a PRCC‐TFE3 fusion gene. These findings suggest that miR‐204‐5p in urinary exosomes could be a useful biomarker for early diagnosis of patients with Xp11 tRCC.
Collapse
Affiliation(s)
- Ryoma Kurahashi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Chiaki Hara
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Itoh
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Clinical Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Laura S Schmidt
- Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA.,Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
41
|
Zhang Q, Feng M, Zhang H, Xu J, Zhang L, Wang X, Cheng Z, Qian L. Long noncoding RNA uc.4 inhibits cell differentiation in heart development by altering DNA methylation. J Cell Biochem 2019; 120:8061-8068. [PMID: 30426569 DOI: 10.1002/jcb.28084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
In previous studies, we have demonstrated that long noncoding RNA uc.4 may influence the cell differentiation through the TGF-β signaling pathway, suppressed the heart development of zebrafish and resulting cardiac malformation. DNA methylation plays a significant role in the heart development and disordered of DNA methylation may cause disruption of control of gene promoter. In this study, methylated DNA immunoprecipitation was performed to identify the different expression levels of methylation regions. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were also performed to identify the possible biological process and pathway that uc.4 may join, associated with Rap1 signaling pathway, gonadotropin-releasing hormone signaling pathway, and Calcium signaling pathway. We found that the distribution of differentially methylated regions peaks was mainly located in intergenic and intron regions. Altogether, our result showed that differentially methylated genes are significantly expressed in uc.4-overexpression cells, providing valuable data for further exploration of the role of uc.4 in heart development.
Collapse
Affiliation(s)
- Qijun Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengwen Feng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuejun Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingmei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
HDAC2-mediated upregulation of IL-6 triggers the migration of osteosarcoma cells. Cell Biol Toxicol 2019; 35:423-433. [DOI: 10.1007/s10565-019-09459-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
|
43
|
Su Y, Zhou Y, Sun YJ, Wang YL, Yin JY, Huang YJ, Zhang JJ, He AN, Han K, Zhang HZ, Yao Y, Lv XB, Hu HY. Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1. J Mol Med (Berl) 2018; 97:49-61. [PMID: 30426155 DOI: 10.1007/s00109-018-1711-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OS), which is the most common primary malignant bone tumor, has a high incidence of pulmonary metastasis. CCL18 (C-C motif chemokine ligand 18), which is secreted by tumor-associated macrophages (TAMs), has been found to be increased in various tumors and is associated with tumor metastasis. However, the role of CCL18 in OS remains unclear. Here, we evaluated the effect of CCL18 on the OS cell lines MG63 and 143B and explored its potential mechanisms. We found that CCL18 enhanced the proliferation and migration of OS cells and upregulated UCA1 through transcription factor EP300. Subsequently, we further revealed that the downstream Wnt/β-catenin signaling pathway participated in this process. In addition, the high expression of CCL18 in both tissue and serum from patients was closely related to pulmonary metastasis and poor survival in OS patients. The tumor xenograft models also showed that CCL18 promoted the metastasis of OS cells. Collectively, our study indicated that macrophage-derived CCL18 promotes OS proliferation and metastasis via the EP300/UCA1/Wnt/β-catenin pathway and that CCL18 may be used as a prognostic marker and therapeutic target of OS. KEY MESSAGES: CCL18 promotes proliferation and migration of osteosarcoma cells by EP300/ UCA1/ Wnt/β-catenin pathway. CCL18+ TAMs are significantly correlated with pulmonary metastasis and poor survival in osteosarcoma patients. CCL18 may be used as a prognostic marker and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yang Su
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Yan Zhou
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Yuan-Jue Sun
- Department of Medical Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, No. 6600, Nanfeng Road, Fengxian District, Shanghai City, 201499, China
| | - Ya-Ling Wang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Jun-Yi Yin
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Yu-Jing Huang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Jian-Jun Zhang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Ai-Na He
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Kun Han
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Hui-Zhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Yang Yao
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China
| | - Xiao-Bin Lv
- Central Laboratory of the Third Affiliated Hospital, Nanchang University, No. 128 Xiangshan North Road, Donghu District, Nanchang City, 330008, Jiangxi Province, China.
| | - Hai-Yan Hu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai City, 200233, China.
| |
Collapse
|
44
|
TET2 inhibits tumorigenesis of breast cancer cells by regulating caspase-4. Sci Rep 2018; 8:16167. [PMID: 30385776 PMCID: PMC6212556 DOI: 10.1038/s41598-018-34462-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Epigenetic regulators have been shown to influence breast cancer progression. However, the detailed mechanism by which TET2 plays the suppressive role in tumorigenesis remains not completely understood. We employed RT-qPCR and westernblot to examine genes expression. Next, the bisulphite sequencing PCR was used to determine the methylation level at CASP4 promoter in the cells. Phenotypically, we utilized growth curve analysis, colony formation in soft agar and xenograft tumor assay to assess tumorigenesis of MCF-7 cell. We found that TET2 knockout enhanced colony formation ability and in vivo tumor formation ability of MCF-7 cell, whereas TET2 depletion not affected the growth rate of MCF-7 cell in the culture. Mechanistically, TET2 loss led to a significant decrease in caspase-4 expression possibly via increasing DNA methylation of CASP4 promoter in MCF-7 cell. To validate, TET2 overexpression led to higher level of caspase-4 in MDA-MB-231 and 293T cells, which was dependent on TET2 enzymatic activity. Finally, we observed that caspase-4 could revert, at least partially, TET2 deletion-induced tumorigenesis of MCF-7. In summary, we reveal a novel mechanism that TET2 suppresses tumorigenesis of breast cancer cells through caspase-4. Our findings will facilitate development of new diagnostic markers or therapeutical therapies for breast cancer.
Collapse
|
45
|
Zha Z, Su A, Huo S. Activation of GPER suppresses the malignancy of osteosarcoma cells via down regulation of IL-6 and IL-8. Arch Biochem Biophys 2018; 660:149-155. [PMID: 30385323 DOI: 10.1016/j.abb.2018.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/28/2018] [Accepted: 10/28/2018] [Indexed: 12/20/2022]
Abstract
Estrogenic signals can regulate the progression of osteosarcoma (OS) via classic estrogen receptor α/β (ERα/β). G protein-coupled estrogen receptor (GPER) can mediate the non-genomic effects of estrogen and regulate the progression of various cancers. Our present study revealed that the expression of GPER in OS cells and tissues was lower than that in their corresponding controls. Activation of GPER via its specific agonist G-1 can decrease the proliferation, migration, and invasion of OS cells. By screening the expression of cytokines involved in the progression of OS, we found that activation of GPER can inhibit the expression of interleukin-6 (IL-6) and IL-8 in OS cells. Recombinant IL-6 (rIL-6) or rIL-8 can attenuate G-1 suppressed migration of OS cells. Mechanically, activation of GPER can rapidly decease the phosphorylation and nuclear translocation of NF-κB in OS cells. While over expression of p65 significantly attenuated G-1 induced down regulation of IL-6/IL-8. Further, G-1 can decrease the activation of p38-MAPK, which can further shorten the half-life of IL-8 mRNA. Collectively, we revealed that GPER can suppress the migration and invasion of OS cells via inhibition of IL-6 and IL-8. It suggested that GPER might be a potential therapy target for OS treatment.
Collapse
Affiliation(s)
- Zhuqing Zha
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Yongping Road No100, Zhengzhou City, Henan Province, 450016, China
| | - Anping Su
- The Third Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou City, Guangdong Province, 510405, China
| | - Shaochuan Huo
- Southern Medical University, Guangzhou City, Guangdong Province, 510515, China.
| |
Collapse
|
46
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
47
|
Hsu YL, Chen YJ, Chang WA, Jian SF, Fan HL, Wang JY, Kuo PL. Interaction between Tumor-Associated Dendritic Cells and Colon Cancer Cells Contributes to Tumor Progression via CXCL1. Int J Mol Sci 2018; 19:2427. [PMID: 30115896 PMCID: PMC6121631 DOI: 10.3390/ijms19082427] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 01/05/2023] Open
Abstract
Crosstalk of a tumor with its microenvironment is a critical factor contributing to cancer development. This study investigates the soluble factors released by tumor-associated dendritic cells (TADCs) responsible for increasing cancer stem cell (CSC) properties, cell mobility, and epithelial-to-mesenchymal transition (EMT). Dendritic cells (DCs) of colon cancer patients were collected for phenotype and CXCL1 expression by flow cytometry and Luminex assays. The transcriptome of CXCL1-treated cancer cells was established by next generation sequencing. Inflammatory chemokine CXCL1, present in large amounts in DCs isolated from colon cancer patients, and SW620-conditioned TADCs, enhance CSC characteristics in cancer, supported by enhanced anchorage-independent growth, CD133 expression and aldehyde dehydrogenase activity. Additionally, CXCL1 increases the metastatic ability of a cancer by enhancing cell migration, matrix metalloproteinase-7 expression and EMT. The enhanced CXCL1 expression in DCs is also noted in mice transplanted with colon cancer cells. Transcriptome analysis of CXCL1-treated SW620 cells indicates that CXCL1 increases potential oncogene expression in colon cancer, including PTHLH, TYRP1, FOXO1, TCF4 and ZNF880. Concurrently, CXCL1 displays a specific microRNA (miR) upregulated by the prototypical colon cancer onco-miR miR-105. Analysis of publicly available data reveals CXCL1-driven oncogenes and miR-105 have a negative prognostic impact on the outcome of colon cancer. This study indicates a new mechanism by which the colon cancer milieu exploits DC plasticity to support cancer progression.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Shu-Fang Jian
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsiao-Li Fan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Jaw-Yuan Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|