1
|
Luo Y, Xue H, Gao Y, Ji G, Wu T. Sphingosine kinase 2 in cancer: A review of its expression, function, and inhibitor development. Int J Biol Macromol 2025; 306:141392. [PMID: 39988169 DOI: 10.1016/j.ijbiomac.2025.141392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Cancer is a major public health problem facing contemporary society. Notwithstanding considerable progress in medicine in recent decades, a cure for numerous cancer kinds continues to be unattainable. Thus, the pursuit of innovative therapeutic targets and methodologies remains paramount in medical research. The advancement of lipidomics has progressively revealed the essential roles of lipid metabolic pathways. Sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) are essential molecules in sphingolipid metabolism, significantly influencing physiological functions. Two isoforms of SphK exist including SphK1 and SphK2, both of which exhibit significant expression levels within a spectrum of cancers. The involvement of SphK1 in carcinogenesis has been thoroughly documented, whereas the significance of SphK2 in cancer remains inadequately elucidated. This review retrospectively and extensively elucidates the expression and distribution of SphK2 in cancer, its methods of action, and advancements in inhibitor research, emphasizing the varied functions of the SphK2 in oncogenesis. The objective is to furnish novel insights for study and therapeutic applications concerning SphK2 in oncology.
Collapse
Affiliation(s)
- Yanqun Luo
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiping Xue
- Industrial Development Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Wang D, Sun L, Niu X, Ren L, Yang X. SphK2 promotes the progression of Helicobacter pylori-positive gastric cancer by regulating the Ras/MEK/ERK pathway. Biochem Biophys Res Commun 2025; 751:151396. [PMID: 39922056 DOI: 10.1016/j.bbrc.2025.151396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection promotes gastric cancer (GC) through various mechanisms. It causes inflammation and damage to the gastric mucosa, thereby increasing the risk of developing GC. Sphingolipids can act as signaling molecules that activate or inhibit intracellular signaling pathways, and abnormal sphingolipid metabolism may promote tumorigenesis and metastasis. This study aimed to explore the relationship among sphingosine kinase 2 (SphK2) expression, GC progression, and H. pylori infection. METHODS Expression profile data for SphK2 were extracted from public datasets. Normal human gastric mucosal and GC cells were co-incubated with H. pylori, and SphK2 expression in these cells was detected using western blotting. GC cells with SphK2 overexpression and knockdown were established, and the effects of SphK2 and H. pylori on the proliferation, migration, and invasion abilities of GC cells were verified using CCK-8, EdU, and Transwell assays. The expression of Ras/MEK/ERK pathway-related proteins was detected using western blotting, and the secretion of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in GC cells was detected using ELISA. RESULTS SphK2 is highly expressed in GC cells and is associated with a poor prognosis. The expression of SphK2 in GC cells is related to H. pylori infection. SphK2 overexpression promotes the proliferation, migration, and invasion of GC cells and enhances the pro-inflammatory effects of H. pylori. CONCLUSION SphK2 promotes the progression of H. pylori-positive GC by activating the Ras/MEK/ERK pathway.
Collapse
Affiliation(s)
- Dong Wang
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Long Sun
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaoman Niu
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lei Ren
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xin Yang
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
3
|
Li D, Xu L, Liu R, Yao Z, Zheng C, Jin S, Guo X, Zhang Z, Tan S, Zhu X. MAZ-mediated N6-methyladenosine modification of ZEB1 promotes hepatocellular carcinoma progression by regulating METTL3. J Transl Med 2025; 23:265. [PMID: 40038747 DOI: 10.1186/s12967-025-06314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a hidden onset and high malignancy. Its high metastasis, high recurrence, and short survival time have always been a difficult and hot spot in clinical practice. Our previous study revealed that myc-associated zinc finger protein (MAZ) is highly upregulated in HCC tissues and may promote the proliferation and metastasis of HCC cells by inducing the epithelial-mesenchymal transformation (EMT) process. However, the specific regulatory mechanism by which MAZ functions as an oncogene in HCC has still not been fully elucidated. METHODS Immunohistochemical staining and bioinformatics analyses were conducted to measure the expression of MAZ, key m6A enzymes, and ZEB1 in HCC tissues. RNA sequencing (RNA-seq) of MAZ knockdown HCC cells and human mRNA m6A sequencing (m6A-seq) of HCC tissues were intersected to screen the downstream targets for both MAZ and m6A methylation. The correlations between MAZ and its targets were analyzed by dual-luciferase assays and cell rescue experiments. RESULTS Here, we report for the first time that MAZ is involved in m6A methylation of HCC by targeting the transcriptional regulation of key m6A enzymes. MAZ expression was significantly correlated with the expression of key m6A enzymes in HCC tissues and cell lines. Moreover, MAZ could bind to the promoters of key m6A enzymes, and multivariate Cox regression analysis suggested that MAZ and METTL3 expression were independent risk factors for the survival of HCC patients. Through RNA-seq and m6A-seq, we screened out EMT regulators ZEB1 and TRIM50 as the downstream targets for both MAZ and m6A methylation. Mechanistically, m6A sites with high confidence in ZEB1 and TRIM50 mRNA were identified by SRAMP, and there were significant relationships between ZEB1 and METTL3 in HCC tissues and cells. A nomogram model was established to better display the combined effect of MAZ, METTL3, and ZEB1 on HCC prognosis. CONCLUSIONS Our study revealed a promising clinical application of MAZ, METTL3, and ZEB1 in HCC prognosis, further suggesting that MAZ can be used as a potential molecular biomarker for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Di Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Li Xu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Ruyuan Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Zhaonv Yao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Chuanjun Zheng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Song Jin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Xuefeng Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Shengkui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Xiaonian Zhu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
| |
Collapse
|
4
|
Liu Z, Li X, He Y, Xie F, Zhang Y, Huang M, Wang Y, Zhu W. A novel mechanism in regulating drug sensitivity, growth, and apoptosis of bortezomib-resistant multiple myeloma cells: the USP4/KLF2/HMGA2 cascade. J Orthop Surg Res 2025; 20:220. [PMID: 40022160 PMCID: PMC11871775 DOI: 10.1186/s13018-025-05537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/22/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant disorder originating from plasma cells. Bortezomib (BTZ) resistance has become a huge obstacle to MM treatment. Herein, we elucidated the action of Kruppel-like factor 2 (KLF2), a crucial transcription factor (TF), on BTZ resistance of MM. METHODS Two BTZ-resistant cell lines (MM1.S/BTZ and NCI-H929/BTZ) were generated and used. KLF2 mRNA was quantified by quantitative PCR, and protein expression was analyzed by immunoblotting. MTT cell cytotoxicity assay was used to test BTZ sensitivity. Cell growth was detected by MTT and EdU assays. Flow cytometry was used for apoptosis and cycle distribution analyses. The USP4/KLF2 relationship was examined by Co-IP and protein stability assays. The KLF2/HMGA2 interplay was confirmed by luciferase and ChIP assays. RESULTS Upregulation of KLF2 was observed in MM serum and BTZ-resistant MM cells. Depletion of KLF2 suppressed cell growth and enhanced apoptosis and BTZ sensitivity in MM1.S/BTZ and NCI-H929/BTZ cells. Moreover, USP4 increased the stability of KLF2 protein by deubiquitination and affected cell growth, apoptosis and BTZ sensitivity via KLF2. KLF2 functioned as a regulator of HMGA2 transcription and modulated cell growth, apoptosis and BTZ sensitivity through HMGA2. Additionally, USP4 modulated HMGA2 expression via KLF2 in the two BTZ-resistant cell lines. CONCLUSION Our study demonstrates the crucial role of the USP4/KLF2/HMGA2 cascade in regulating cell growth, apoptosis and BTZ sensitivity in BTZ-resistant MM cells, providing novel targets for improving anti-MM efficacy of BTZ.
Collapse
Affiliation(s)
- Ziyi Liu
- Department of Hematology and Rheumatology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Zhuhai Clinical Medical College of Jinan University, 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, PR China
| | - Xiaoliang Li
- Department of Hematology and Rheumatology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Zhuhai Clinical Medical College of Jinan University, 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, PR China
| | - Yin He
- Department of Hematology and Rheumatology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Zhuhai Clinical Medical College of Jinan University, 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, PR China
| | - Fengqun Xie
- Department of Hematology and Rheumatology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Zhuhai Clinical Medical College of Jinan University, 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, PR China
| | - Yanrong Zhang
- Department of Hematology and Rheumatology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Zhuhai Clinical Medical College of Jinan University, 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, PR China
| | - Mufang Huang
- Department of Hematology and Rheumatology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Zhuhai Clinical Medical College of Jinan University, 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, PR China
| | - Yinjingwen Wang
- Department of Hematology and Rheumatology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Zhuhai Clinical Medical College of Jinan University, 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, PR China
| | - Weijian Zhu
- Department of Hematology and Rheumatology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Zhuhai Clinical Medical College of Jinan University, 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong, 519000, PR China.
| |
Collapse
|
5
|
Li N, Wei X, Dai J, Yang J, Xiong S. METTL3: a multifunctional regulator in diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05208-z. [PMID: 39853661 DOI: 10.1007/s11010-025-05208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent and abundant internal modification of mRNAs and is catalyzed by the methyltransferase complex. Methyltransferase-like 3 (METTL3), the best-known m6A methyltransferase, has been confirmed to function as a multifunctional regulator in the reversible epitranscriptome modulation of m6A modification according to follow-up studies. Accumulating evidence in recent years has shown that METTL3 can regulate a variety of functional genes, that aberrant expression of METTL3 is usually associated with many pathological conditions, and that its expression regulatory mechanism is related mainly to its methyltransferase activity or mRNA posttranslational modification. In this review, we discuss the regulatory functions of METTL3 in various diseases, including metabolic diseases, cardiovascular diseases, and cancer. We focus mainly on recent progress in identifying the downstream target genes of METTL3 and its underlying molecular mechanisms and regulators in the above systems. Studies have revealed that the use of METTL3 as a therapeutic target and a new diagnostic biomarker has broad prospects. We hope that this review can serve as a reference for further studies.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Dai
- Department of Critical Care Medicine, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Yang
- Department of Medical Affairs, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Li Z, Zhang X, Liu C, Wu Y, Wen Y, Zheng R, Xu C, Tian J, Peng Q, Zheng X, Wang J, Yan Q, Wei L, Ma J. Engineering a nano-drug delivery system to regulate m6A modification and enhance immunotherapy in gastric cancer. Acta Biomater 2025; 191:412-427. [PMID: 39581334 DOI: 10.1016/j.actbio.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Cancer cell membrane-derived nanoparticle drug delivery system enables precise drug delivery to tumor tissues and is a new effective way to treat solid tumors. The aim of this study is to develop a safe and effective cancer cell membrane-derived nano-delivery system targeting gastric cancer. We previously reported that EPH receptor A2 (EphA2) is an important target for gastric cancer. RNA m6A methyltransferases METTL3 is upregulated in multiple cancers and promotes cancer development by increasing the expression of multiple oncogenes. We design a new nano-delivery system PLGA-STM-TAT: nanoparticles PLGA (poly lactic acid-hydroxyacetic acid) loaded with METTL3 inhibitor STM2457 and cell-penetrating peptide TAT, and then covered with gastric cancer cell membranes equipped with YSA peptides by means of click chemistry, which targeting EphA2. The nanoparticles are specifically enriched in gastric cancer tissues, significantly increased drug accumulation, and inhibited cancer cell proliferation by decreasing key oncogenes c-MYC and BRD4. During drug administration, we found that the expression of the immune checkpoint molecule PD-L1 was suppressed, and the anti-tumor immune effect was enhanced by the nano-delivery system in combination with anti-PD1. This cancer cell membrane-derived nano-delivery system provides a new biological strategy to treat gastric cancer through effective m6A modulation and EphA2 targeting. STATEMENT OF SIGNIFICANCE: M6A modifications have important biological roles, especially in tumors. Targeting highly modified m6A in gastric cancer becomes a challenge. We developed a nano-drug delivery system for modulating m6A that could produce an effective anti-cancer therapeutic effect and that the nanoparticles enhanced antitumor immunity when combined with anti-PD1.This cancer cell membrane-derived new nano-drug delivery system shows great promise as an antitumor approach by modulating m6A modification and targeting EphA2 in gastric cancers.
Collapse
Affiliation(s)
- Zhengshuo Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Xiaoyue Zhang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Can Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yangge Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yuqing Wen
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Run Zheng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chenxiao Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Junrui Tian
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Qun Yan
- Department of Clinical Laboratory of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingyu Wei
- Laboratory of Clinical Research Center, Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China.
| |
Collapse
|
7
|
Yu Z, Yang Y. METTL3 as a potential therapeutic target in gastric cancer. Front Oncol 2024; 14:1483435. [PMID: 39678510 PMCID: PMC11638058 DOI: 10.3389/fonc.2024.1483435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. N6-methyladenosine (m6A) modification is the most prominent epigenetic modification of eukaryotic mRNAs, and methyltransferase-like 3 (METTL3), a core component of the methyltransferase complex, catalyzes m6A modification. The results of previous studies indicate that the expression level of METTL3 is significantly elevated in gastric cancer tissues and cells. In addition, fluctuations in m6A levels induced by METTL3 are closely associated with the malignant progression of tumors as well as the poor prognosis of patients with gastric cancer. In this review, we focus on the potential mechanism of METTL3 in gastric cancer, and through our analysis, we suggest that targeting METTL3 could be a new therapeutic tool for treating GC.
Collapse
Affiliation(s)
| | - Yang Yang
- The First Affiliated Hospital of Guangxi University Of Chinese Medicine,
Nanning, Guangxi, China
| |
Collapse
|
8
|
Wang X, Liu C, Wang J, Tian Z. Resveratrol suppresses NSCLC cell growth, invasion and migration by mediating Wnt/β-catenin pathway via downregulating SIX4 and SPHK2. J Chemother 2024; 36:411-421. [PMID: 37968995 DOI: 10.1080/1120009x.2023.2281759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Resveratrol (RSV) has been found to have a cancer-suppressing effect in a variety of cancers, including non-small cell lung cancer (NSCLC). Studies have shown that sine oculis homeobox 4 (SIX4) and sphingosine kinase 2 (SPHK2) are tumour promoters of NSCLC. However, whether RSV regulates SIX4 and SPHK2 to mediate NSCLC cell functions remains unclear. NSCLC cell functions were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, transwell assay and wound healing assay. Protein expression levels were detected by western blot. SIX4 and SPHK2 mRNA levels in NSCLC tumour tissues were examined using quantitative real-time PCR. In addition, mice xenograft models were built to explore the impact of RSV on NSCLC tumour growth. RSV inhibited NSCLC cell proliferation, invasion and migration, while facilitated apoptosis. SIX4 and SPHK2 were up-regulated in NSCLC tissues and cells, and their expression was reduced by RSV. Knockdown of SIX4 and SPHK2 suppressed NSCLC cell growth, invasion and migration, and the regulation of RSV on NSCLC cell functions could be reversed by SIX4 and SPHK2 overexpression. RSV inactivated Wnt/β-catenin pathway via decreasing SIX4 and SPHK2 levels. In animal experiments, RSV reduced NSCLC tumour growth in vivo. RSV repressed NSCLC malignant process by decreasing SIX4 and SPHK2 levels to restrain the activity of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaolan Wang
- Department of Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| | - Caixia Liu
- Department of Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| | - Jian Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| | - Zexiang Tian
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| |
Collapse
|
9
|
Jian J, Feng Y, Wang R, Li C, Zhang L, Ruan Y, Luo B, Liang G, Liu T. METTL3-Regulated lncRNA SNHG7 Drives MNNG-Induced Epithelial-Mesenchymal Transition in Gastric Precancerous Lesions. TOXICS 2024; 12:573. [PMID: 39195675 PMCID: PMC11360688 DOI: 10.3390/toxics12080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
As a representative item of chemical carcinogen, MNNG is closely associated with the onset of gastric cancer (GC), where N6-methyladonosine (m6A) RNA methylation is recognized as a critical epigenetic event. In our previous study, we found that the m6A modification by methyltransferase METTL3 was up-regulated in MNNG-exposed malignant GES-1 cells (MC cells) compared to control cells in vitro, and long non-coding RNA SNHG7 as a downstream target of the METTL3. However, the functional role of METTL3 in mediating the SNHG7 axis in MNNG-induced GC remains unclear. In the present study, we continuously investigate the functional role of METTL3 in mediating the SNHG7 axis in MNNG-induced GC. RIP-PCR and m6A-IP-qPCR were used to examine the molecular mechanism underlying the METTL3/m6A/SNHG7 axis in MNNG-induced GC. A METTL3 knockout mice model was constructed and exposed by MNNG. Western blot analysis, IHC analysis, and RT-qPCR were used to measure the expression of METTL3, SNHG7, and EMT markers. In this study, we demonstrated that in MNNG-induced GC tumorigenesis, the m6A modification regulator METTL3 facilitates cellular EMT and biological functions through the m6A/SNHG7 axis using in vitro and in vivo models. In conclusion, our study provides novel insights into critical epigenetic molecular events vital to MNNG-induced gastric carcinogenesis. These findings suggest the potential therapeutic targets of METTL3 for GC treatment.
Collapse
Affiliation(s)
- Jiabei Jian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Yanlu Feng
- Qinghai Provincial Center for Disease Control and Prevention, Institute of Immunization Planning, Xining 810000, China;
| | - Ruiying Wang
- Gansu Provincial Center for Disease Prevention and Control, Lanzhou 730000, China;
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Lin Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Ye Ruan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, China;
| | - Tong Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| |
Collapse
|
10
|
Wang A, Zeng Y, Zhang W, Zhao J, Gao L, Li J, Zhu J, Liu Z, Huang JA. N 6-methyladenosine-modified SRPK1 promotes aerobic glycolysis of lung adenocarcinoma via PKM splicing. Cell Mol Biol Lett 2024; 29:106. [PMID: 39095708 PMCID: PMC11295518 DOI: 10.1186/s11658-024-00622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The RNA N6-methyladenosine (m6A) modification has become an essential hotspot in epigenetic modulation. Serine-arginine protein kinase 1 (SRPK1) is associated with the pathogenesis of various cancers. However, the m6A modification of SRPK1 and its association with the mechanism of in lung adenocarcinoma (LUAD) remains unclear. METHODS Western blotting and polymerase chain reaction (PCR) analyses were carried out to identify gene and protein expression. m6A epitranscriptomic microarray was utilized to the assess m6A profile. Loss and gain-of-function assays were carried out elucidate the impact of METTL3 and SRPK1 on LUAD glycolysis and tumorigenesis. RNA immunoprecipitation (RIP), m6A RNA immunoprecipitation (MeRIP), and RNA stability tests were employed to elucidate the SRPK1's METTL3-mediated m6A modification mechanism in LUAD. Metabolic quantification and co-immunoprecipitation assays were applied to investigate the molecular mechanism by which SRPK1 mediates LUAD metabolism. RESULTS The epitranscriptomic microarray assay revealed that SRPK1 could be hypermethylated and upregulated in LUAD. The main transmethylase METTL3 was upregulated and induced the aberrant high m6A levels of SRPK1. Mechanistically, SRPK1's m6A sites were directly methylated by METTL3, which also stabilized SRPK1 in an IGF2BP2-dependent manner. Methylated SRPK1 subsequently promoted LUAD progression through enhancing glycolysis. Further metabolic quantification, co-immunoprecipitation and western blot assays revealed that SRPK1 interacts with hnRNPA1, an important modulator of PKM splicing, and thus facilitates glycolysis by upregulating PKM2 in LUAD. Nevertheless, METTL3 inhibitor STM2457 can reverse the above effects in vitro and in vivo by suppressing SRPK1 and glycolysis in LUAD. CONCLUSION It was revealed that in LUAD, aberrantly expressed METTL3 upregulated SRPK1 levels via an m6A-IGF2BP2-dependent mechanism. METTL3-induced SRPK1 fostered LUAD cell proliferation by enhancing glycolysis, and the small-molecule inhibitor STM2457 of METTL3 could be an alternative novel therapeutic strategy for individuals with LUAD.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jian Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Lirong Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| |
Collapse
|
11
|
Nian Z, Deng M, Ye L, Tong X, Xu Y, Xu Y, Chen R, Wang Y, Mao F, Xu C, Lu R, Mao Y, Xu H, Shen X, Xue X, Guo G. RNA epigenetic modifications in digestive tract cancers: Friends or foes. Pharmacol Res 2024; 206:107280. [PMID: 38914382 DOI: 10.1016/j.phrs.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.
Collapse
Affiliation(s)
- Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Ming Deng
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yixi Xu
- School of public administration, Hangzhou Normal University, Hangzhou, China
| | - Yiliu Xu
- Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang, China
| | - Ruoyao Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yulin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Feiyang Mao
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Chenyv Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruonan Lu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yicheng Mao
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Hanlu Xu
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
12
|
Song S, Tai L, Xu Y, Jiang J, Zhou L, Zhao J. Lathyrol reduces the RCC invasion and incidence of EMT via affecting the expression of AR and SPHK2 in RCC mice. Discov Oncol 2024; 15:264. [PMID: 38965120 PMCID: PMC11224167 DOI: 10.1007/s12672-024-01130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE To investigate the effects of Lathyrol on the expression of androgen receptor (AR) and sphingosine kinase 2 (SPHK2) in renal cell carcinoma (RCC) mice and to further explore the mechanism by which Lathyrol inhibits the invasion and incidence of epithelial-mesenchymal transition (EMT). METHODS An RCC xenograft mouse model was constructed, and the mice were randomly divided into a model group, an experiment group and a negative control group. The experiment group was intragastrically gavaged with Lathyrol solution (20 mg/kg), the model group was intragastrically gavaged with 0.9% NaCl (same volume as that used in the experiment group), and the negative control group was injected intraperitoneally with 2 mg/kg cisplatin aqueous solution. Changes in the body weight and tumor volume of the mice were recorded. Western blot (WB) was used to assess the protein expression levels of AR, p-AR, CYP17A1, PARP1, E-cadherin, N-cadherin, vimentin, α-SMA, β-catenin, and ZO-1. Protein expression levels of SPHK2, metal matrix protease 2 (MMP2), MMP9 and urokinase-type plasminogen activator (uPA) in tumor tissues were assessed by immunohistochemistry (IHC). AR expression in tumor tissues was assessed after immunofluorescence (IF) staining. RESULTS After 14 days of drug administration, compared with that in the model group, the tumor volumes in the negative control and experiment groups were lower; the difference in tumor volume among the model, control and experiment groups was statistically significant (P < 0.05). The differences in body weight among the three groups were not statistically significant (P > 0.05). In the model group, the protein expression levels of AR, p-AR, CYP17A1, SPHK2, and PARP1 were relatively increased, the protein expression levels of E-cadherin and ZO-1 were relatively reduced (P < 0.05), and the protein expression levels of N-cadherin, β-catenin, vimentin, and α-SMA were relatively increased (P < 0.05). In the negative control and experiment groups, the protein expression levels of AR, p-AR, CYP17A1, SPHK2, and PARP1 were relatively decreased (P < 0.05), the protein expression levels of E-cadherin and ZO-1 were relatively increased (P < 0.05), and the protein expression levels of N-cadherin, β-catenin, vimentin and α-SMA were relatively decreased (P < 0.05). CONCLUSION Lathyrol and cisplatin inhibit the proliferation of RCC xenografts, reduce the protein expression levels of AR, CYP17A1, SPHK2, PARP1, E-cadherin, and ZO-1 in tumor tissues (P < 0.05), and promote the protein expression levels of N-cadherin, β-catenin, vimentin and α-SMA (P < 0.05). Therefore, Lathyrol reduces RCC invasion and EMT by affecting the expression of AR and SPHK2 in RCC mice.
Collapse
Affiliation(s)
- Shengyou Song
- Department of Urology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450002, Henan, China
| | - Lunwei Tai
- Department of Urology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450002, Henan, China
| | - Yuqi Xu
- Department of Urology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450002, Henan, China
| | - Junling Jiang
- Department of Urology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Dongfeng Road 6#, Zhengzhou, 450002, Henan, China
| | - Lei Zhou
- Department of Urology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Dongfeng Road 6#, Zhengzhou, 450002, Henan, China
| | - Junfeng Zhao
- Department of Urology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Dongfeng Road 6#, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
13
|
Chen W, Ye X, Chen Y, Zhao T, Zhou H. M6A methylation of FKFB3 reduced pyroptosis of gastric cancer by NLRP3. Anticancer Drugs 2024; 35:344-357. [PMID: 38241195 DOI: 10.1097/cad.0000000000001574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Gastric cancer is a kind of malignant tumor that seriously endangers human life and health. Its incidence rate and mortality rate are among the highest in the global malignant tumors. Therefore, this study explored the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in the progression of gastric cancer and its underlying mechanism. Patients with gastric cancer were collected, and human GC cell lines (stomach gastric carcinoma 7901, stomach gastric carcinoma 823 , human gastric carcinoma cell line 803 and adenocarcinoma gastric stomach) were used in this study. We utilized glucose consumption, cell migration, and ELISA assay kits to investigate the function of GC. To understand its mechanism, we employed quantitative PCR (qPCR), western blot, and m6A methylated RNA immunoprecipitation assay. FKFB3 protein expression levels in patients with gastric cancer were increased. The induction of PFKFB3 mRNA expression levels in patients with gastric cancer or gastric cancer cell lines. Gastric cancer patients with high PFKFB3 expression had a lower survival rate. PFKFB3 high expression possessed the probability of pathological stage, lymph node metastasis or distant metastasis in patients with gastric cancer. PFKFB3 upregulation promoted cancer progression and Warburg effect progression of gastric cancer. PFKFB3 upregulation reduced pyroptosis and suppressed nucleotidebinding domain, leucinerich repeat containing protein 3-induced pyroptosis of gastric cancer. M6A-forming enzyme methyltransferase-like 3 increased PFKFB3 stability. Taken together, the M6A-forming enzyme methyltransferase-like 3 increased PFKFB3 stability and reduced pyroptosis in the model of gastric cancer through the Warburg effect. The PFKFB3 gene represents a potential therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Wanyuan Chen
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College
| | - Xiaolin Ye
- College of Basic Medical Science, Zhejiang Chinese Medical University
| | - Yun Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Tongwei Zhao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hongying Zhou
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
14
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Esteva-Socias M, Aguilo F. METTL3 as a master regulator of translation in cancer: mechanisms and implications. NAR Cancer 2024; 6:zcae009. [PMID: 38444581 PMCID: PMC10914372 DOI: 10.1093/narcan/zcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Translational regulation is an important step in the control of gene expression. In cancer cells, the orchestration of both global control of protein synthesis and selective translation of specific mRNAs promote tumor cell survival, angiogenesis, transformation, invasion and metastasis. N6-methyladenosine (m6A), the most prevalent mRNA modification in higher eukaryotes, impacts protein translation. Over the past decade, the development of m6A mapping tools has facilitated comprehensive functional investigations, revealing the involvement of this chemical mark, together with its writer METTL3, in promoting the translation of both oncogenes and tumor suppressor transcripts, with the impact being context-dependent. This review aims to consolidate our current understanding of how m6A and METTL3 shape translation regulation in the realm of cancer biology. In addition, it delves into the role of cytoplasmic METTL3 in protein synthesis, operating independently of its catalytic activity. Ultimately, our goal is to provide critical insights into the interplay between m6A, METTL3 and translational regulation in cancer, offering a deeper comprehension of the mechanisms sustaining tumorigenesis.
Collapse
Affiliation(s)
- Margalida Esteva-Socias
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| |
Collapse
|
16
|
Liu T, Feng YL, Wang RY, Yang S, Ge YL, Zhang TY, Li J, Li CY, Ruan Y, Luo B, Liang GY. Long-term MNNG exposure promotes gastric carcinogenesis by activating METTL3/m6A/miR1184 axis-mediated epithelial-mesenchymal transition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169752. [PMID: 38163601 DOI: 10.1016/j.scitotenv.2023.169752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
As the representative item of environmental chemical carcinogen, MNNG was closely associated with the onset of Gastric cancer (GC), while the underlying mechanisms remain largely unknown. Here, we comprehensively analyzed the potential clinical significance of METTL3 in multiple GC patient cohorts. Additionally, we demonstrated that long-term exposure to MNNG elevated METTL3 and EMT marker expression by in vitro and in vivo models. Furthermore, the depletion of METTL3 impacted the proliferation, migration, invasion, and tumorigenesis of MNNG malignant transformation cells and GC cells. By me-RIP sequencing, we identified a panel of vital miRNAs potentially regulated by METTL3 that aberrantly expressed in MNNG-induced GC cells. Mechanistically, we showed that METTL3 meditated miR-1184/TRPM2 axis by regulating the process of miRNA-118. Our results provide novel insights into critical epigenetic molecular events vital to MNNG-induced gastric carcinogenesis. These findings suggest the potential therapeutic targets of METTL3 for GC treatment.
Collapse
Affiliation(s)
- Tong Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China
| | - Yan-Lu Feng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China
| | - Rui-Ying Wang
- Gansu Provincial Center for Disease Prevention and Control, Lanzhou, Gansu 730000, PR China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China
| | - Yi-Ling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China
| | - Tian-Yi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China
| | - Jie Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China
| | - Cheng-Yun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ye Ruan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, PR China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, PR China
| | - Ge-Yu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
17
|
Wang J, Zhao G, Zhao Y, Zhao Z, Yang S, Zhou A, Li P, Zhang S. N 6-methylation in the development, diagnosis, and treatment of gastric cancer. J Transl Int Med 2024; 12:5-21. [PMID: 38525439 PMCID: PMC10956730 DOI: 10.2478/jtim-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Gastric cancer (GC) ranks third among cancers in terms of mortality rate worldwide. A clear understanding of the mechanisms underlying the genesis and progression of GC will contribute to clinical decision making. N6-methyladenosine (m6A) is the most abundant among diverse mRNA modification types and regulates multiple facets of RNA metabolism. In recent years, emerging studies have shown that m6A modifications are involved in gastric carcinoma tumorigenesis and progression and can potentially be valuable new prospects for diagnosis and prognosis. This article reviews the recent progress regarding m6A in GC.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yan Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zheng Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
18
|
Lin Y, Wu Y, Zhang Q, Tu X, Chen S, Pan J, Xu N, Lin M, She P, Niu G, Chen Y, Li H. RPTOR blockade suppresses brain metastases of NSCLC by interfering the ceramide metabolism via hijacking YY1 binding. J Exp Clin Cancer Res 2024; 43:1. [PMID: 38163890 PMCID: PMC10759737 DOI: 10.1186/s13046-023-02874-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/29/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Ceramide metabolism is crucial in the progress of brain metastasis (BM). However, it remains unexplored whether targeting ceramide metabolism may arrest BM. METHODS RNA sequencing was applied to screen different genes in primary and metastatic foci and whole-exome sequencing (WES) to seek crucial abnormal pathway in BM + and BM-patients. Cellular arrays were applied to analyze the permeability of blood-brain barrier (BBB) and the activation or inhibition of pathway. Database and Co-Immunoprecipitation (Co-IP) assay were adopted to verify the protein-protein interaction. Xenograft and zebrafish model were further employed to verify the cellular results. RESULTS RNA sequencing and WES reported the involvement of RPTOR and ceramide metabolism in BM progress. RPTOR was significantly upregulated in BM foci and increased the permeability of BBB, while RPTOR deficiency attenuated the cell invasiveness and protected extracellular matrix. Exogenous RPTOR boosted the SPHK2/S1P/STAT3 cascades by binding YY1, in which YY1 bound to the regions of SPHK2 promoter (at -353 ~ -365 nt), further promoting the expression of SPHK2. The latter was rescued by YY1 RNAi. Xenograft and zebrafish model showed that RPTOR blockade suppressed BM of non-small cell lung cancer (NSCLC) and impaired the SPHK2/S1P/STAT3 pathway. CONCLUSION RPTOR is a key driver gene in the brain metastasis of lung cancer, which signifies that RPTOR blockade may serve as a promising therapeutic candidate for clinical application.
Collapse
Affiliation(s)
- Ying Lin
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yun Wu
- Department of General Practice Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Qiangzu Zhang
- The High Performance Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100095, China
| | - Xunwei Tu
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Sufang Chen
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Junfan Pan
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Nengluan Xu
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Ming Lin
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Peiwei She
- The Centre for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Gang Niu
- The High Performance Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100095, China.
| | - Yusheng Chen
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Hongru Li
- Department of Respiratory and Critical Care Medicine, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Provincial Key Laboratory of Medical Big Data Engineering, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
19
|
Yuan R, Wu C. YTHDF1-mediated sphingosine kinase 2 upregulation alleviates bupivacaine-induced neurotoxicity via the PI3K/AKT axis. Hum Exp Toxicol 2024; 43:9603271231218707. [PMID: 38487884 DOI: 10.1177/09603271231218707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Bupivacaine (BUP), a long-acting local anesthetic, has been widely used in analgesia and anesthesia. However, evidence strongly suggests that excessive application of BUP may lead to neurotoxicity in neurons. Sphingosine kinase 2 (SPHK2) has been reported to exert neuroprotective effects. In this study, we intended to investigate the potential role and mechanism of SPHK2 in BUP-induced neurotoxicity in dorsal root ganglion (DRG) neurons. METHODS DRG neurons were cultured with BUP to simulate BUP-induced neurotoxicity in vitro. CCK-8, LDH, and flow cytometry assays were performed to detect the viability, LDH activity, and apoptosis of DRG neurons. RT-qPCR and western blotting was applied to measure gene and protein expression. Levels. MeRIP-qPCR was applied for quantification of m6A modification. RIP-qPCR was used to analyze the interaction between SPHK2 and YTHDF1. RESULTS SPHK2 expression significantly declined in DRG neurons upon exposure to BUP. BUP challenge substantially reduced the cell viability and increased the apoptosis rate in DRG neurons, which was partly abolished by SPHK2 upregulation. YTHDF1, an N6-methyladenosine (m6A) reader, promoted SPHK2 expression in BUP-treated DRG neurons in an m6A-dependent manner. YTHDF1 knockdown partly eliminated the increase in SPHK2 protein level and the protection against BUP-triggered neurotoxicity in DRG neurons mediated by SPHK2 overexpression. Moreover, SPHK2 activated the PI3K/AKT signaling to protect against BUP-induced cytotoxic effects on DRG neurons. CONCLUSIONS In sum, YTHDF1-mediated SPHK2 upregulation ameliorated BUP-induced neurotoxicity in DRG neurons via promoting activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ru Yuan
- Department of Anesthesiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Chunxia Wu
- Department of Anesthesiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| |
Collapse
|
20
|
Jin Q, Qu H, Quan C. New insights into the regulation of METTL3 and its role in tumors. Cell Commun Signal 2023; 21:334. [PMID: 37996892 PMCID: PMC10732098 DOI: 10.1186/s12964-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
As one of the most abundant epigenetic modifications in RNA, N6-methyladenosine (m6A) affects RNA transcription, splicing, stability, and posttranscriptional translation. Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, dynamically regulates target genes expression through m6A modification. METTL3 has been found to play a critical role in tumorigenesis, tumor growth, metastasis, metabolic reprogramming, immune cell infiltration, and tumor drug resistance. As a result, the development of targeted drugs against METTL3 is becoming increasingly popular. This review systematically summarizes the factors that regulate METTL3 expression and explores the specific mechanisms by which METTL3 affects multiple tumor biological behaviors. We aim to provide fundamental support for tumor diagnosis and treatment, at the same time, to offer new ideas for the development of tumor-targeting drugs.
Collapse
Affiliation(s)
- Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
21
|
Wang M, Liu Z, Fang X, Cong X, Hu Y. The emerging role of m 6A modification of non-coding RNA in gastrointestinal cancers: a comprehensive review. Front Cell Dev Biol 2023; 11:1264552. [PMID: 37965577 PMCID: PMC10642577 DOI: 10.3389/fcell.2023.1264552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Gastrointestinal (GI) cancer is a series of malignant tumors with a high incidence globally. Although approaches for tumor diagnosis and therapy have advanced substantially, the mechanisms underlying the occurrence and progression of GI cancer are still unclear. Increasing evidence supports an important role for N6-methyladenosine (m6A) modification in many biological processes, including cancer-related processes via splicing, export, degradation, and translation of mRNAs. Under distinct cancer contexts, m6A regulators have different expression patterns and can regulate or be regulated by mRNAs and non-coding RNAs, especially long non-coding RNAs. The roles of m6A in cancer development have attracted increasing attention in epigenetics research. In this review, we synthesize progress in our understanding of m6A and its roles in GI cancer, especially esophageal, gastric, and colorectal cancers. Furthermore, we clarify the mechanism by which m6A contributes to GI cancer, providing a basis for the development of diagnostic, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- Department of Biobank, the China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, the China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Ye Z, Yang J, Jiang H, Zhan X. The roles of protein ubiquitination in tumorigenesis and targeted drug discovery in lung cancer. Front Endocrinol (Lausanne) 2023; 14:1220108. [PMID: 37795365 PMCID: PMC10546409 DOI: 10.3389/fendo.2023.1220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
The malignant lung cancer has a high morbidity rate and very poor 5-year survival rate. About 80% - 90% of protein degradation in human cells is occurred through the ubiquitination enzyme pathway. Ubiquitin ligase (E3) with high specificity plays a crucial role in the ubiquitination process of the target protein, which usually occurs at a lysine residue in a substrate protein. Different ubiquitination forms have different effects on the target proteins. Multiple short chains of ubiquitination residues modify substrate proteins, which are favorable signals for protein degradation. The dynamic balance adapted to physiological needs between ubiquitination and deubiquitination of intracellular proteins is beneficial to the health of the organism. Ubiquitination of proteins has an impact on many biological pathways, and imbalances in these pathways lead to diseases including lung cancer. Ubiquitination of tumor suppressor protein factors or deubiquitination of tumor carcinogen protein factors often lead to the progression of lung cancer. Ubiquitin proteasome system (UPS) is a treasure house for research and development of new cancer drugs for lung cancer, especially targeting proteasome and E3s. The ubiquitination and degradation of oncogene proteins with precise targeting may provide a bright prospect for drug development in lung cancer; Especially proteolytic targeted chimerism (PROTAC)-induced protein degradation technology will offer a new strategy in the discovery and development of new drugs for lung cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hanming Jiang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
23
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
24
|
Ding SQ, Zhang XP, Pei JP, Bai X, Ma JJ, Zhang CD, Dai DQ. Role of N6-methyladenosine RNA modification in gastric cancer. Cell Death Discov 2023; 9:241. [PMID: 37443100 DOI: 10.1038/s41420-023-01485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is the most prevalent internal modification of mammalian messenger RNA. The m6A modification affects multiple aspects of RNA metabolism, including processing, splicing, export, stability, and translation through the reversible regulation of methyltransferases (Writers), demethylases (Erasers), and recognition binding proteins (Readers). Accumulating evidence indicates that altered m6A levels are associated with a variety of human cancers. Recently, dysregulation of m6A methylation was shown to be involved in the occurrence and development of gastric cancer (GC) through various pathways. Thus, elucidating the relationship between m6A and the pathogenesis of GC has important clinical implications for the diagnosis, treatment, and prognosis of GC patients. In this review, we evaluate the potential role and clinical significance of m6A-related proteins which function in GC in an m6A-dependent manner. We discuss current issues regarding m6A-targeted inhibition of GC, explore new methods for GC diagnosis and prognosis, consider new targets for GC treatment, and provide a reasonable outlook for the future of GC research.
Collapse
Affiliation(s)
- Si-Qi Ding
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Xue-Ping Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Jun-Peng Pei
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Xiao Bai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Jin-Jie Ma
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Chun-Dong Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China.
- Cancer Center, The Fourth Affiliated Hospital of China Medical University, 110032, Shenyang, China.
| |
Collapse
|
25
|
Tang B, Li M, Xu Y, Li X. N 6-methyladenosine (m 6A) writer KIAA1429 accelerates gastric cancer oxaliplatin chemoresistance by targeting FOXM1. J Cancer Res Clin Oncol 2023; 149:5037-5045. [PMID: 36326914 DOI: 10.1007/s00432-022-04426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Chemical modification plays a critical role in regulating human cancer progression, especially N6-methyladenosine (m6A). However, m6A writer KIAA1429-mediated m6A modification in gastric cancer (GC) tumorigenesis remains largely unknown. METHODS The levels of mRNA and protein were detected using RT-qPCR and western blot. The half maximal inhibitory concentration (IC50) of oxaliplatin (OXA) resistance is detected using CCK-8 assay. The binding within moleculars was identified using RIP-PCR. RESULTS Results found that KIAA1429 was upregulated in GC tissue samples and its high expression acted as a prognostic factor of poor survival in patients with GC. Functional assays indicated that KIAA1429 promoted the proliferation of GC cells, besides, KIAA1429 accelerated the half maximal inhibitory concentration (IC50) of oxaliplatin (OXA) resistance. Mechanistically, online prediction found that there was possible m6A modification site on FOXM1 mRNA. KIAA1429 could target the m6A modification site on FOXM1. Notably, KIAA1429 facilitated the GC OXA resistance in GC cells by promoting FOXM1 mRNA stability. CONCLUSIONS Taken together, our study reveals the functions and mechanism for KIAA1429 and exposes KIAA1429 as a key player in GC chemoresistance.
Collapse
Affiliation(s)
- Bingxi Tang
- Department of Gastroenterology, Zibo Central Hospital, Zibo, 255036, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, 255036, China
| | - Yanbing Xu
- Department of General Surgery, Zibo Central Hospital, Zibo, 255036, China
| | - Xinli Li
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| |
Collapse
|
26
|
Zhang W, Wu T, Zhang Y, Kang W, Du C, You Q, Chen X, Jiang Z. Targeting m 6A binding protein YTHDFs for cancer therapy. Bioorg Med Chem 2023; 90:117373. [PMID: 37329678 DOI: 10.1016/j.bmc.2023.117373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/28/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
N6-methyladenosine (m6A) is the most common mRNA modification in mammalians. The function and dynamic regulation of m6A depends on the "writer", "readers" and "erasers". YT521-B homology domain family (YTHDF) is a class of m6A binding proteins, including YTHDF1, YTHDF2 and YTHDF3. In recent years, the modification of m6A and the molecular mechanism of YTHDFs have been further understood. Growing evidence has shown that YTHDFs participate in multifarious bioprocesses, particularly tumorigenesis. In this review, we summarized the structural characteristics of YTHDFs, the regulation of mRNA by YTHDFs, the role of YTHDF proteins in human cancers and inhibition of YTHDFs.
Collapse
Affiliation(s)
- Weikun Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuejiao Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjing Kang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chenyu Du
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
27
|
Yang P, Yang W, Wei Z, Li Y, Yang Y, Wang J. Novel targets for gastric cancer: The tumor microenvironment (TME), N6-methyladenosine (m6A), pyroptosis, autophagy, ferroptosis and cuproptosis. Biomed Pharmacother 2023; 163:114883. [PMID: 37196545 DOI: 10.1016/j.biopha.2023.114883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
Gastric cancer (GC) is a fatal illness, and its mortality rate is very high all over the world. At present, it is a serious health problem for any country. It is a multifactorial disease due to the rising drug resistance and the increasing global cancer burden, the treatment of GC still faces many obstacles and problems. In recent years, research on GC is being carried out continuously, and we hope to address the new targets of GC treatment through this review. At the same time, we also hope to discover new ways to fight GC and create more gospel for clinical patients. First, we discuss the descriptive tumor microenvironment (TME), N6-methyladenosine (m6A), pyroptosis, autophagy, ferroptosis, and cuproptosis. Finally, we expounded on the new or potential targets of GC treatment.
Collapse
Affiliation(s)
- Peizheng Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Zhong Wei
- Gastrointestinal Surgery, Anhui Provincial Hospital, Hefei, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Materials Sciences and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
28
|
Li ZY, Zhu YX, Chen JR, Chang X, Xie ZZ. The role of KLF transcription factor in the regulation of cancer progression. Biomed Pharmacother 2023; 162:114661. [PMID: 37068333 DOI: 10.1016/j.biopha.2023.114661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Kruppel-like factors (KLFs) are a family of zinc finger transcription factors that have been found to play an essential role in the development of various human tissues, including epithelial, teeth, and nerves. In addition to regulating normal physiological processes, KLFs have been implicated in promoting the onset of several cancers, such as gastric cancer, lung cancer, breast cancer, liver cancer, and colon cancer. To inhibit cancer progression, various existing medicines have been used to modulate the expression of KLFs, and anti-microRNA treatments have also emerged as a potential strategy for many cancers. Investigating the possibility of targeting KLFs in cancer therapy is urgently needed, as the roles of KLFs in cancer have not received enough attention in recent years. This review summarizes the factors that regulate KLF expression and function at both the transcriptional and posttranscriptional levels, which could aid in understanding the mechanisms of KLFs in cancer progression. We hope that this review will contribute to the development of more effective anti-cancer medicines targeting KLFs in the future.
Collapse
Affiliation(s)
- Zi-Yi Li
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yu-Xin Zhu
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jian-Rui Chen
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xu Chang
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhen-Zhen Xie
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Experimental teaching center of Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
29
|
Li JZ, Zhou SM, Yuan WB, Chen HQ, Zeng Y, Fan J, Zhang Z, Wang N, Cao J, Liu WB. RNA binding protein YTHDF1 mediates bisphenol S-induced Leydig cell damage by regulating the mitochondrial pathway of BCL2 and the expression of CDK2-CyclinE1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121144. [PMID: 36702435 DOI: 10.1016/j.envpol.2023.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol S (BPS) causes reproductive adverse effects on humans and animals. However, the detailed mechanism is still unclear. This research aimed to clarify the role of RNA binding protein YTHDF1 in Leydig cell damage induced by BPS. The mouse TM3 Leydig cells were exposed to BPS of 0, 20, 40, and 80 μmol/L for 72 h. Results showed that TM3 Leydig cells apoptosis rate markedly increased in BPS exposure group. Meanwhile, the apoptosis-related molecule BCL2 protein level decreased significantly, and Caspase9, Caspase3, and BAX increased significantly. Moreover, the cell cycle was blocked in the G1/S phase, CDK2 and CyclinE1 were considerably down-regulated in BPS exposure groups, and the protein level of RNA binding protein YTHDF1 decreased sharply. Furthermore, after overexpression of YTHDF1, the cell viability significantly increased, and the apoptosis rate significantly decreased in TM3 Leydig cells. In the meantime, BCL2, CDK2, and CyclinE1 were significantly up-regulated, and BAX, Caspase9, and Caspase3 were significantly down-regulated. Conversely, interference with YTHDF1 decreased cell proliferation and promoted apoptosis. Importantly, overexpression of YTHDF1 alleviated the cell viability decrease induced by BPS, and interference with YTHDF1 exacerbated the situation. RIP assays showed that the binding of YTHDF1 to CDK2, CyclinE1, and BCL2 significantly increased after overexpressing YTHDF1. Collectively, our study suggested that YTHDF1 plays an essential role in BPS-induced TM3 Leydig cell damage by regulating CDK2-CyclinE1 and BCL2 mitochondrial pathway at the translational level.
Collapse
Affiliation(s)
- Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Meng Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Fan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhe Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
30
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
31
|
Wang B, Zhai C, Li Y, Ma B, Li Z, Wang J. Sertoli cells-derived exosomal miR-30a-5p regulates ubiquitin E3 ligase Zeb2 to affect the spermatogonial stem cells proliferation and differentiation. Reprod Toxicol 2023; 117:108340. [PMID: 36731640 DOI: 10.1016/j.reprotox.2023.108340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
The role of spermatogonial stem cells (SSCs) is crucial in spermatogenesis, and extracellular vesicles (EVs) have been the focus of research as an important intercellular communication mechanism. Various endogenous regulatory factors secreted by Sertoli cells (SCs) can affect the self-maintenance and regeneration of SSCs, but little is known about the roles of SCs-derived exosomal microRNAs (miRNAs) on SSCs. In this study, we aimed to explore the regulation of the SCs-derived exosomal miR-30a-5p on SSCs proliferation and differentiation. EVs from the SCs were detected by electron microscopy and nanoparticle tracking analysis (NTA). Subsequently, the SSCs were treated with the SCs-derived extracellular vesicles (SCs-EVs). CCK-8 assay and EdU staining was applied to detect the cell proliferation, and the results indicated that SCs-EVs promoted the SSCs proliferation. Western blot detection of the SSCs markers (Gfrα1, Plzf, Stra8, and C-kit) indicated that SCs-EVs promoted the SSCs differentiation. Additionally, we found that SCs-EVs secreted miR-30a-5p to show the promoting effects. Besides, we discovered that miR-30a-5p targeted zinc finger E-box binding homeobox 2 (Zeb2) to regulate the ubiquitination of fibroblast growth factor 9 (Fgf9) in SSCs. miR-30a-3p/Zeb2/Fgf9 promoted the SSCs proliferation and differentiation by activating the mitogen‑activated protein kinase (MAPK) signaling pathway. Taken together, our study showed that SCs-EVs can transport miR-30a-5p to SSCs and affect SSCs proliferation and differentiation by regulating the MAPK signaling pathway via Zeb2/Fgf9. This paper disclosed a novel molecular mechanism that regulates SSCs proliferation and differentiation, which could be valuable for the treatment of male infertility.
Collapse
Affiliation(s)
- Bin Wang
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Chengxi Zhai
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Yingzhong Li
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Bo Ma
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Zhu Li
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China
| | - Jian Wang
- Department of Urology, People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, 653100, China.
| |
Collapse
|
32
|
Meng W, Xiao H, Mei P, Chen J, Wang Y, Zhao R, Liao Y. Critical Roles of METTL3 in Translation Regulation of Cancer. Biomolecules 2023; 13:biom13020243. [PMID: 36830614 PMCID: PMC9953158 DOI: 10.3390/biom13020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Aberrant translation, a characteristic feature of cancer, is regulated by the complex and sophisticated RNA binding proteins (RBPs) in the canonical translation machinery. N6-methyladenosine (m6A) modifications are the most abundant internal modifications in mRNAs mediated by methyltransferase-like 3 (METTL3). METTL3 is commonly aberrantly expressed in different tumors and affects the mRNA translation of many oncogenes or dysregulated tumor suppressor genes in a variety of ways. In this review, we discuss the critical roles of METTL3 in translation regulation and how METTL3 and m6A reader proteins in collaboration with RBPs within the canonical translation machinery promote aberrant translation in tumorigenesis, providing an overview of recent efforts aiming to 'translate' these results to the clinic.
Collapse
Affiliation(s)
- Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
33
|
Ji T, Gao X, Li D, Huai S, Chi Y, An X, Ji W, Yang S, Li J. Identification and validation of signature for prognosis and immune microenvironment in gastric cancer based on m6A demethylase ALKBH5. Front Oncol 2023; 12:1079402. [PMID: 36686788 PMCID: PMC9853004 DOI: 10.3389/fonc.2022.1079402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background N6-methyladenosine (m6A) RNA regulators play important roles in cancers, but their functions and mechanism have not been demonstrated clearly in gastric cancer (GC). Methods In this study, the GC samples with clinical information and RNA transcriptome were downloaded from The Cancer Genome Atlas database. The different expression genes were compared by the absolute value and median ± standard deviation. Samples with complete information were randomly divided into a training dataset and a test dataset. The differential expression genes (DEGs) between ALKBH5-low and ALKBH5-high subgroups were identified in the training dataset and constructed a risk model by Cox and least absolute shrinkage and selection operator regression. The model was testified in test datasets, overall survival (OS) was compared with the Kaplan-Meier method, and immune cell infiltration was calculated by the CIBERSORT algorithm in the low-risk and high-risk subgroups based on the model. The protein levels of ALKBH5 were detected with immunohistochemistry. The relative expression of messenger-ribonucleic acid (mRNA) was detected with quantitative polymerase chain reaction. Results ALKBH5 was the only regulator whose expression was lower in tumor samples than that in normal samples. The low expression of ALKBH5 led to the poor OS of GC patients and seemed to be an independent protective factor. The model based on ALKBH5-regulated genes was validated in both datasets (training/test) and displayed a potential capacity to predict a clinical prognosis. Gene Ontology analysis implied that the DEGs were involved in the immune response; CIBERSORT results indicated that ALKBH5 and its related genes could alter the immune microenvironment of GC. The protein levels of ALKBH5 were verified as lowly expressed in GC tissues. SLC7A2 and CGB3 were downregulated with ALKBH5 knockdown. Conclusions In this study, we found that ALKBH5 might be a suppressor of GC; ALKBH5 and its related genes were latent biomarkers and immunotherapy targets.
Collapse
Affiliation(s)
- Tiannan Ji
- Medical School of Chinese PLA, Beijing, China,Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohui Gao
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China,Department of Clinical Medicine, Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Dan Li
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Siyuan Huai
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yajing Chi
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China,School of Medicine, Nankai University, Tianjin, China
| | - Xian An
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenyu Ji
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China,Department of Clinical Medicine, Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Siming Yang
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxiong Li
- Department of Radiotherapy, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Jianxiong Li,
| |
Collapse
|
34
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
35
|
Li G, Fu Q, Liu C, Peng Y, Gong J, Li S, Huang Y, Zhang H. The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets. Front Oncol 2022; 12:1074307. [PMID: 36561529 PMCID: PMC9763625 DOI: 10.3389/fonc.2022.1074307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosinen (m6A) methylation is a frequent RNA methylation modification that is regulated by three proteins: "writers", "erasers", and "readers". The m6A modification regulates RNA stability and other mechanisms, including translation, cleavage, and degradation. Interestingly, recent research has linked m6A RNA modification to the occurrence and development of cancers, such as hepatocellular carcinoma and non-small cell lung cancer. This review summarizes the regulatory role of m6A RNA modification in gastric cancer (GC), including targets, the mechanisms of action, and the potential signaling pathways. Our present findings can facilitate our understanding of the significance of m6A RNA modification in GC.
Collapse
Affiliation(s)
- Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qiru Fu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Cong Liu
- Editorial Department of Journal of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuxi Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jun Gong
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Shilan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yan Huang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| |
Collapse
|
36
|
m6A-Related Genes Contribute to Poor Prognosis of Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2427987. [PMID: 36339682 PMCID: PMC9629938 DOI: 10.1155/2022/2427987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common and lethal digestive system cancers worldwide. N6-methyladenosine (m6A) modification plays an essential role in diverse critical biological processes and may participate in the development and progression of HCC. Methods We downloaded transcriptome data and clinical data from TCGA as the training set. COX and LASSO screened prognostic m6A genes. ROC and Kaplan-Meier curve analysis evaluated the effectiveness of the model. ICGC and our center data were used as verification sets. Results We include the “writer (METTL3, METTL14, WTAP, KIAA1429, RBM15, ZC3H13),” the “reader (YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC),” and the “eraser (FTO, ALKBH5)” in the study. We obtained YTHDF2, YTHDF1, METTL3, and KIAA1429 through differential analysis, survival analysis, and LASSO regression analysis. The prediction model was established based on the expression of these 4 molecules. HCC patients were divided into “high-risk” and “low-risk” groups to compare survival differences. The model suggested a poor prognosis in the validation sets. Conclusion The four-m6A-related-gene combination model was an independent prognostic factor of HCC and could improve the prediction of the prognosis of HCC.
Collapse
|
37
|
Zhu Z, Zhou Y, Chen Y, Zhou Z, Liu W, Zheng L, Pei Q, Tan F, Pei H, Li Y. m 6A Methyltransferase KIAA1429 Regulates the Cisplatin Sensitivity of Gastric Cancer Cells via Stabilizing FOXM1 mRNA. Cancers (Basel) 2022; 14:cancers14205025. [PMID: 36291811 PMCID: PMC9600291 DOI: 10.3390/cancers14205025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary N6-methyladenosine (m6A) is involved in the development of drug resistance in various cancer types. The role of N6-methyladenosine (m6A) methyltransferase, KIAA1429, in the resistance of gastric cancer to cisplatin is largely unknown. In this study, the KIAA1429 expression level as well as m6A content were found to be higher in cisplatin resistant gastric cancer cells, and KIAA1429 regulated the sensitivity of gastric cancer cells to cisplatin treatment. We then identified p65 as the regulator of KIAA1429 expression. Mechanistically, KIAA1429 regulated the sensitivity of gastric cancer cells to cisplatin by stabilizing FOXM1 mRNA via YTHDF1. The findings from this study suggest that KIAA1429 could be a therapeutic target of cisplatin resistance in gastric cancer. Abstract Although cisplatin is frequently used to treat gastric cancer, the resistance is the main obstacle for effective treatment. mRNA modification, N6-methyladenosine (m6A), is involved in the tumorigenesis of many types of cancer. As one of the largest m6A methyltransferase complex components, KIAA1429 bridges the catalytic m6A methyltransferase components, such as METTL3. In gastric cancer, KIAA1429 was reported to promote cell proliferation. However, whether KIAA1429 is involved in the resistance of gastric cancer to cisplatin remains unclear. Here, we generated cisplatin resistant gastric cancer cell lines, and compared the m6A content between resistant cells and wild type cells. The m6A content as well as KIAA1429 expression are higher in resistant cells. Interestingly, the expression of KIAA1429 was significantly increased after cisplatin treatment. We then used shRNA to knockdown KIAA1429 and found that resistant cells responded more to cisplatin treatment after KIAA1429 depletion, while overexpression of KIAA1429 decreased the sensitivity. Moreover, we identified a putative p65 binding site on the promoter area of KIAA1429 and ChIP assay confirmed the binding. p65 depletion decreased the expression of KIAA1429. YTHDF1 is the most abundant m6A “reader” that interacts with m6A modified mRNA. Mechanistically, YTHDF1 was recruited to the 3′-untranslated Region (3′-UTR) of transcriptional factor, FOXM1 by KIAA1429 and stabilized FOXM1 mRNA. More importantly, KIAA1429 knockdown increased the sensitivity of resistant cells to cisplatin in vivo. In conclusion, our results demonstrated that KIAA1429 facilitated cisplatin resistance by stabilizing FOXM1 mRNA in gastric cancer cells.
Collapse
Affiliation(s)
- Zhongcheng Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Yuan Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhongyi Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenxue Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Linyi Zheng
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Qian Pei
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Correspondence: (H.P.); (Y.L.)
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (H.P.); (Y.L.)
| |
Collapse
|
38
|
Zhang G, Wang T, Huang Z, Chen Y, Sun L, Xia X, He F, Fan C, Wang S, Liu W. METTL3 dual regulation of the stability of LINC00662 and VEGFA RNAs promotes colorectal cancer angiogenesis. Discov Oncol 2022; 13:89. [PMID: 36114893 PMCID: PMC9482670 DOI: 10.1007/s12672-022-00557-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The angiogenesis is among the primary factors that affect tumor recurrence and distant organ metastasis in colorectal cancer (CRC). N6-methyladenosine (m6A) modification is one of the most common chemical modifications in eukaryotic mRNA, especially at the post-transcriptional level. Methyltransferase-like 3 (METTL3) promoting angiogenesis in a variety of tumors has been reported. However, the mechanism of how METTL3 dual-regulates the stability of long non-coding RNAs (lncRNAs) and vascular-related factor RNAs to affect angiogenesis in CRC is unclear. METHODS 64 paired CRC and adjacent normal tissues were collected. In vitro, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), actinomycin assay, methylated RNA immunoprecipitation (MeRIP) experiment,3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and colony formation assay were performed. The functions were also studied in zebrafish model animals in vivo. RESULTS We found that the vascular endothelial growth factor A(VEGFA), METTL3 and LINC00662 RNAs were highly expressed in CRC, and that METTL3 was significantly positively correlated with LINC00662 and VEGFA. The protein expression levels of CD31, CD34, VEGFA, m6A and METTL3 were all significantly increased in the CRC tissues. The angiogenesis experiments both in vivo and in vitro found that METTL3 and LINC00662 promoted angiogenesis in CRC. The actinomycin assay indicated that METTL3 maintained the stability of LINC00662 and VEGFA RNAs. In addition, the MeRIP experiment confirmed that the LINC00662 and VEGFA RNAs had METTL3-enriched sites. CONCLUSION These findings suggest that METTL3 and LINC00662 may both serve as diagnostic and prognostic predictive biomarkers for CRC and potential targets for anti-vascular therapy.
Collapse
Affiliation(s)
- Guoying Zhang
- Department of General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Tianjun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zihui Huang
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Sun
- Department of General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China
| | - Xia Xia
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Fang He
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Chenying Fan
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China
| | - Shukui Wang
- Department of General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu, China.
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wanli Liu
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, No. 179, Xiaolingwei Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
39
|
Suphakhong K, Terashima M, Wanna-udom S, Takatsuka R, Ishimura A, Takino T, Suzuki T. m6A RNA methylation regulates the transcription factors JUN and JUNB in TGF-β-induced epithelial-mesenchymal transition of lung cancer cells. J Biol Chem 2022; 298:102554. [PMID: 36183833 PMCID: PMC9619186 DOI: 10.1016/j.jbc.2022.102554] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common internal chemical modification of mRNAs involved in many pathological processes including various cancers. In this study, we investigated the m6A-dependent regulation of JUN and JUNB transcription factors (TFs) during transforming growth factor-beta–induced epithelial–mesenchymal transition (EMT) of A549 and LC2/ad lung cancer cell lines, as the function and regulation of these TFs within this process remains to be clarified. We found that JUN and JUNB played an important and nonredundant role in the EMT-inducing gene expression program by regulating different mesenchymal genes and that their expressions were controlled by methyltransferase-like 3 (METTL3) m6A methyltransferase. METTL3–mediated regulation of JUN expression is associated with the translation process of JUN protein but not with the stability of JUN protein or mRNA, which is in contrast with the result of m6A-mediated regulation of JUNB mRNA stability. We identified the specific m6A motifs responsible for the regulation of JUN and JUNB in EMT within 3′UTR of JUN and JUNB. Furthermore, we discovered that different m6A reader proteins interacted with JUN and JUNB mRNA and controlled m6A-dependent expression of JUN protein and JUNB mRNA. These results demonstrate that the different modes of m6A-mediated regulation of JUN and JUNB TFs provide critical input in the gene regulatory network during transforming growth factor-beta–induced EMT of lung cancer cells.
Collapse
|
40
|
Qian K, Xu W, Xia X, Ding J. Methyltransferase-like 3 (METTL3) mediated N6-methyladenosine (m6A) modifications facilitate mir-25-3p maturation to promote gastrointestinal stromal tumors (GISTs) progression. Genes Genomics 2022; 44:1519-1530. [PMID: 36040683 DOI: 10.1007/s13258-022-01301-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Methyltransferase-like 3 (METTL3) is an RNA N6-methyladenosine (m6A) methyltransferase, which plays a critical role in micorRNA (miRNAs) processing and maturation, but it is still unclear whether METTL3 regulated miRNAs participates in the regulation of cancer aggressiveness in gastrointestinal stromal tumors (GISTs). OBJECTIVES This study was designed to investigate this issue, and uncover the potential underlying mechanisms. METHODS the expression of METTL3 in GISTs tissues and cell lines were determined by RT-qPCR and Western blot. Cell proliferation and migration were assessed by colony formation, CCK-8 and Transwell. The mRNA expression of all proteins was detected by RT-qPCR, and tumor xenograft study was applied to confirm the effect of METTL3 on GISTs development in vivo. RESULTS In our study, we showed that METTL3 was significantly upregulated in GISTs tissues and cell lines. Functional experiments demonstrated that overexpression of METTL3 promoted GISTs cell malignant biological behavior and tumor growth in vitro and in vivo, and conversely, silencing of METTL3 had opposite effects and suppressed GISTs progression. Further mechanistical experiments verified that METTL3 promoted the maturation of miR-25-3p in an m6A-dependent manner. Similar to METTL3, miR-25-3p was also validated as an oncogene to promote cancer development in GISTs. Finally, our rescuing experiments hinted that silencing of miR-25-3p abrogated the tumor-initiating effects of METTL3 overexpression on GISTs. CONCLUSION Collectively, those results indicated that METTL3 played an oncogenic role in GISTs through positively modulating the miR-25-3p in an m6A-dependent manner, and we firstly discussed how the METTL3/m6A/miR-25-3p axis affected GISTs development.
Collapse
Affiliation(s)
- Kun Qian
- Department of General Surgery, Shangrao People's Hospital, 334000, Shangrao, China
| | - Wei Xu
- Department of Gastrointestinal Surgery, Colorectal Tumor Minimally Invasive Center, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, China
| | - Xiaoyao Xia
- Department of General Surgery, Shangrao People's Hospital, 334000, Shangrao, China
| | - Jinhuo Ding
- Department of General Surgery, Shangrao People's Hospital, 334000, Shangrao, China. .,Department of General Surgery, Shangrao People's Hospital, No. 86 Shuyuan Road, 334000, Shangrao City, Jiangxi Province Shangrao, China.
| |
Collapse
|
41
|
Niu X, Yang Y, Ren Y, Zhou S, Mao Q, Wang Y. Crosstalk between m 6A regulators and mRNA during cancer progression. Oncogene 2022; 41:4407-4419. [PMID: 36008465 DOI: 10.1038/s41388-022-02441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
m6A modification, the most abundant and widespread RNA modification, is present and involved in the occurrence and development of various cancers. To date, most studies have mainly focused on the roles of a single m6A regulator (writer/eraser/reader) in various cancers, but cumulative evidence shows that aberrant m6A regulators and m6A levels exert dual effects (promoting and/or inhibiting roles) in cancer progression. Recently, studies have investigated the direct interactions between different m6A regulators (writer/eraser and reader) and mRNAs in a variety of cancers. In this review, we summarize the functions of m6A regulators and their roles in various types of cancers. We further propose the possible crosstalk mechanisms (Writer-m6A-Reader-mRNA axis and Eraser-m6A-Reader-mRNA axis) between different m6A regulators and mRNAs during cancer progression. We also discuss the clinical potential of m6A regulator‑targeting strategies.
Collapse
Affiliation(s)
- Xiaodong Niu
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanming Ren
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shengtao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Qing Mao
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuan Wang
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Yang H, Chiang C, Luo Q, Chen C, Huang J, Zhu L, Zheng D. YT521-B homology domain family proteins as N6-methyladenosine readers in tumors. Front Genet 2022; 13:934223. [PMID: 36017491 PMCID: PMC9395638 DOI: 10.3389/fgene.2022.934223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal chemical modification of eukaryotic mRNA and plays diverse roles in gene regulation. The m6A modification plays a significant role in numerous cancer types, including kidney, stomach, lung, bladder tumors, and melanoma, through varied mechanisms. As direct m6A readers, the YT521-B homology domain family proteins (YTHDFs) play a key role in tumor transcription, translation, protein synthesis, tumor stemness, epithelial-mesenchymal transition (EMT), immune escape, and chemotherapy resistance. An in-depth understanding of the molecular mechanism of YTHDFs is expected to provide new strategies for tumor treatment. In this review, we provide a systematic description of YTHDF protein structure and its function in tumor progression.
Collapse
Affiliation(s)
- Heng Yang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Chengyao Chiang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
- Central Laboratory, Southern University of Science and Technology, Yantain Hospital, Shenzhen, China
| | - Qinhong Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Chunlan Chen
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Junrong Huang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Lizhi Zhu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| |
Collapse
|
43
|
Xu Z, Chen Q, Shu L, Zhang C, Liu W, Wang P. Expression profiles of m6A RNA methylation regulators, PD-L1 and immune infiltrates in gastric cancer. Front Oncol 2022; 12:970367. [PMID: 36003776 PMCID: PMC9393729 DOI: 10.3389/fonc.2022.970367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Gastric cancer is the fourth most frequent cancer and has a high death rate. Immunotherapy represented by PD-1 has brought hope for the treatment of advanced gastric cancer. Methylation of the m6A genes is linked to the onset and progression of numerous cancers, but there are few studies on gastric cancer. The main purpose of this study aims to analyze the relationship between m6A RNA methylation regulators, PD-L1, prognosis and tumor immune microenvironment (TIME) in gastric cancer. The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases were used to acquire transcriptomic data and clinical information from gastric cancer patients. The changes in m6A regulator expression levels in gastric cancer tissues and normal tissues were studied. Consensus clustering analysis was used to separate gastric cancer samples into two categories. We employed Least Absolute Shrinkage, Selection Operator (LASSO) Cox regression analysis, Gene Set Enrichment Analysis (GSEA), and cBioPortal to analyze the m6A regulators, PD-L1 and TIME in gastric cancer. In gastric cancer tissues, the majority of m6A regulatory factors are considerably overexpressed. Two gastric cancer subgroups (Cluster1/2) based on consensus clustering of 21 m6A regulators. PD-L1 and PD-1 expression levels were significantly higher in gastric cancer tissues, and they were significantly linked with METTL3, WTAP, HNRNPD, ZC3H7B, METTL14, FTO, PCIF1, HNRNPC, YTHDF1 and YTDHF2. Cluster1 showed a large increase in resting memory CD4+ T cells, regulatory T cells, naïve B cells, active NK cells, and resting Mast cells. Cluster1 and Cluster2 were shown to be involved in numerous critical signaling pathways, including base excision repair, cell cycle, nucleotide excision repair, RNA degradation, and spliceosome pathways. Gastric cancer RiskScores based on prognostic factors have been found as independent prognostic indicators. The amount of tumor-infiltrating immune cells is dynamically affected by changes in the copy number of m6A methylation regulators associated with TIME.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Department of Gastric Surgery, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhiyuan Xu, ; Peter Wang,
| | - Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Chunye Zhang
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
- *Correspondence: Zhiyuan Xu, ; Peter Wang,
| |
Collapse
|
44
|
RNA Modifications in Gastrointestinal Cancer: Current Status and Future Perspectives. Biomedicines 2022; 10:biomedicines10081918. [PMID: 36009465 PMCID: PMC9405978 DOI: 10.3390/biomedicines10081918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 01/05/2023] Open
Abstract
Gastrointestinal (GI) cancer, referring to cancers of the digestive system such as colorectal cancer (CRC), gastric cancer (GC), and liver cancer, is a major cause of cancer-related deaths in the world. A series of genetic, epigenetic, and epitranscriptomic changes occur during the development of GI cancer. The identification of these molecular events provides potential diagnostic, prognostic, and therapeutic targets for cancer patients. RNA modification is required in the posttranscriptional regulation of RNA metabolism, including splicing, intracellular transport, degradation, and translation. RNA modifications such as N6-methyladenosine (m6A) and N1-methyladenosine (m1A) are dynamically regulated by three different types of regulators named methyltransferases (writers), RNA binding proteins (readers), and demethylases (erasers). Recent studies have pointed out that abnormal RNA modification contributes to GI tumorigenesis and progression. In this review, we summarize the latest findings on the functional significance of RNA modification in GI cancer and discuss the therapeutic potential of epitranscriptomic inhibitors for cancer treatment.
Collapse
|
45
|
N6-Methyladenosine RNA-Binding Protein YTHDF1 in Gastrointestinal Cancers: Function, Molecular Mechanism and Clinical Implication. Cancers (Basel) 2022; 14:cancers14143489. [PMID: 35884552 PMCID: PMC9320224 DOI: 10.3390/cancers14143489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNA and plays a crucial role in the occurrence and development of diseases. YTHDF1 is the most powerful and abundant m6A-encoded RNA reader. In this review, we summarize the evidence of the involvement of YTHDF1 in gastrointestinal cancers, its molecular mechanisms of action, and therapeutic implications. Abstract N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic cell mRNA, and this modification plays a key role in regulating mRNA translation, splicing, and stability. Emerging evidence implicates aberrant m6A as a crucial player in the occurrence and development of diseases, especially GI cancers. Among m6A regulators, YTHDF1 is the most abundant m6A reader that functionally connects m6A-modified mRNA to its eventual fate, mostly notably protein translation. Here, we summarized the function, molecular mechanisms, and clinical implications of YTHDF1 in GI cancers. YTHDF1 is largely upregulated in multiple GI cancer and its high expression predicts poor patient survival. In vitro and in vivo experimental evidence largely supports the role of YTDHF1 in promoting cancer initiation, progression, and metastasis, which suggests the oncogenic function of YTHDF1 in GI cancers. Besides, YTHDF1 overexpression is associated with changes in the tumor microenvironment that are favorable to tumorigenesis. Mechanistically, YTHDF1 regulates the expression of target genes by promoting translation, thereby participating in cancer-related signaling pathways. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy. In summary, YTHDF1-mediated regulation of m6A modified mRNA is an actionable target and a prognostic factor for GI cancers.
Collapse
|
46
|
N6-methyladenosine-related lncRNAs identified as potential biomarkers for predicting the overall survival of Asian gastric cancer patients. BMC Cancer 2022; 22:721. [PMID: 35778697 PMCID: PMC9248105 DOI: 10.1186/s12885-022-09801-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Gastric cancer (GC) is one of the most prevalent malignant tumors in Asian countries. Studies have proposed that lncRNAs can be used as diagnostic and prognostic indicators of GC due to the high specificity of lncRNAs expression involvement in GC. Recently, N6-methyladenosine (m6A) has also emerged as an important modulator of the expression of lncRNAs in GC. This study aimed at establishing a novel m6A-related lncRNAs prognostic signature that can be used to construct accurate models for predicting the prognosis of GC in the Asian population. Methods First, the levels of m6A modification and m6A methyltransferases expression in GC samples were determined using dot blot and western blot analyses. Next, we evaluated the lncRNAs expression profiles and the corresponding clinical data of 88 Asian GC patients retrieved from The Cancer Genome Atlas (TCGA) database. Differential expression of m6A-related lncRNAs between GC and normal tissues was investigated. The relationship between these target lncRNAs and potential immunotherapeutic signatures was also analyzed. Gene set enrichment analysis (GSEA) was performed to identify the malignancy-associated pathways. Univariate Cox regression, LASSO regression, and multivariate Cox regression analyses were performed to establish a novel prognostic m6A-related lncRNAs prognostic signature. Moreover, we constructed a predictive nomogram and determined the expression levels of nine m6A-related lncRNAs in 12 pairs of clinical samples. Results We found that m6A methylation levels were significantly increased in GC tumor samples compared to adjacent normal tissues, and the increase was positively correlated with tumor stage. Patients were then divided into two clusters (cluster 1 and cluster 2) based on the differential expression of the m6A-related lncRNAs. Results showed that there was a significant difference in survival probability between the two clusters (p = 0.018). Notably, the low survival rate in cluster 2 may be associated with high expression of immune cells (resting memory CD4+ T cells, p = 0.027; regulatory T cells, p = 0.0018; monocytes, p = 0.00095; and resting dendritic cells, p = 0.015), and low expression of immune cells (resting NK cells, p = 0.033; and macrophages M1, p = 0.045). Enrichment analysis indicated that malignancy-associated biological processes were more common in the cluster 2 subgroup. Finally, the risk model comprising of six m6A-related lncRNAs was identified as an independent predictor of prognoses, which could divide patients into high- or low-risk groups. Time-dependent ROC analysis suggested that the risk score could accurately predict the prognosis of GC patients. Patients in the high-risk group had worse outcomes compared to patients in the low-risk group, and the risk score showed a positive correlation with immune cells (resting memory CD4+ T cells, R = 0.31, P = 0.038; regulatory T cells, R = 0.42, P = 0.0042; monocytes, R = 0.42, P = 0.0043). However, M1 macrophages (R = -0.37, P = 0.012) and resting NK cells (R = -0.31, P = 0.043) had a negative correlation with risk scores. Furthermore, analysis of clinical samples validated the weak positive correlation between the risk score and tumor stage. Conclusions The risk model described here, based on the six m6A-related lncRNAs signature, and may predict the clinical prognoses and immunotherapeutic response in Asian GC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09801-z.
Collapse
|
47
|
Methyladenosine Modification in RNAs: From Regulatory Roles to Therapeutic Implications in Cancer. Cancers (Basel) 2022; 14:cancers14133195. [PMID: 35804965 PMCID: PMC9264946 DOI: 10.3390/cancers14133195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer remains a burden to the public health all over the world. An increasing number of studies have concentrated on the role of methyladenosine modifications on cancers. Methyladenosine modifications mainly include N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 2’-O-methyladenosine (m6Am), of which dynamic changes could modulate the metabolism of RNAs in eukaryotic cells. Mounting evidence has confirmed the crucial role of methyladenosine modification in cancer, offering possibilities for cancer therapy. In this review, we discussed the regulatory role of methyladenosine modification on cancer, as well as their potential for treatment. Abstract Methyladenosine modifications are the most abundant RNA modifications, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 2’-O-methyladenosine (m6Am). As reversible epigenetic modifications, methyladenosine modifications in eukaryotic RNAs are not invariable. Drastic alterations of m6A are found in a variety of diseases, including cancers. Dynamic changes of m6A modification induced by abnormal methyltransferase, demethylases, and readers can regulate cancer progression via interfering with the splicing, localization, translation, and stability of mRNAs. Meanwhile, m6A, m1A, and m6Am modifications also exert regulatory effects on noncoding RNAs in cancer progression. In this paper, we reviewed recent findings concerning the underlying biomechanism of methyladenosine modifications in oncogenesis and metastasis and discussed the therapeutic potential of methyladenosine modifications in cancer treatments.
Collapse
|
48
|
Zhang HM, Qi FF, Wang J, Duan YY, Zhao LL, Wang YD, Zhang TC, Liao XH. The m6A Methyltransferase METTL3-Mediated N6-Methyladenosine Modification of DEK mRNA to Promote Gastric Cancer Cell Growth and Metastasis. Int J Mol Sci 2022; 23:ijms23126451. [PMID: 35742899 PMCID: PMC9223399 DOI: 10.3390/ijms23126451] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer and the third deadliest cancer in the world, and the occurrence and development of GC are influenced by epigenetics. Methyltransferase-like 3 (METTL3) is a prominent RNA n6-adenosine methyltransferase (m6A) that plays an important role in tumor growth by controlling the work of RNA. This study aimed to reveal the biological function and molecular mechanism of METTL3 in GC. The expression level of METTL3 in GC tissues and cells was detected by qPCR, Western blot and immunohistochemistry, and the expression level and prognosis of METTL3 were predicted in public databases. CCK-8, colony formation, transwell and wound healing assays were used to study the effect of METTL3 on GC cell proliferation and migration. In addition, the enrichment effect of METTL3 on DEK mRNA was detected by the RIP experiment, the m6A modification effect of METTL3 on DEK was verified by the MeRIP experiment and the mRNA half-life of DEK when METTL3 was overexpressed was detected. The dot blot assay detects m6A modification at the mRNA level. The effect of METTL3 on cell migration ability in vivo was examined by tail vein injection of luciferase-labeled cells. The experimental results showed that METTL3 was highly expressed in GC tissues and cells, and the high expression of METTL3 was associated with a poor prognosis. In addition, the m6A modification level of mRNA was higher in GC tissues and GC cell lines. Overexpression of METTL3 in MGC80-3 cells and AGS promoted cell proliferation and migration, while the knockdown of METTL3 inhibited cell proliferation and migration. The results of in vitro rescue experiments showed that the knockdown of DEK reversed the promoting effects of METTL3 on cell proliferation and migration. In vivo experiments showed that the knockdown of DEK reversed the increase in lung metastases caused by the overexpression of METTL3 in mice. Mechanistically, the results of the RIP experiment showed that METTL3 could enrich DEK mRNA, and the results of the MePIP and RNA half-life experiments indicated that METTL3 binds to the 3'UTR of DEK, participates in the m6A modification of DEK and promotes the stability of DEK mRNA. Ultimately, we concluded that METTL3 promotes GC cell proliferation and migration by stabilizing DEK mRNA expression. Therefore, METTL3 is a potential biomarker for GC prognosis and a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tong-Cun Zhang
- Correspondence: (T.-C.Z.); (X.-H.L.); Tel.: +86-027-6889-7109 (T.-C.Z.); +86-027-6889-3368 (X.-H.L.)
| | - Xing-Hua Liao
- Correspondence: (T.-C.Z.); (X.-H.L.); Tel.: +86-027-6889-7109 (T.-C.Z.); +86-027-6889-3368 (X.-H.L.)
| |
Collapse
|
49
|
Li W, Chen H, Wang Z, Liu J, Lei X, Chen W. Chromobox 4 (CBX4) promotes tumor progression and stemness via activating CDC20 in gastric cancer. J Gastrointest Oncol 2022; 13:1058-1072. [PMID: 35837165 PMCID: PMC9274029 DOI: 10.21037/jgo-22-549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The Chromobox homolog 4 (CBX4) has been found to be overexpressed in multiple malignancies. However, the associations between CBX4 and gastric cancer (GC) have remained unclear. This study aimed to determine the biological roles of CBX4 in GC and identify effective therapeutic targets. METHODS The 3-(4,5-dimethylthiazol-2-yl) (MTT) assays were used to screen CBX family members. Differential analysis was utilized to evaluate the CBX4 levels. Kaplan-Meier analysis was used to perform prognostic analysis. Western blotting assay, quantitative polymerase chain reaction (qPCR) assay and immunohistochemistry (IHC) were used to assess CBX4 expressions. Colony formation assay, Cell Counting Kit-8 (CCK-8) assay, and Transwell assay were used to assess progression features of cells. The tail vein injection model was utilized to determine the metastatic efficacy of GC cells. Tumor sphere formation assay was used to assess tumor stemness maintenance ability. Chromatin immunoprecipitation (ChIP)-qPCR assay was used to evaluate the associations between CBX4 and CDC20. A subcutaneous tumor model was used to assess the in vivo growth ability of GC. RESULTS The MTT assay revealed that only CBX4 inhibition could lead to notable restriction of GC growth, as compared to others. Differential analysis suggested that CBX4 was upregulated in tumor samples relative to normal tissues. Less favorable overall survival (OS) outcomes were noticed in GC patients with high CBX4 in comparison to those with low CBX4. High CBX4 could notably enhance cell proliferation capacity, migration ability, and in vivo metastatic efficacy. Gene set enrichment analysis (GSEA) indicated the relationships between CBX4 and GC stemness, and CBX4 overexpression could remarkably elevate self-renewal ability of GC cells. In addition, CBX4 could mainly promote CDC20 messenger RNA (mRNA) levels, and targeting CBX4 suppressed the relative CDC20 levels. The ChIP-qPCR assay further demonstrated that CBX4 coordinated with H3K4me3 to bind at the CDC20 promoter region. Additionally, CBX4 depended on CDC20 to drive GC growth. Lastly, downregulated CBX4 could notably inhibit the growth of GC in vivo. CONCLUSIONS This study highlights the oncogenic roles of CBX4 in GC. CBX4 activates CDC20 to maintain stemness features of GC, thereby creating therapeutic vulnerabilities in the treatment of GC.
Collapse
Affiliation(s)
- Wen Li
- The Second Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, China
| | - Honghui Chen
- The Second Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenggen Wang
- The Second Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingjing Liu
- The Second Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinan Lei
- The Second Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen Chen
- The Second Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
50
|
Duan M, Gao P, Chen SX, Novák P, Yin K, Zhu X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes Rev 2022; 23:e13426. [PMID: 35122459 DOI: 10.1111/obr.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 01/23/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite. The past decade has witnessed exponential growth in the field of S1P research, partly attributed to drugs targeting its receptors or kinases. Accumulating evidence indicates that changes in the S1P axis (i.e., S1P production, transport, and receptors) may modify metabolism and eventually mediate metabolic diseases. Dysfunction of the mitochondria on a master monitor of cellular metabolism is considered the leading cause of metabolic diseases, with aberrations typically induced by abnormal biogenesis, respiratory chain complex disorders, reactive oxygen species overproduction, calcium deposition, and mitophagy impairment. Accordingly, we discuss decades of investigation into changes in the S1P axis and how it controls mitochondrial function. Furthermore, we summarize recent scientific advances in disorders associated with the S1P axis and their involvement in the pathogenesis of metabolic diseases in humans, including type 2 diabetes mellitus and cardiovascular disease, from the perspective of mitochondrial function. Finally, we review potential challenges and prospects for S1P axis application to the regulation of mitochondrial function and metabolic diseases; these data may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Meng Duan
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Pan Gao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Sheng-Xi Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.,Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|