1
|
Zhao X, Chen C, Qiu H, Liu J, Shao N, Guo M, Jiang Y, Zhao J, Xu L. The landscape of ATF3 in tumors: Metabolism, expression regulation, therapy approach, and open concerns. Pharmacol Res 2025; 214:107666. [PMID: 39978658 DOI: 10.1016/j.phrs.2025.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Cellular stress response is a pivotal process in tumor development and therapy. Activating transcription factor 3 (ATF3), a representative stress-responsive protein, plays pleiotropic roles in various biological processes. Over the past decade, studies have described not only the general role of ATF3 in tumor metabolism but also the complexity of ATF3 expression regulation and its associated modifications, including phosphorylation, ubiquitination, SUMOylation, and NEDDylation. Interestingly, beyond being a transcription factor, ATF3 can act as a modifier to control the ubiquitination of target molecules, such as p53, to exert its function in tumors. These advances in uncovering ATF3 biological function have yielded new insights into the cellular stress response during tumor development and will be instrumental in developing novel interventions. In this review, we update the role of ATF3 as a nexus in amino acid metabolism, lipid metabolism, glycometabolism, and other metabolic pathways in tumors; delineate the underlying mechanisms involving DNA level regulation, epigenetic regulation, and post-translational modifications of ATF3; and summarize the progression of tumor mono/combination therapies related to ATF3. In particular, we discuss the challenges that need to be addressed to provide a new conceptual framework for further understanding the potential therapeutic value of ATF3 in ongoing clinical trials.
Collapse
Affiliation(s)
- Xu Zhao
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Chao Chen
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Hui Qiu
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Jing Liu
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Nan Shao
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Mengmeng Guo
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo hospital, Shanghai University of Tradtional Chinese Medicine, Shanghai 200062, China.
| | - Juanjuan Zhao
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| | - Lin Xu
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Innovation Center for Tissue Damage Repair, Ministry of Education, Zunyi, Guizhou 563000, China.
| |
Collapse
|
2
|
Lin M, Mo Y, Li CM, Liu YZ, Feng XP. GRP78 as a potential therapeutic target in cancer treatment: an updated review of its role in chemoradiotherapy resistance of cancer cells. Med Oncol 2025; 42:49. [PMID: 39827214 DOI: 10.1007/s12032-024-02586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
GRP78 (Glucose-related protein 78, BiP/HSPA5) is commonly overexpressed in cancer cells. Acting as an activator of endoplasmic reticulum stress, GRP78 is involved in the resistance of cancer cells to injury. Current evidence suggests that GRP78 plays a significant role in the radiotherapy resistance and chemotherapy resistance of cancers, which is accomplished through a variety of complex pathways. These include the promotion of tumor stemness, inhibition of apoptosis, regulation of autophagy, maintenance of tumor microenvironment homeostasis, protection of dormant cells, evasion of senescence, counteraction of autoantibodies against GRP78, facilitation of DNA damage repair, suppression of ferroptosis, and modulation of metabolic reprogramming in tumor cells. Importantly, chemoradiotherapy resistance in cancers are the main reasons for treatment failure in patients, severely affecting their survival. Investigating the mechanisms of GRP78 in tumor therapeutic resistance is essential. In this article, we review the mechanisms by which GRP78 mediates cell survival and chemoradiotherapy resistance in cancers and provide an overview of clinical trials targeting GRP78 therapy.
Collapse
Affiliation(s)
- Min Lin
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yan Mo
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Cheng-Min Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ying-Zhe Liu
- Xiangya International Medical Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Xue-Ping Feng
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Zhou R, Fan Y, Wu H, Zhan S, Shen J, Zhu M. The molecular mechanism of PLD2-mediated regulation of apoptosis and cell edema in pancreatic cells via the Nrf2/NF-κB pathway. Sci Rep 2024; 14:25563. [PMID: 39461986 PMCID: PMC11513971 DOI: 10.1038/s41598-024-76274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to elucidate the molecular mechanisms by which PLD2 controls apoptosis and edema in pancreatic cells via the Nrf2/NF-κB pathway. AR42J rat pancreatic cells were treated with 10 nM mitomycin to create an in vitro pancreatitis model (model group), with a control group receiving phosphate-buffered saline. Cells were transfected with a PLD2 overexpression plasmid using Lipofectamine 3000, forming the PLD2 overexpression group. PLD2 protein expression was assessed by Western blotting, and TNF-α, IL-6, and IL-10 levels were measured by RT-qPCR. Nrf2/NF-κB protein expressions were also analyzed. Apoptosis and necrosis were evaluated using Annexin V-FITC/PI staining and the LDH release test. Cell edema was assessed by cell volume, ion content, and membrane damage. Western blotting was used to analyze pan-apoptosis-related proteins. PLD2 expression was lower in the model group compared to controls (P < 0.05) but higher in the PLD2 overexpression group (P < 0.05). TNF-α, IL-6, and IL-10 levels were elevated in the model group (P < 0.05) and reduced in the PLD2 overexpression group (P < 0.05). Nrf2 expression decreased in the model group but increased with PLD2 overexpression (P < 0.05). NF-κB expression increased in the model group but decreased with PLD2 overexpression (P < 0.05). Apoptosis and necrosis rates were higher in the model group (P < 0.05) but lower in the PLD2 overexpression group (P < 0.05). Cell volume, Na + content, and LDH release increased in the model group (P < 0.05) but decreased with PLD2 overexpression (P < 0.05). RIPK1 expression decreased in the model group (P < 0.05) but increased with PLD2 overexpression (P < 0.05). CASP8, FADD, and ZBP1 levels were higher in the model group (P < 0.05) and reduced with PLD2 overexpression (P < 0.05). PLD2 exerts a protective effect in acute pancreatitis by activating Nrf2 and inhibiting NF-κB, reducing apoptosis, cell swelling, and membrane damage. This highlights potential therapeutic targets for pancreatic inflammation.
Collapse
Affiliation(s)
- Rui Zhou
- Department of General Surgery, Wuhan Fourth Hospital, No. 435 Guli Road, Dongxihu District, Wuhan, 430000, Hubei, China
| | - Yuan Fan
- Department of General Surgery, Wuhan Fourth Hospital, No. 435 Guli Road, Dongxihu District, Wuhan, 430000, Hubei, China.
| | - Hailong Wu
- Department of General Surgery, Wuhan Fourth Hospital, No. 435 Guli Road, Dongxihu District, Wuhan, 430000, Hubei, China
| | - Shuiping Zhan
- Department of General Surgery, Wuhan Fourth Hospital, No. 435 Guli Road, Dongxihu District, Wuhan, 430000, Hubei, China
| | - Jun Shen
- Department of General Surgery, Wuhan Fourth Hospital, No. 435 Guli Road, Dongxihu District, Wuhan, 430000, Hubei, China
| | - Meng Zhu
- Department of General Surgery, Wuhan Fourth Hospital, No. 435 Guli Road, Dongxihu District, Wuhan, 430000, Hubei, China
| |
Collapse
|
4
|
Chougoni KK, Neely V, Ding B, Oduah E, Lam VT, Hu B, Koblinski JE, Windle BE, Palit Deb S, Deb S, Nieva JJ, Radhakrishnan SK, Harada H, Grossman SR. Oncogenic Mutant p53 Sensitizes Non-Small Cell Lung Cancer Cells to Proteasome Inhibition via Oxidative Stress-Dependent Induction of Mitochondrial Apoptosis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2685-2698. [PMID: 39302104 PMCID: PMC11474859 DOI: 10.1158/2767-9764.crc-23-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
SIGNIFICANCE NSCLC is the leading cause of cancer death due, in part, to a lack of active therapies in advanced disease. We demonstrate that combination therapy with a proteasome inhibitor, BH3-mimetic, and chemotherapy is an active precision therapy in NSCLC cells and tumors expressing Onc-p53 alleles.
Collapse
Affiliation(s)
- Kranthi Kumar Chougoni
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| | - Victoria Neely
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
| | - Boxiao Ding
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| | - Eziafa Oduah
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina.
| | - Vianna T. Lam
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
| | - Bin Hu
- VCU Cancer Mouse Models Core, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Jennifer E. Koblinski
- VCU Cancer Mouse Models Core, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Pathology, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Bradford E. Windle
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Swati Palit Deb
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Sumitra Deb
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Jorge J. Nieva
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| | - Senthil K. Radhakrishnan
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Pathology, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Hisashi Harada
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Steven R. Grossman
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
5
|
Baiskhanova D, Schäfer H. The Role of Nrf2 in the Regulation of Mitochondrial Function and Ferroptosis in Pancreatic Cancer. Antioxidants (Basel) 2024; 13:696. [PMID: 38929135 PMCID: PMC11201043 DOI: 10.3390/antiox13060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) represents the master regulator of the cellular antioxidant response and plays a critical role in tumorigenesis. This includes a preventive effect of Nrf2 on cell death through ferroptosis, which represents an essential mechanism of therapy resistance in malignant tumors, such as pancreatic ductal adenocarcinoma (PDAC) as one of the most aggressive and still incurable tumors. Addressing this issue, we provide an overview on Nrf2 mediated antioxidant response with particular emphasis on its effect on mitochondria as the organelle responsible for the execution of ferroptosis. We further outline how deregulated Nrf2 adds to the progression and therapy resistance of PDAC, especially with respect to the role of ferroptosis in anti-cancer drug mediated cell killing and how this is impaired by Nrf2 as an essential mechanism of drug resistance. Our review further discusses recent approaches for Nrf2 inhibition by natural and synthetic compounds to overcome drug resistance based on enhanced ferroptosis. Finally, we provide an outlook on therapeutic strategies based on Nrf2 inhibition combined with ferroptosis inducing drugs.
Collapse
Affiliation(s)
- Dinara Baiskhanova
- Laboratory of Molecular Gastroenterology and Tumor Biology, Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | | |
Collapse
|
6
|
Schwarcz S, Kovács P, Nyerges P, Ujlaki G, Sipos A, Uray K, Bai P, Mikó E. The bacterial metabolite, lithocholic acid, has antineoplastic effects in pancreatic adenocarcinoma. Cell Death Discov 2024; 10:248. [PMID: 38782891 PMCID: PMC11116504 DOI: 10.1038/s41420-024-02023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Lithocholic acid (LCA) is a secondary bile acid. LCA enters the circulation after bacterial synthesis in the gastrointestinal tract, reaches distantly located cancer cells, and influences their behavior. LCA was considered carcinogenic, but recent studies demonstrated that LCA has antitumor effects. We assessed the possible role of LCA in pancreatic adenocarcinoma. At the serum reference concentration, LCA induced a multi-pronged antineoplastic program in pancreatic adenocarcinoma cells. LCA inhibited cancer cell proliferation and induced mesenchymal-to-epithelial (MET) transition that reduced cell invasion capacity. LCA induced oxidative/nitrosative stress by decreasing the expression of nuclear factor, erythroid 2-like 2 (NRF2) and inducing inducible nitric oxide synthase (iNOS). The oxidative/nitrosative stress increased protein nitration and lipid peroxidation. Suppression of oxidative stress by glutathione (GSH) or pegylated catalase (pegCAT) blunted LCA-induced MET. Antioxidant genes were overexpressed in pancreatic adenocarcinoma and decreased antioxidant levels correlated with better survival of pancreatic adenocarcinoma patients. Furthermore, LCA treatment decreased the proportions of cancer stem cells. Finally, LCA induced total and ATP-linked mitochondrial oxidation and fatty acid oxidation. LCA exerted effects through the farnesoid X receptor (FXR), vitamin D receptor (VDR), and constitutive androstane receptor (CAR). LCA did not interfere with cytostatic agents used in the chemotherapy of pancreatic adenocarcinoma. Taken together, LCA is a non-toxic compound and has antineoplastic effects in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Petra Nyerges
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
7
|
Fuller RN, Kabagwira J, Vallejos PA, Folkerts AD, Wall NR. Survivin Splice Variant 2β Enhances Pancreatic Ductal Adenocarcinoma Resistance to Gemcitabine. Onco Targets Ther 2022; 15:1147-1160. [PMID: 36238134 PMCID: PMC9553431 DOI: 10.2147/ott.s341720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis, as it is difficult to predict or circumvent, and it develops chemoresistance quickly. One cellular mechanism associated with chemoresistance is alternative splicing dysfunction, a process through which nascent mRNA is spliced into different isoforms. Survivin (Baculoviral IAP Repeat-Containing Protein 5 (BIRC5)), a member of the inhibitor of apoptosis (IAP) protein family and a cell cycle-associated oncoprotein, is overexpressed in most cancers and undergoes alternative splicing (AS) to generate six different splicing isoforms. Methods To determine if survivin splice variants (SSV) could be involved in PDAC chemoresistance, a Gemcitabine (Gem) resistant (GR) cell line, MIA PaCa-2 GR, was created and assessed for its SSV levels and their potential association with GR. Cross-resistance was assessed in MIA-PaCa-2 GR cells to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin). Once chemoresistance was confirmed, RT-qPCR was used to assess the expression of survivin splice variants (SSVs) in PDAC cell lines. To confirm the effect of SSVs on chemoresistance, we used siRNA to knockdown all SSVs or SSV 2β. Results The MIA PaCa-2 GR cell line was 40 times more resistant to Gem and revealed increased resistance to FIRINOX (5-fluorouracil (5-FU), irinotecan, and oxaliplatin); when compared to the parental MIA-PaCa-2 cells. RT-qPCR studies revealed an 8-fold relative expression increase in SSV 2β and a 2- to 8-fold increase in the other five SSVs in the GR cells. Knockdown of all SSV or SSV 2β only, using small inhibitory RNA (siRNA), sensitized the GR cells to Gem, indicating that these SSVs play a role in PDAC chemoresistance. Conclusion These findings provide evidence for the potential role of SSV 2β and other SSVs in innate and acquired PDAC chemoresistance. We also show that the expression of SSVs is not affected by the type of chemoresistance, therefore targeting survivin splice variants in combination with chemotherapy could benefit a wide range of patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Paul A Vallejos
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Andrew D Folkerts
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nathan R Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,Correspondence: Nathan R Wall, Center for Health Disparities & Molecular Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda University, Loma Linda, CA, 92350, USA, Tel +909-558-4000 x81397, Email
| |
Collapse
|
8
|
Voisin T, Nicole P, Gratio V, Chassac A, Mansour D, Rebours V, Couvelard A, Couvineau A. The Orexin-A/OX1R System Induces Cell Death in Pancreatic Cancer Cells Resistant to Gemcitabine and Nab-Paclitaxel Treatment. Front Oncol 2022; 12:904327. [PMID: 35747788 PMCID: PMC9209740 DOI: 10.3389/fonc.2022.904327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the fourth cause of cancer-associated death in the West. This type of cancer has a very poor prognosis notably due to the development of chemoresistance when treatments including gemcitabine and Abraxane (Nab-paclitaxel) were prescribed. The identification of new treatment circumventing this chemoresistance represents a key challenge. Previous studies demonstrated that the activation of orexin receptor type 1 (OX1R), which was ectopically expressed in PDAC, by its natural ligand named orexin-A (OxA), led to anti-tumoral effect resulting in the activation of mitochondrial pro-apoptotic mechanism. Here, we demonstrated that OxA inhibited the pancreatic cancer cell (AsPC-1) growth and inhibited the tumor volume in preclinical models as effectively as gemcitabine and Nab-paclitaxel. Moreover, the combination therapy including OxA plus gemcitabine or OxA plus Nab-paclitaxel was additive on the inhibition of cancer cell growth and tumor development. More importantly, the treatment by OxA of chemoresistant tumors to gemcitabine or Nab-paclitaxel obtained by successive xenografts in mice revealed that OxA was able to induce a strong inhibition of tumor development, whereas no OxA resistance was identified in tumors. The OX1R/OxA system might be an innovative and powerful alternative treatment of chemoresistant PDAC.
Collapse
Affiliation(s)
- Thierry Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
| | - Valérie Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
| | - Anaïs Chassac
- Department of Pathology, Bichat Hospital, Université Paris Cité, Paris, France
| | - Dounia Mansour
- Department of Pathology, Bichat Hospital, Université Paris Cité, Paris, France
| | - Vinciane Rebours
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
- Department of Pancreatology, Beaujon Hospital, Université Paris Cité, Clichy, France
| | - Anne Couvelard
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
- Department of Pathology, Bichat Hospital, Université Paris Cité, Paris, France
| | - Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
- *Correspondence: Alain Couvineau,
| |
Collapse
|
9
|
Wang X, Zeng C, Lai Y, Su B, Chen F, Zhong J, Chu H, Bing D. NRF2/HO-1 pathway activation by ATF3 in a noise-induced hearing loss murine model. Arch Biochem Biophys 2022; 721:109190. [PMID: 35331713 DOI: 10.1016/j.abb.2022.109190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Excessive oxidative stress of the inner ear as a result of high, intense noise exposure is regarded as a major mechanism underlying the development of noise-induced hearing loss (NIHL). The present study was designed to explore the effect and mechanism of activated transcription factor 3 (ATF3) in reduction/oxidation homeostasis of NIHL. METHOD In vitro and in vivo assays were performed to investigate the functional role of ATF3 in the inner ear. Mice hearing was measured using auditory brainstem response. ATF3 short hairpin RNA (shRNA) was transfected into House Ear Institute-Organ of Corti 1 (HEI-OC1) cells to decrease ATF3 expression. Western blotting and quantitative real-time polymerase chain reaction (RT-qPCR) were performed to quantify ATF3, NRF2, HO-1 and NQO1 expression. Glutathione (GSH) assay was performed to detect intracellular GSH levels. ATF3 immunofluorescence analysis was carried out in cochlear cryosectioned samples and HEI-OC1 cells to localize ATF3 expression. Cell counting kit 8 assay and flow cytometry were performed to analyze cell viability. RESULT ATF3 was upregulated in noise-exposed cochleae and HEI-OC1 cells treated with H2O2. NRF2 is a key factor regulated by ATF3. NRF2, HO-1, NQO1, and GSH expression was significantly downregulated in shATF3 HEI-OC1 cells. ATF3 silencing promoted reactive oxygen species accumulation and increased apoptosis and necrosis with H2O2 stimulus. CONCLUSION ATF3 functions as an antioxidative factor by activating the NRF2/HO-1 pathway.
Collapse
Affiliation(s)
- Xiaodi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chenghui Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Yanbing Lai
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Bo Su
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinhao Zhong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanqi Chu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Hubei, Wuhan, China.
| | - Dan Bing
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Hubei, Wuhan, China.
| |
Collapse
|
10
|
Weng N, Qin S, Liu J, Huang X, Jiang J, Zhou L, Zhang Z, Xie N, Wang K, Jin P, Luo M, Peng L, Nice EC, Goel A, Han S, Huang C, Zhu Q. Repurposing econazole as a pharmacological autophagy inhibitor to treat pancreatic ductal adenocarcinoma. Acta Pharm Sin B 2022; 12:3085-3102. [PMID: 35865101 PMCID: PMC9293665 DOI: 10.1016/j.apsb.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by the highest mortality among carcinomas. The pathogenesis of PDAC requires elevated autophagy, inhibition of which using hydroxychloroquine has shown promise. However, current realization is impeded by its suboptimal use and unpredictable toxicity. Attempts to identify novel autophagy-modulating agents from already approved drugs offer a rapid and accessible approach. Here, using a patient-derived organoid model, we performed a comparative analysis of therapeutic responses among various antimalarial/fungal/parasitic/viral agents, through which econazole (ECON), an antifungal compound, emerged as the top candidate. Further testing in cell-line and xenograft models of PDAC validated this activity, which occurred as a direct consequence of dysfunctional autophagy. More specifically, ECON boosted autophagy initiation but blocked lysosome biogenesis. RNA sequencing analysis revealed that this autophagic induction was largely attributed to the altered expression of activation transcription factor 3 (ATF3). Increased nuclear import of ATF3 and its transcriptional repression of inhibitor of differentiation-1 (ID-1) led to inactivation of the AKT/mammalian target of rapamycin (mTOR) pathway, thus giving rise to autophagosome accumulation in PDAC cells. The magnitude of the increase in autophagosomes was sufficient to elicit ER stress-mediated apoptosis. Furthermore, ECON, as an autophagy inhibitor, exhibited synergistic effects with trametinib on PDAC. This study provides direct preclinical and experimental evidence for the therapeutic efficacy of ECON in PDAC treatment and reveals a mechanism whereby ECON inhibits PDAC growth.
Collapse
|
11
|
Role of Nrf2 in Pancreatic Cancer. Antioxidants (Basel) 2021; 11:antiox11010098. [PMID: 35052602 PMCID: PMC8773052 DOI: 10.3390/antiox11010098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic tumors are a serious health problem with a 7% mortality rate worldwide. Inflammatory processes and oxidative stress play important roles in the development of pancreatic diseases/cancer. To maintain homeostasis, a balance between free radicals and the antioxidant system is essential. Nuclear Factor Erythroid 2-Related Factor 2/NFE2L2 (Nrf2) and its negative regulator Kelch-Like ECH-Associated Protein 1 (Keap1) provide substantial protection against damage induced by oxidative stress, and a growing body of evidence points to the canonical and noncanonical Nrf2 signaling pathway as a pharmacological target in the treatment of pancreatic diseases. In this review, we present updated evidence on the activation of the Nrf2 signaling pathway and its importance in pancreatic cancer. Our review covers potential modulators of canonical and noncanonical pathway modulation mechanisms that may have a positive effect on the therapeutic response. Finally, we describe some interesting recent discoveries of novel treatments related to the antioxidant system for pancreatic cancer, including natural or synthetic compounds with therapeutic properties.
Collapse
|
12
|
Bi Z, Fu Y, Wadgaonkar P, Qiu Y, Almutairy B, Zhang W, Seno A, Thakur C, Chen F. New Discoveries and Ambiguities of Nrf2 and ATF3 Signaling in Environmental Arsenic-Induced Carcinogenesis. Antioxidants (Basel) 2021; 11:77. [PMID: 35052581 PMCID: PMC8773296 DOI: 10.3390/antiox11010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
Environment exposure to arsenic had been linked to increased incidents of human cancers. In cellular and animal experimental systems, arsenic has been shown to be highly capable of activating several signaling pathways that play critical roles in cell growth regulation, malignant transformation and the stemness of cancer stem-like cells. Emerging evidence indicates certain oncogenic properties of the Nrf2 transcription factor that can be activated by arsenic and many other environmental hazards. In human bronchial epithelial cells, our most recent data suggested that arsenic-activated Nrf2 signaling fosters metabolic reprogramming of the cells through shifting mitochondrial TCA cycle to cytosolic glycolysis, and some of the metabolites in glycolysis shunt the hexosamine biosynthesis and serine-glycine pathways important for the energy metabolism of the cancer cells. In the current report, we further demonstrated direct regulation of oncogenic signals by arsenic-activated Nrf2 and connection of Nrf2 with ATF3 stress transcription factor. Meanwhile, we also highlighted some unanswered questions on the molecular characteristics of the Nrf2 protein, which warrants further collaborative efforts among scientists for understanding the important role of Nrf2 in human cancers either associated or not to environmental arsenic exposure.
Collapse
Affiliation(s)
- Zhuoyue Bi
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Brookhaven, NY 11794, USA; (Z.B.); (Y.F.); (Y.Q.); (W.Z.); (C.T.)
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (B.A.); (A.S.)
| | - Yao Fu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Brookhaven, NY 11794, USA; (Z.B.); (Y.F.); (Y.Q.); (W.Z.); (C.T.)
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (B.A.); (A.S.)
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (B.A.); (A.S.)
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Brookhaven, NY 11794, USA; (Z.B.); (Y.F.); (Y.Q.); (W.Z.); (C.T.)
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (B.A.); (A.S.)
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (B.A.); (A.S.)
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Brookhaven, NY 11794, USA; (Z.B.); (Y.F.); (Y.Q.); (W.Z.); (C.T.)
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (B.A.); (A.S.)
| | - Akimasa Seno
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (B.A.); (A.S.)
| | - Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Brookhaven, NY 11794, USA; (Z.B.); (Y.F.); (Y.Q.); (W.Z.); (C.T.)
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (B.A.); (A.S.)
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Brookhaven, NY 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Brookhaven, NY 11794, USA; (Z.B.); (Y.F.); (Y.Q.); (W.Z.); (C.T.)
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (B.A.); (A.S.)
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Brookhaven, NY 11794, USA
| |
Collapse
|
13
|
Qin JJ, Cheng XD, Zhang J, Zhang WD. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Commun Signal 2019; 17:121. [PMID: 31511020 PMCID: PMC6740038 DOI: 10.1186/s12964-019-0435-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal diseases with a very high rate of metastasis and low rate of survival. Despite the advances in understanding this devastating disease, PC still accounts for 3% of all cancers and causes almost 7% of death of cancer patients. Recent studies have demonstrated that the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) and its key negative regulator Kelch-like ECH-associated protein 1 (Keap1) are dysregulated in PC and the Keap1-Nrf2 pathway is an emerging target for PC prevention and therapy. Indeed, Nrf2 plays an either tumor-suppressive or promoting function in PC, which depends on the developmental stages of the disease and the cellular context. Several natural-product Nrf2 activators have been developed to prevent pancreatic carcinogenesis, while the Nrf2 inhibitors have been examined for their efficacy in inhibiting PC growth and metastasis and reversing chemoresistance. However, further preclinical and clinical studies for determining the effectiveness and safety of targeting the Keap1-Nrf2 pathway for PC prevention and therapy are warranted. In this review, we comprehensively discuss the dual roles of the Keap1-Nrf2 signaling pathway in PC as well as the current targeting strategies and known activators and inhibitors of Nrf2. We also propose new strategies that may be used to address the current issues and develop more specific and more effective Nrf2 activator/inhibitors for PC prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China. .,Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | | | - Jia Zhang
- Shanxi Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Yangpu District, Shanghai, 200433, China. .,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|