1
|
Ma K, Wang H, Du Y, Chen T, Yang D, Li Y, Li D. Mendelian Randomization Assessment of the Genetic Effects of Lipid-Lowering Drugs on Digestive System Cancers. Food Sci Nutr 2025; 13:e70293. [PMID: 40443776 PMCID: PMC12121511 DOI: 10.1002/fsn3.70293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 06/02/2025] Open
Abstract
The relationship between lipid-lowering drugs and the risk of digestive system cancers remains unclear. This study aims to assess the risk association between lipid-lowering drugs and digestive system cancers through mendelian randomization (MR) analysis. We utilized genetic instruments to substitute for the exposure to lipid-lowering drugs, including expression quantitative trait loci (eQTL) for HMGCR, PCSK9, and NPC1L1, as well as genetic variants associated with low-density lipoprotein (LDL) from the Global Lipids Genetics Consortium's genome-wide association study (GWAS) data for target genes. We used MR and SMR methods to assess the risk estimates of lipid-lowering drug target genes on digestive system tumors. The MR analysis indicated a negative association between HMGCR-mediated LDL and hepatocellular carcinoma (OR = 0.06, 95% CI: 0.00-0.81, p = 0.03), and a positive association between NPC1L1-mediated LDL and gastric cancer risk (OR = 15.45, 95% CI: 5.96-40.56, p < 0.01). In the SMR analysis, it was observed that HMGCR expression decreased the risk of hepatocellular carcinoma (OR = 0.11, 95% CI: 0.02-0.68, p = 0.02), while NPC1L1 expression increased the risk of gastric cancer (OR = 1.33, 95% CI: 1.08-1.64, p < 0.01). Our study results suggested a potential risk association between HMGCR inhibitors and NPC1L1 with hepatocellular carcinoma and gastric cancer.
Collapse
Affiliation(s)
- Keru Ma
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Hao Wang
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yubo Du
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Tianyu Chen
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Dongxu Yang
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yue Li
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Dalin Li
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
2
|
Chu Z, Fang L, Xiang Y, Ding Y. Research progress on cholesterol metabolism and tumor therapy. Discov Oncol 2025; 16:647. [PMID: 40307614 PMCID: PMC12043555 DOI: 10.1007/s12672-025-02430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Cholesterol and its metabolic derivatives have important biological functions and are crucial in tumor initiation, progression, and treatment. Cholesterol maintains the physical properties of cellular membranes and is pivotal in cell signal transduction. Cholesterol metabolism includes both de novo synthesis and uptake from extracellular sources such as low-density lipoprotein (LDL) and high-density lipoprotein (HDL). This review explores both aspects to provide a comprehensive understanding of their roles in cancer. Cholesterol metabolism is involved in bile acid production and steroid hormone biosynthesis and is closely linked to the reprogramming of endogenous and exogenous cellular signals within the tumor microenvironment. These signals are intricately associated with key biological processes such as tumor cell proliferation, survival, invasion, and metastasis. Evidence suggests that regulating cholesterol metabolism may offer therapeutic benefits by inhibiting tumor growth, remodeling the immune microenvironment, and enhancing antitumor immune responses. This review summarizes the role of cholesterol metabolism in tumor biology and discusses the application of statins and other cholesterol metabolism inhibitors in cancer therapy, aiming to provide novel insights for the development of antitumor drugs targeting cholesterol metabolism and for advances in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Zewen Chu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
| | - Lei Fang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
| | - Yanwei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Mordzińska-Rak A, Verdeil G, Hamon Y, Błaszczak E, Trombik T. Dysregulation of cholesterol homeostasis in cancer pathogenesis. Cell Mol Life Sci 2025; 82:168. [PMID: 40257622 PMCID: PMC12011706 DOI: 10.1007/s00018-025-05617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 04/22/2025]
Abstract
Cholesterol is a unique lipid for all mammalian cells, with important functions in membrane biogenesis and maintenance of proper membrane integrity and fluidity. Therefore, it plays an important role in cellular homeostasis. Dysregulation of cholesterol homeostasis is associated with various diseases in humans, including cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancers. In the tumor microenvironment, intrinsic and extrinsic cellular factors reprogram cholesterol metabolism and consequently promote tumorigenesis. Here, we summarize the current knowledge on molecular mechanisms and functional roles of cholesterol homeostasis and its dysregulation in regard to cancer pathogenesis. We also discuss the interplay of cholesterol metabolism and the ATP-binding cassette (ABC) proteins, highly conserved cellular transmembrane lipid transporters. An emerging role of lipid ABC transporters as potential prognostic tools for cancer progression and invasiveness is emphasized. Targeting both cholesterol metabolism and proteins associated with membrane cholesterol holds promise as a novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Aleksandra Mordzińska-Rak
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, 1 Chodzki Street, Lublin, 20-093, Poland
| | - Grégory Verdeil
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, 163 Av. de Luminy, Marseille, 13009, France
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, 1 Chodzki Street, Lublin, 20-093, Poland.
| | - Tomasz Trombik
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, 1 Chodzki Street, Lublin, 20-093, Poland.
| |
Collapse
|
4
|
Noruzi S, Mohammadi R, Jamialahmadi K. CRISPR/Cas9 system: a novel approach to overcome chemotherapy and radiotherapy resistance in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3373-3408. [PMID: 39560750 DOI: 10.1007/s00210-024-03480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 11/20/2024]
Abstract
Cancer presents a global health challenge with rising incidence and mortality. Despite treatment advances in cancer therapy, radiotherapy and chemotherapy remained the most common treatments for all types of cancers. However, resistance phenotype in cancer cells leads to unsatisfactory results in the efficiency of therapeutic strategies. Therefore, researchers strive to propose effective solutions to overcome treatment failure, which requires a deep knowledge of treatment-resistant mechanisms. The progression and occurrence of tumors can be attributed to gene mutation. Over the past decade, the emergence of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) genome editing has revolutionized cancer research. This versatile technology enables cancer modeling, manipulation of specific DNA sequences, and genome-wide screening. CRISPR/Cas9 is an effective tool for identifying radio- and chemoresistance genes and offering potential adjunctive treatments to overcome tumor recurrence after chemo- and radiotherapy. This article aims to explain the potential of the CRISPR/Cas9 system in improving the effectiveness of chemo- and radiotherapy and ultimately overcoming treatment failure.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Liu W, Liu L, Kuang T, Deng W. Cholesterol metabolism-related genes predict immune infiltration and prognosis in gastric cancer patients. J Cancer 2025; 16:2087-2102. [PMID: 40302802 PMCID: PMC12036097 DOI: 10.7150/jca.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/27/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Gastric cancer (GC) is one of the most prevalent malignant diseases worldwide. Abnormal metabolic reprogramming, particularly cholesterol metabolism, influences tumor development and treatment outcomes. This study investigates the predictive and functional significance of cholesterol metabolism-related genes in gastric cancer patients. Methods: Clinical and gene expression data related to cholesterol metabolism in gastric cancer were analyzed using datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A predictive signature was developed and validated using LASSO, Cox regression, and the GSE26889 cohort, followed by evaluation with Kaplan-Meier analysis. A nomogram was constructed by integrating the signature with clinical factors and ssGSEA for immunological analysis. The role of NPC2 was investigated using western blot, qPCR, and cellular assays. Results: We conducted a bioinformatics analysis of 50 genes associated with cholesterol metabolism in gastric cancer. Using the GEO and TCGA datasets, we identified 28 genes with differential expression in gastric cancer patients. Subsequent COX univariate and LASSO regression analyses of these 28 DEGs identified five genes (APOA1, APOC3, NPC2, CD36, and ABCA1) as independent prognostic risk factors. We then constructed a risk model for cholesterol metabolism genes, revealing that survival was worse in the high-risk group compared to the low-risk group, with more severe case staging outcomes. We conducted a comparative analysis of immune cells between the high-risk and low-risk groups, revealing distinct variations in immune cell type expression. We then developed a model using a correlation nomogram to illustrate these conclusions. We further examined the biological characteristics of NPC2. Immunohistochemistry and qPCR results showed that NPC2 exhibited significant protein and mRNA expression in gastric cancer tissues. We used siRNA technology to suppress NPC2, resulting in reduced viability, proliferation, and invasion capacity of gastric cancer cells, as determined by CCK-8, colony formation, wound healing, and Transwell assays. Conclusion: A risk signature comprising five cholesterol metabolism-related genes was constructed using bioinformatics to estimate outcomes and therapeutic responses in gastric cancer patients. The results suggest that NPC2 may serve as a novel biomarker for gastric cancer patients.
Collapse
Affiliation(s)
- Wenxuan Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | | | | | | |
Collapse
|
6
|
Kast RE. Potential Benefits of Adding Alendronate, Celecoxib, Itraconazole, Ramelteon, and Simvastatin to Endometrial Cancer Treatment: The EC5 Regimen. Curr Issues Mol Biol 2025; 47:153. [PMID: 40136407 PMCID: PMC11941490 DOI: 10.3390/cimb47030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Metastatic endometrial cancer continues to be a common cause of death as of 2024, even after maximal use of all currently available standard treatments. To address this problem of metastatic cancer generally in 2025, the drug repurposing movement within oncology identifies medicines in common general medical use that have clinical or preclinical experimental data indicating that they interfere with or inhibit a specific growth driving element identified in a given cancer. The drug repurposing movement within oncology also uses data from large scale in vitro screens of thousands of drugs, looking for simple empirical growth inhibition in a given cancer type. This paper outlines the data showing that five drugs from general medical practice meet these evidence criteria for inhibition of endometrial cancer growth, the EC5 regimen. The EC5 regimen uses the osteoporosis treatment drug, alendronate; the analgesic drug, celecoxib; the antifungal drug, itraconazole; the sleep aid, ramelteon; and the cholesterol lowering drug, simvastatin. Side effects seen with these drugs are usually minimal and easily tolerated by patients.
Collapse
|
7
|
Ciucci G, Braga L, Zacchigna S. Discovery platforms for RNA therapeutics. Br J Pharmacol 2025; 182:281-295. [PMID: 38760893 DOI: 10.1111/bph.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/20/2024] Open
Abstract
RNA therapeutics are emerging as a unique opportunity to drug currently "undruggable" molecules and diseases. While their advantages over conventional, small molecule drugs, their therapeutic implications and the tools for their effective in vivo delivery have been extensively reviewed, little attention has been so far paid to the technological platforms exploited for the discovery of RNA therapeutics. Here, we provide an overview of the existing platforms and ex vivo assays for RNA discovery, their advantages and disadvantages, as well as their main fields of application, with specific focus on RNA therapies that have reached either phase 3 or market approval. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Giulio Ciucci
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luca Braga
- Functional Cell Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Jiang X, Wang M, Cui G, Wu Y, Wei Z, Yu S, Wang A, Zou W, Pan Y, Li X, Lu Y. Tetramethylpyrazine attenuates the cancer stem cell like-properties and doxorubicin resistance by targeting HMGCR in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156344. [PMID: 39729781 DOI: 10.1016/j.phymed.2024.156344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood. PURPOSE Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR. This investigation seeks to elucidate the role and mechanisms through which TMP counteracts MDR by attenuating CSC-like characteristics. METHODS Various assays, including flow cytometry, sphere formation, and Western blotting, were employed to evaluate TMP's effects on breast cancer stem cell (BCSC)-like phenotypes in vitro. In vivo, extreme limiting dilution assays and immunohistochemistry (IHC) were executed to assess the impacts of TMP on BCSC frequency and the levels of stemness markers. Mechanistically, RNA sequencing was performed to uncover the key biological processes involved in TMP's effects on BCSCs. Further experiments, encompassing micro scale thermophoresis (MST), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and amino acid mutation analyses, were utilized to identify the essential targets and corresponding binding sites of TMP. Finally, the effects of TMP on BCSC-like phenotypes were confirmed using cells with mutated amino acid residues, which allowed us to investigate the specificity of TMP's binding sites. To further evaluate the impact of TMP on drug resistance, doxorubicin-resistant MCF7 (MCF-7ADR) cells, along with corresponding cell lines harboring mutated amino acid residues, were employed. RESULTS TMP was found to inhibit BCSC-like properties both in vitro and in vivo, evidenced by a reduction in the CD44+/CD24- population, sphere formation capability, and expression of stemness markers. Mechanistic studies revealed that TMP targets 3‑hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. TMP binds to Asp-767 of HMGCR, thereby inhibiting its activity and reducing cholesterol synthesis. The influence of TMP on BCSC-like phenotypes was nullified by overexpression of wild-type HMGCR, while mutations in the binding site of HMGCR had no effect on TMP's inhibition of BCSC-like properties. Additionally, TMP mitigated MDR by targeting HMGCR. CONCLUSION These findings suggest that TMP alleviates MDR by reducing BCSC-like traits through targeting HMGCR and disruption of cholesterol biosynthesis in BC. This provides new insights into the mechanisms through which TMP alleviates MDR and offers new lead compound for exploring HMCGR antagonists.
Collapse
Affiliation(s)
- Xuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Manli Wang
- The first Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guoliang Cui
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Suyun Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yanhong Pan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Li J, Guo C, Liu Y, Han B, Lv Z, Jiang H, Li S, Zhang Z. Chronic arsenic exposure-provoked biotoxicity involved in liver-microbiota-gut axis disruption in chickens based on multi-omics technologies. J Adv Res 2025; 67:373-386. [PMID: 38237767 PMCID: PMC11725159 DOI: 10.1016/j.jare.2024.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/27/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION Arsenic has been ranked as the most hazardous substance by the U.S. Agency for Toxic Substances and Disease Registry. Environmental arsenic exposure-evoked health risks have become a vital public health concern worldwide owing to the widespread existence of arsenic. Multi-omics is a revolutionary technique to data analysis providing an integrated view of bioinformation for comprehensively and systematically understanding the elaborate mechanism of diseases. OBJECTIVES This study aimed at uncovering the potential contribution of liver-microbiota-gut axis in chronic inorganic arsenic exposure-triggered biotoxicity in chickens based on multi-omics technologies. METHODS Forty Hy-Line W-80 laying hens were chronically exposed to sodium arsenite with a dose-dependent manner (administered with drinking water containing 10, 20, or 30 mg/L arsenic, respectively) for 42 d, followed by transcriptomics, serum non-targeted metabolome, and 16S ribosomal RNA gene sequencing accordingly. RESULTS Arsenic intervention induced a serious of chicken liver dysfunction, especially severe liver fibrosis, simultaneously altered ileal microbiota populations, impaired chicken intestinal barrier, further drove enterogenous lipopolysaccharides translocation via portal vein circulation aggravating liver damage. Furtherly, the injured liver disturbed bile acids (BAs) homoeostasis through strongly up-regulating the BAs synthesis key rate-limiting enzyme CYP7A1, inducing excessive serum total BAs accumulation, accompanied by the massive synthesis of primary BA-chenodeoxycholic acid. Moreover, the concentrations of secondary BAs-ursodeoxycholic acid and lithocholic acid were markedly repressed, which might involve in the repressed dehydroxylation of Ruminococcaceae and Lachnospiraceae families. Abnormal BAs metabolism in turn promoted intestinal injury, ultimately perpetuating pernicious circle in chickens. Notably, obvious depletion in the abundance of four profitable microbiota, Christensenellaceae, Ruminococcaceae, Muribaculaceae, and Faecalibacterium, were correlated tightly with this hepato-intestinal circulation process in chickens exposed to arsenic. CONCLUSION Our study demonstrates that chronic inorganic arsenic exposure evokes liver-microbiota-gut axis disruption in chickens and establishes a scientific basis for evaluating health risk induced by environmental pollutant arsenic.
Collapse
Affiliation(s)
- Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
10
|
Zhang Y, Yang W, Kumagai Y, Loza M, Yang Y, Park SJ, Nakai K. In Silico Analysis Revealed Marco (SR-A6) and Abca1/2 as Potential Regulators of Lipid Metabolism in M1 Macrophage Hysteresis. Int J Mol Sci 2024; 26:111. [PMID: 39795974 PMCID: PMC11719740 DOI: 10.3390/ijms26010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Macrophages undergo polarization, resulting in distinct phenotypes. These transitions, including de-/repolarization, lead to hysteresis, where cells retain genetic and epigenetic signatures of previous states, influencing macrophage function. We previously identified a set of interferon-stimulated genes (ISGs) associated with high lipid levels in macrophages that exhibited hysteresis following M1 polarization, suggesting potential alterations in lipid metabolism. In this study, we applied weighted gene co-expression network analysis (WGCNA) and conducted comparative analyses on 162 RNA-seq samples from de-/repolarized and lipid-loaded macrophages, followed by functional exploration. Our results demonstrate that during M1 hysteresis, the sustained high expression of Marco (SR-A6) enhances lipid uptake, while the suppression of Abca1/2 reduces lipid efflux, collectively leading to elevated intracellular lipid levels. This accumulation may compensate for reduced cholesterol biosynthesis and provide energy for sustained inflammatory responses and interferon signaling. Our findings elucidate the relationship between M1 hysteresis and lipid metabolism, contributing to understanding the underlying mechanisms of macrophage hysteresis.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.Z.); (W.Y.); (Y.Y.)
| | - Wenbo Yang
- Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.Z.); (W.Y.); (Y.Y.)
| | - Yutaro Kumagai
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tokyo 305-0044, Japan;
| | - Martin Loza
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.L.); (S.-J.P.)
| | - Yitao Yang
- Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.Z.); (W.Y.); (Y.Y.)
| | - Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.L.); (S.-J.P.)
| | - Kenta Nakai
- Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.Z.); (W.Y.); (Y.Y.)
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.L.); (S.-J.P.)
| |
Collapse
|
11
|
Wang G, Peng T, Chen L, Xiong K, Ju L, Qian K, Zhang Y, Xiao Y, Wang X. Mevalonate pathway inhibition reduces bladder cancer metastasis by modulating RhoB protein stability and integrin β1 localization. Commun Biol 2024; 7:1476. [PMID: 39521858 PMCID: PMC11550803 DOI: 10.1038/s42003-024-07067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The progression and outcome of bladder cancer (BLCA) are critically affected by the propensity of tumor metastasis. Our previous study revealed that activation of the mevalonate (MVA) pathway promoted migration of BLCA cells; however, the exact mechanism is unclear. Here we show that elevated expression of MVA pathway enzymes in BLCA cells, correlating with poorer patient prognosis by analyzing single-cell and bulk-transcriptomic datasets. Inhibition of the MVA pathway, either through knockdown of farnesyl diphosphate synthase (FDPS) or using inhibitors such as zoledronic acid or simvastatin, led to a marked reduction in BLCA cell migration. Notably, this effect was reversed by administering geranylgeranyl pyrophosphate (GGPP), not farnesyl pyrophosphate (FPP) or cholesterol, indicating the specificity of geranylgeranylation for cell motility. Moreover, we found that RhoB, a Rho GTPase family member, was identified as a key effector of the impact of the MVA pathway on BLCA metastasis. The post-translational modification of RhoB by GGPP-mediated geranylgeranylation influenced its protein stability through the ubiquitin-proteasome pathway. Additionally, overexpression of RhoB was found to block the membrane translocation of integrin β1 in BLCA cells. In summary, our findings underscore the role of the MVA pathway in BLCA metastasis, providing insights into potential therapeutic targets of this malignancy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Tianchen Peng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kangping Xiong
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
12
|
Yoon SH, Lee S, Kim HS, Song J, Baek M, Ryu S, Lee HB, Moon HG, Noh DY, Jon S, Han W. NSDHL contributes to breast cancer stem-like cell maintenance and tumor-initiating capacity through TGF-β/Smad signaling pathway in MCF-7 tumor spheroid. BMC Cancer 2024; 24:1370. [PMID: 39516821 PMCID: PMC11549796 DOI: 10.1186/s12885-024-13143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND NAD(P)-dependent steroid dehydrogenase-like protein (NSDHL), which is involved in breast tumor growth and metastasis, has been implicated in the maintenance of cancer stem cells. However, its role in regulating breast cancer stem-like cells (BCSCs) remains unclear. We have previously reported the clinical significance of NSDHL in patients with estrogen receptor-positive (ER +) breast cancer. This study aimed to elucidate the molecular mechanisms by which NSDHL regulates the capacity of BCSCs in the ER + human breast cancer cell line, MCF-7. METHODS NSDHL knockdown suppressed tumor spheroid formation in MCF-7 human breast cancer cells grown on ultralow-attachment plates. RNA sequencing revealed that NSDHL knockdown induced widespread transcriptional changes in the MCF-7 spheroids. TGF-β signaling pathway was the most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (fold change ≥ 2, P ≤ 0.05) identified in NSDHL-knockdown MCF-7 spheroids compared with the control. In orthotopic tumor models injected with NSDHL-knockdown MCF-7 spheroids, tumor initiation and growth were strongly suppressed compared with those in the control. RESULTS BCSC populations with CD44+/CD24- and CD49f+/EpCAM + phenotypes and high ALDH activity were decreased in NSDHL-knockdown MCF-7 spheroids and xenograft tumors relative to controls, along with decreased secretion of TGF-β1 and 3, phosphorylation of Smad2/3, and expression of SOX2. In RNA-sequencing data from The (TCGA) database, a positive correlation between the expression of NSDHL and SOX2 was found in luminal-type breast cancer specimens (n = 998). Our findings revealed that NSDHL plays an important role in maintaining the BCSC population and tumor-initiating capacity of ER-positive MCF-7 spheroids, suggesting that NSDHL is an attractive therapeutic target for eliminating BCSCs, thus preventing breast cancer initiation and progression. CONCLUSIONS Our findings suggest that NSDHL regulates the BCSC/tumor-initiating cell population in MCF-7 spheroids and xenograft tumors.
Collapse
Affiliation(s)
- So-Hyun Yoon
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangeun Lee
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Hoe Suk Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Junhyuk Song
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Moonjou Baek
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Seungyeon Ryu
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangyong Jon
- Center for Precision Bio-Nanomedicine, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
13
|
Gu Y, Li C, Yan Y, Ming J, Li Y, Chao X, Wang T. Comprehensive Analysis and Verification of the Prognostic Significance of Cuproptosis-Related Genes in Colon Adenocarcinoma. Int J Mol Sci 2024; 25:11830. [PMID: 39519383 PMCID: PMC11546850 DOI: 10.3390/ijms252111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Colon adenocarcinoma (COAD) is a frequently occurring and lethal cancer. Cuproptosis is an emerging type of cell death, and the underlying pathways involved in this process in COAD remain poorly understood. Transcriptomic and clinical data for COAD patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We investigated alterations in DNA and chromatin of cuproptosis-related genes (CRGs) in COAD. In order to identify predictive differentially expressed genes (DEGs) and various molecular subtypes, we used consensus cluster analysis. Through univariate, multivariate, and Lasso Cox regression analyses, four CRGs were identified. A risk prognostic model for cuproptosis characteristics was constructed based on four CRGs. This study also examined the association between the risk score and the tumor microenvironment (TME), the immune landscape, and drug sensitivity. We distinguished two unique molecular subtypes using consensus clustering analysis. We discovered that the clinical characteristics, prognosis, and TME cell infiltration characteristics of patients with multilayer CRG subtypes were all connected. The internal and external evaluations of the predicted accuracy of the prognostic model built using data derived from a cuproptosis risk score were completed at the same time. A nomogram and a clinical pathological analysis make it more useful in the field of medicine. A significant rise in immunosuppressive cells was observed in the high cuproptosis risk score group, with a correlation identified between the cuproptosis risk score and immune cell infiltration. Despite generally poor prognoses, the patients with a high cuproptosis risk but low tumor mutation burden (TMB), cancer stem cell (CSC) index, or microsatellite instability (MSI) may still benefit from immunotherapy. Furthermore, the cuproptosis risk score positively correlated with immune checkpoint gene expression. Analyzing the potential sensitivity to medications could aid in the development of clinical chemotherapy regimens and decision-making. CRGs are the subject of our in-depth study, which exposed an array of regulatory mechanisms impacting TME. In addition, we performed additional data mining into clinical features, prognosis effectiveness, and possible treatment medications. COAD's molecular pathways will be better understood, leading to more precise treatment options.
Collapse
Affiliation(s)
- Yixiao Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Chengze Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Yinan Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Jingmei Ming
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 100029, China; (J.M.); (Y.L.)
| | - Yuanhua Li
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 100029, China; (J.M.); (Y.L.)
| | - Xiang Chao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
14
|
Taniguchi K, Sugihara K, Miura T, Hoshi D, Kohno S, Takahashi C, Hirata E, Kiyokawa E. Cholesterol synthesis is essential for the growth of liver metastasis-prone colorectal cancer cells. Cancer Sci 2024; 115:3817-3828. [PMID: 39307176 PMCID: PMC11531946 DOI: 10.1111/cas.16331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 11/05/2024] Open
Abstract
Metastasis to the liver is a leading cause of death in patients with colorectal cancer. To investigate the characteristics of cancer cells prone to metastasis, we utilized an isogenic model of BALB/c and colon tumor 26 (C26) cells carrying an active KRAS mutation. Liver metastatic (LM) 1 cells were isolated from mice following intrasplenic transplantation of C26 cells. Subsequent injections of LM1 cells generated LM2 cells, and after four cycles, LM4 cells were obtained. In vitro, using a perfusable capillary network system, we found comparable extravasation frequencies between C26 and LM4 cells. Both cell lines showed similar growth rates in vitro. However, C26 cells showed higher glucose consumption, whereas LM4 cells incorporated more fluorescent fatty acids (FAs). Biochemical analysis revealed that LM4 cells had higher cholesterol levels than C26 cells. A correlation was observed between fluorescent FAs and cholesterol levels detected using filipin III. LM4 cells utilized FAs as a source for cholesterol synthesis through acetyl-CoA metabolism. In cellular analysis, cholesterol accumulated in punctate regions, and upregulation of NLRP3 and STING proteins, but not mTOR, was observed in LM4 cells. Treatment with a cholesterol synthesis inhibitor (statin) induced LM4 cell death in vitro and suppressed LM4 cell growth in the livers of nude mice. These findings indicate that colorectal cancer cells prone to liver metastasis show cholesterol-dependent growth and that statin therapy could help treat liver metastasis in immunocompromised patients.
Collapse
Affiliation(s)
- Kumiko Taniguchi
- Department of Oncologic Pathology, School of MedicineKanazawa Medical UniversityKanazawaJapan
| | - Kei Sugihara
- Department of Anatomy and Cell BiologyKyushu University Graduate School of Medical SciencesFukuoka CityJapan
| | - Takashi Miura
- Department of Anatomy and Cell BiologyKyushu University Graduate School of Medical SciencesFukuoka CityJapan
| | - Daisuke Hoshi
- Department of Oncologic Pathology, School of MedicineKanazawa Medical UniversityKanazawaJapan
| | - Susumu Kohno
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Chiaki Takahashi
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Eishu Hirata
- Division of Tumor Cell Biology and BioimagingCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Etsuko Kiyokawa
- Department of Oncologic Pathology, School of MedicineKanazawa Medical UniversityKanazawaJapan
| |
Collapse
|
15
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
16
|
Liu J. Cholesterol metabolism: a positive target to revoke the function of exhausted CAR-NK cells in tumor microenvironment. Front Pharmacol 2024; 15:1440869. [PMID: 39351089 PMCID: PMC11439656 DOI: 10.3389/fphar.2024.1440869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Jingfeng Liu
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| |
Collapse
|
17
|
Tandon I, Woessner AE, Ferreira LA, Shamblin C, Vaca-Diez G, Walls A, Kuczwara P, Applequist A, Nascimento DF, Tandon S, Kim JW, Rausch M, Timek T, Padala M, Kinter MT, Province D, Byrum SD, Quinn KP, Balachandran K. A three-dimensional valve-on-chip microphysiological system implicates cell cycle progression, cholesterol metabolism and protein homeostasis in early calcific aortic valve disease progression. Acta Biomater 2024; 186:167-184. [PMID: 39084496 DOI: 10.1016/j.actbio.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is one of the most common forms of valvulopathy, with a 50 % elevated risk of a fatal cardiovascular event, and greater than 15,000 annual deaths in North America alone. The treatment standard is valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. The development of early diagnostic and therapeutic strategies requires the fabrication of effective in vitro valve mimetic models to elucidate early CAVD mechanisms. METHODS In this study, we developed a multilayered physiologically relevant 3D valve-on-chip (VOC) system that incorporated aortic valve mimetic extracellular matrix (ECM), porcine aortic valve interstitial cell (VIC) and endothelial cell (VEC) co-culture and dynamic mechanical stimuli. Collagen and glycosaminoglycan (GAG) based hydrogels were assembled in a bilayer to mimic healthy or diseased compositions of the native fibrosa and spongiosa. Multiphoton imaging and proteomic analysis of healthy and diseased VOCs were performed. RESULTS Collagen-based bilayered hydrogel maintained the phenotype of the VICs. Proteins related to cellular processes like cell cycle progression, cholesterol biosynthesis, and protein homeostasis were found to be significantly altered and correlated with changes in cell metabolism in diseased VOCs. This study suggested that diseased VOCs may represent an early, adaptive disease initiation stage, which was corroborated by human aortic valve proteomic assessment. CONCLUSIONS In this study, we developed a collagen-based bilayered hydrogel to mimic healthy or diseased compositions of the native fibrosa and spongiosa layers. When the gels were assembled in a VOC with VECs and VICs, the diseased VOCs revealed key insights about the CAVD initiation process. STATEMENT OF SIGNIFICANCE Calcific aortic valve disease (CAVD) elevates the risk of death due to cardiovascular pathophysiology by 50 %, however, prevention and mitigation strategies are lacking, clinically. Developing tools to assess early disease would significantly aid in the prevention of disease and in the development of therapeutics. Previously, studies have utilized collagen and glycosaminoglycan-based hydrogels for valve cell co-cultures, valve cell co-cultures in dynamic environments, and inorganic polymer-based multilayered hydrogels; however, these approaches have not been combined to make a physiologically relevant model for CAVD studies. We fabricated a bi-layered hydrogel that closely mimics the aortic valve and used it for valve cell co-culture in a dynamic platform to gain mechanistic insights into the CAVD initiation process using proteomic and multiphoton imaging assessment.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Alan E Woessner
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, AR, USA
| | - Laίs A Ferreira
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Gustavo Vaca-Diez
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Amanda Walls
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Patrick Kuczwara
- Department of Biological and Agricultural Engineering, Materials Science & Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Alexis Applequist
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Denise F Nascimento
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Swastika Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, Materials Science & Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Manuel Rausch
- Departments of Aerospace Engineering and Engineering Mechanics and Biomedical Engineering, Institute for Computational Engineering and Science, University of Texas at Austin, Austin, TX, USA
| | - Tomasz Timek
- Meijer Heart and Vascular Institute at Spectrum Health, Grand Rapids, MI, USA
| | - Muralidhar Padala
- Division of Cardiothoracic Surgery, Joseph P. Whitehead Department of Surgery, Emory University, Atlanta, GA, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dennis Province
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA; Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, AR, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
18
|
Chen D, Ji F, Zhou Q, Cheung H, Pan Y, Lau HCH, Liang C, Yang Z, Huang P, Wei Q, Cheung AHK, Kang W, Chen H, Yu J, Wong CC. RUVBL1/2 Blockade Targets YTHDF1 Activity to Suppress m6A-Dependent Oncogenic Translation and Colorectal Tumorigenesis. Cancer Res 2024; 84:2856-2872. [PMID: 38900944 PMCID: PMC11372367 DOI: 10.1158/0008-5472.can-23-2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/28/2023] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
The N6-methyladenosine (m6A) RNA-binding protein YTHDF1 is frequently overexpressed in colorectal cancer and drives chemotherapeutic resistance. To systematically identify druggable targets in colorectal cancer with high expression of YTHDF1, this study used a CRISPR/Cas9 screening strategy that revealed RUVBL1 and RUVBL2 as putative targets. RUVBL1/2 were overexpressed in primary colorectal cancer samples and represented independent predictors of poor patient prognosis. Functionally, loss of RUVBL1/2 preferentially impaired the growth of YTHDF1-high colorectal cancer cells, patient-derived primary colorectal cancer organoids, and subcutaneous xenografts. Mechanistically, YTHFD1 and RUVBL1/2 formed a positive feedforward circuit to accelerate oncogenic translation. YTHDF1 bound to m6A-modified RUVBL1/2 mRNA to promote translation initiation and protein expression. Coimmunoprecipitation and mass spectrometry identified that RUVBL1/2 reciprocally interacted with YTHDF1 at 40S translation initiation complexes. Consequently, RUVBL1/2 depletion stalled YTHDF1-driven oncogenic translation and nascent protein biosynthesis, leading to proliferative arrest and apoptosis. Ribosome sequencing revealed that RUVBL1/2 loss impaired the activation of MAPK, RAS, and PI3K-AKT signaling induced by YTHDF1. Finally, the blockade of RUVBL1/2 by the pharmacological inhibitor CB6644 or vesicle-like nanoparticle-encapsulated siRNAs preferentially arrested the growth of YTHDF1-expressing colorectal cancer in vitro and in vivo. Our findings show that RUVBL1/2 are potential prognostic markers and druggable targets that regulate protein translation in YTHDF1-high colorectal cancer. Significance: RUVBL1/2 inhibition is a therapeutic strategy to abrogate YTHDF1-driven oncogenic translation and overcome m6A dysregulation in colorectal cancer.
Collapse
Affiliation(s)
- Danyu Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Fenfen Ji
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Qiming Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Henley Cheung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yasi Pan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Harry C.-H. Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Cong Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zhenjie Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Pingmei Huang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Qinyao Wei
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Alvin H.-K. Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Zhang Z, Yang J, Liu R, Ma J, Wang K, Wang X, Tang N. Inhibiting HMGCR represses stemness and metastasis of hepatocellular carcinoma via Hedgehog signaling. Genes Dis 2024; 11:101285. [PMID: 39022130 PMCID: PMC11252768 DOI: 10.1016/j.gendis.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 07/20/2024] Open
Abstract
Cancer stem cells (CSCs) play a crucial role in tumor initiation, recurrence, metastasis, and drug resistance. However, the current understanding of CSCs in hepatocellular carcinoma (HCC) remains incomplete. Through a comprehensive analysis of the database, it has been observed that 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), a critical enzyme involved in cholesterol synthesis, is up-regulated in HCC tissues and liver CSCs. Moreover, high expression of HMGCR is associated with a poor prognosis in patients with HCC. Functionally, HMGCR promotes the stemness and metastasis of HCC both in vitro and in vivo. By screening various signaling pathway inhibitors, we have determined that HMGCR regulates stemness and metastasis by activating the Hedgehog signaling in HCC. Mechanistically, HMGCR positively correlates with the expression of the Smoothened receptor and facilitates the nuclear translocation of the transcriptional activator GLI family zinc finger 1. Inhibition of the Hedgehog pathway can reverse the stimulatory effects of HMGCR on stemness and metastasis in HCC. Notably, simvastatin, an FDA-approved cholesterol-lowering drug, has been shown to inhibit stemness and metastasis of HCC by targeting HMGCR. Taken together, our findings suggest that HMGCR promotes the regeneration and metastasis of HCC through the activation of Hedgehog signaling, and simvastatin holds the potential for clinical suppression of HCC metastasis.
Collapse
Affiliation(s)
- Zhirong Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jiayao Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Rui Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jing Ma
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiaojun Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Su P, Liu Y, Chen T, Xue Y, Zeng Y, Zhu G, Chen S, Teng M, Ci X, Guo M, He MY, Hao J, Chu V, Xu W, Wang S, Mehdipour P, Xu X, Marhon SA, Soares F, Pham NA, Wu BX, Her PH, Feng S, Alshamlan N, Khalil M, Krishnan R, Yu F, Chen C, Burrows F, Hakem R, Lupien M, Harding S, Lok BH, O'Brien C, Berlin A, De Carvalho DD, Brooks DG, Schramek D, Tsao MS, He HH. In vivo CRISPR screens identify a dual function of MEN1 in regulating tumor-microenvironment interactions. Nat Genet 2024; 56:1890-1902. [PMID: 39227744 PMCID: PMC11387198 DOI: 10.1038/s41588-024-01874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Functional genomic screens in two-dimensional cell culture models are limited in identifying therapeutic targets that influence the tumor microenvironment. By comparing targeted CRISPR-Cas9 screens in a two-dimensional culture with xenografts derived from the same cell line, we identified MEN1 as the top hit that confers differential dropout effects in vitro and in vivo. MEN1 knockout in multiple solid cancer types does not impact cell proliferation in vitro but significantly promotes or inhibits tumor growth in immunodeficient or immunocompetent mice, respectively. Mechanistically, MEN1 knockout redistributes MLL1 chromatin occupancy, increasing H3K4me3 at repetitive genomic regions, activating double-stranded RNA expression and increasing neutrophil and CD8+ T cell infiltration in immunodeficient and immunocompetent mice, respectively. Pharmacological inhibition of the menin-MLL interaction reduces tumor growth in a CD8+ T cell-dependent manner. These findings reveal tumor microenvironment-dependent oncogenic and tumor-suppressive functions of MEN1 and provide a rationale for targeting MEN1 in solid cancers.
Collapse
Affiliation(s)
- Peiran Su
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yin Liu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyi Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yibo Xue
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Guanghui Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Mona Teng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xinpei Ci
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jun Hao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vivian Chu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wenxi Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shiyan Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Parinaz Mehdipour
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bell Xi Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter Hyunwuk Her
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shengrui Feng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Najd Alshamlan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Maryam Khalil
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Razqallah Hakem
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shane Harding
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Catherine O'Brien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Xiao MY, Pei WJ, Li S, Li FF, Xie P, Luo HT, Hyun Yoo H, Piao XL. Gypenoside L inhibits hepatocellular carcinoma by targeting the SREBP2-HMGCS1 axis and enhancing immune response. Bioorg Chem 2024; 150:107539. [PMID: 38861912 DOI: 10.1016/j.bioorg.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor that occurs in the liver, with a high degree of malignancy and relatively poor prognosis. Gypenoside L has inhibitory effects on liver cancer cells. However, its mechanism of action is still unclear. This study aims to investigate the inhibitory effects of gypenoside L on HCC in vitro and in vivo, and explore its potential mechanisms. The results showed that gypenoside L reduced the cholesterol and triglyceride content in HepG2 and Huh-7 cells, inhibited cell proliferation, invasion and metastasis, arrested cell cycle at G0/G1 phase, promoted cell apoptosis. Mechanistically, it targeted the transcription factor SREPB2 to inhibit the expression of HMGCS1 protein and inhibited the downstream proteins HMGCR and MVK, thereby regulating the mevalonate (MVA) pathway. Overexpression HMGCS1 led to significant alterations in the cholesterol metabolism pathway of HCC, which mediated HCC cell proliferation and conferred resistance to the therapeutic effect of gypenoside L. In vivo, gypenoside L effectively suppressed HCC growth in tumor-bearing mice by reducing cholesterol production, exhibiting favorable safety profiles and minimal toxic side effects. Gypenoside L modulated cholesterol homeostasis, enhanced expression of inflammatory factors by regulating MHC I pathway-related proteins to augment anticancer immune responses. Clinical samples from HCC patients also exhibited high expression levels of MVA pathway-related genes in tumor tissues. These findings highlight gypenoside L as a promising agent for targeting cholesterol metabolism in HCC while emphasizing the effectiveness of regulating the SREBP2-HMGCS1 axis as a therapeutic strategy.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Gynostemma/chemistry
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Sterol Regulatory Element Binding Protein 2/metabolism
- Sterol Regulatory Element Binding Protein 2/antagonists & inhibitors
- Cell Proliferation/drug effects
- Animals
- Mice
- Dose-Response Relationship, Drug
- Molecular Structure
- Drug Screening Assays, Antitumor
- Apoptosis/drug effects
- Structure-Activity Relationship
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Mice, Inbred BALB C
- Mice, Nude
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Plant Extracts
Collapse
Affiliation(s)
- Man-Yu Xiao
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Si Li
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Peng Xie
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Hao-Tian Luo
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Xiang-Lan Piao
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
22
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Mao X, Wang L, Chen Z, Huang H, Chen J, Su J, Li Z, Shen G, Ren Y, Li Z, Wang W, Ou J, Guo W, Hu Y. SCD1 promotes the stemness of gastric cancer stem cells by inhibiting ferroptosis through the SQLE/cholesterol/mTOR signalling pathway. Int J Biol Macromol 2024; 275:133698. [PMID: 38972654 DOI: 10.1016/j.ijbiomac.2024.133698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Cancer stem cells (CSCs) play a substantial role in cancer onset and recurrence. Anomalous iron and lipid metabolism have been documented in CSCs, suggesting that ferroptosis, a recently discovered form of regulated cell death characterised by lipid peroxidation, could potentially exert a significant influence on CSCs. However, the precise role of ferroptosis in gastric cancer stem cells (GCSCs) remains unknown. To address this gap, we screened ferroptosis-related genes in GCSCs using The Cancer Genome Atlas and corroborated our findings through quantitative polymerase chain reaction and western blotting. These results indicate that stearoyl-CoA desaturase (SCD1) is a key player in the regulation of ferroptosis in GCSCs. This study provides evidence that SCD1 positively regulates the transcription of squalene epoxidase (SQLE) by eliminating transcriptional inhibition of P53. This mechanism increases the cholesterol content and the elevated cholesterol regulated by SCD1 inhibits ferroptosis via the mTOR signalling pathway. Furthermore, our in vivo studies showed that SCD1 knockdown or regulation of cholesterol intake affects the stemness of GCSCs and their sensitivity to ferroptosis inducers. Thus, targeting the SCD1/squalene epoxidase/cholesterol signalling axis in conjunction with ferroptosis inducers may represent a promising therapeutic approach for the treatment of gastric cancer based on GCSCs.
Collapse
Affiliation(s)
- Xinyuan Mao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jialin Chen
- Hepatobiliary and Pancreatic Center, The First Affiliated Hospital, Sun Yat-sen University, 510515, PR China
| | - Jin Su
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Department of General Surgery, Zhuzhou Hospital affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412000, PR China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Weisheng Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jinzhou Ou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
24
|
van der Graaff D, Seghers S, Vanclooster P, Deben C, Vandamme T, Prenen H. Advancements in Research and Treatment Applications of Patient-Derived Tumor Organoids in Colorectal Cancer. Cancers (Basel) 2024; 16:2671. [PMID: 39123399 PMCID: PMC11311786 DOI: 10.3390/cancers16152671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, being the second leading cause of cancer-related mortality. Despite significant therapeutic advancements, resistance to systemic antineoplastic agents remains an important obstacle, highlighting the need for innovative screening tools to tailor patient-specific treatment. This review explores the application of patient-derived tumor organoids (PDTOs), three-dimensional, self-organizing models derived from patient tumor samples, as screening tools for drug resistance in CRC. PDTOs offer unique advantages over traditional models by recapitulating the tumor architecture, cellular heterogeneity, and genomic landscape and are a valuable ex vivo predictive drug screening tool. This review provides an overview of the current literature surrounding the use of PDTOs as an instrument for predicting therapy responses in CRC. We also explore more complex models, such as co-cultures with important stromal cells, such as cancer-associated fibroblasts, and organ-on-a-chip models. Furthermore, we discuss the use of PDTOs for drug repurposing, offering a new approach to identify the existing drugs effective against drug-resistant CRC. Additionally, we explore how PDTOs serve as models to gain insights into drug resistance mechanisms, using newer techniques, such as single-cell RNA sequencing and CRISPR-Cas9 genome editing. Through this review, we aim to highlight the potential of PDTOs in advancing our understanding of predicting therapy responses, drug resistance, and biomarker identification in CRC management.
Collapse
Affiliation(s)
| | - Sofie Seghers
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Timon Vandamme
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Hans Prenen
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
25
|
Cristian PM, Aarón VJ, Armando EHD, Estrella MLY, Daniel NR, David GV, Edgar M, Paul SCJ, Osbaldo RA. Diffusion on PCA-UMAP Manifold: The Impact of Data Structure Preservation to Denoise High-Dimensional Single-Cell RNA Sequencing Data. BIOLOGY 2024; 13:512. [PMID: 39056705 PMCID: PMC11274112 DOI: 10.3390/biology13070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Single-cell transcriptomics (scRNA-seq) is revolutionizing biological research, yet it faces challenges such as inefficient transcript capture and noise. To address these challenges, methods like neighbor averaging or graph diffusion are used. These methods often rely on k-nearest neighbor graphs from low-dimensional manifolds. However, scRNA-seq data suffer from the 'curse of dimensionality', leading to the over-smoothing of data when using imputation methods. To overcome this, sc-PHENIX employs a PCA-UMAP diffusion method, which enhances the preservation of data structures and allows for a refined use of PCA dimensions and diffusion parameters (e.g., k-nearest neighbors, exponentiation of the Markov matrix) to minimize noise introduction. This approach enables a more accurate construction of the exponentiated Markov matrix (cell neighborhood graph), surpassing methods like MAGIC. sc-PHENIX significantly mitigates over-smoothing, as validated through various scRNA-seq datasets, demonstrating improved cell phenotype representation. Applied to a multicellular tumor spheroid dataset, sc-PHENIX identified known extreme phenotype states, showcasing its effectiveness. sc-PHENIX is open-source and available for use and modification.
Collapse
Affiliation(s)
- Padron-Manrique Cristian
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (P.-M.C.); (V.-J.A.); (E.-H.D.A.); (N.-R.D.); (G.-V.D.); (M.E.)
- Programa de Doctorado en Ciencias Biomédicas, Circuito Posgrados, Ciudad Universitaria, Alcaldía Coyoacán Unidad de Posgrado Edificio B primer Piso, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Vázquez-Jiménez Aarón
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (P.-M.C.); (V.-J.A.); (E.-H.D.A.); (N.-R.D.); (G.-V.D.); (M.E.)
| | - Esquivel-Hernandez Diego Armando
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (P.-M.C.); (V.-J.A.); (E.-H.D.A.); (N.-R.D.); (G.-V.D.); (M.E.)
| | - Martinez-Lopez Yoscelina Estrella
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (P.-M.C.); (V.-J.A.); (E.-H.D.A.); (N.-R.D.); (G.-V.D.); (M.E.)
- Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Unidad de Posgrado, Edificio A, 1er Piso, Circuito Posgrados, Ciudad Universitaria, Alcaldía Coyoacán, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Neri-Rosario Daniel
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (P.-M.C.); (V.-J.A.); (E.-H.D.A.); (N.-R.D.); (G.-V.D.); (M.E.)
- Programa de Maestría en Ciencias Bioquímicas, Unidad de Posgrado, Edificio B, 1er Piso, Circuito de los Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), Alcaldía Coyoacán, Ciudad de México 04510, Mexico
| | - Giron-Villalobos David
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (P.-M.C.); (V.-J.A.); (E.-H.D.A.); (N.-R.D.); (G.-V.D.); (M.E.)
- Programa de Maestría en Ciencias Bioquímicas, Unidad de Posgrado, Edificio B, 1er Piso, Circuito de los Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), Alcaldía Coyoacán, Ciudad de México 04510, Mexico
| | - Mixcoha Edgar
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (P.-M.C.); (V.-J.A.); (E.-H.D.A.); (N.-R.D.); (G.-V.D.); (M.E.)
- CONAHCYT-INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Sánchez-Castañeda Jean Paul
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (P.-M.C.); (V.-J.A.); (E.-H.D.A.); (N.-R.D.); (G.-V.D.); (M.E.)
- Programa de Maestría en Ciencias Bioquímicas, Unidad de Posgrado, Edificio B, 1er Piso, Circuito de los Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), Alcaldía Coyoacán, Ciudad de México 04510, Mexico
| | - Resendis-Antonio Osbaldo
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (P.-M.C.); (V.-J.A.); (E.-H.D.A.); (N.-R.D.); (G.-V.D.); (M.E.)
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga, 14, Belisario Dominguez Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Centro de Ciencias de la Complejidad, Unversidad Nacional Autónoma de México (UNAM), Circuito Centro Cultural, Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
26
|
Miller AL, Fehling SC, Vance RB, Chen D, Brown EJ, Hossain MI, Heard EO, Andrabi SA, Wang H, Yang ES, Buchsbaum DJ, van Waardenburg RCAM, Bellis SL, Yoon KJ. BET inhibition decreases HMGCS2 and sensitizes resistant pancreatic tumors to gemcitabine. Cancer Lett 2024; 592:216919. [PMID: 38704133 PMCID: PMC11309032 DOI: 10.1016/j.canlet.2024.216919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Efforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models. Mechanistic data demonstrate the novel findings that HMGCS2 contributes to gemR and confers metastatic properties in PDAC models, and that HMGCS2 is BRD4 dependent. Further, BET inhibitor JQ1 decreases levels of HMGCS2, sensitizes PDAC cells to gemcitabine, and a combination of gemcitabine and JQ1 induced regressions of gemR tumors in vivo. Our data suggest that decreasing HMGCS2 may reverse gemR, and that HMGCS2 represents a useful therapeutic target for treating gemcitabine resistant PDAC.
Collapse
Affiliation(s)
- Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel C Fehling
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca B Vance
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Department of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric Josh Brown
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Iqbal Hossain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric O Heard
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Lu J, Feng Y, Guo K, Sun L, Ruan S, Zhang K. Association between human blood metabolome and the risk of gastrointestinal tumors. PLoS One 2024; 19:e0304574. [PMID: 38814898 PMCID: PMC11139295 DOI: 10.1371/journal.pone.0304574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The prevalence of gastrointestinal tumors continues to be significant. To uncover promising therapeutic targets for these tumors, we rigorously executed a Mendelian randomization (MR) study to comprehensively screen the blood metabolomes for potential causal mediators of five frequently encountered gastrointestinal tumors (Liver Cancer, Colorectal Cancer, Esophageal Cancer, Gastric Cancer and Pancreatic Cancer). METHODS We selected a comprehensive set of 137 distinct blood metabolites derived from three large-scale genome-wide association studies (GWASs) involving a total of 147827 participants of European ancestry. The gastrointestinal tumors-related data were obtained from a GWAS conducted within the Finnish study. Through meticulous MR analyses, we thoroughly assessed the associations between blood metabolites and gastrointestinal tumors. Additionally, a phenome-wide MR (Phe-MR) analysis was employed to investigate the potential on-target side effects of metabolite interventions. RESULTS We have identified 1 blood metabolites, namely isovalerylcarnitine (ORlog10: 1.01; 95%CI, 1.01-1.02; P = 1.81×10-7), as the potential causal mediators for liver cancer. However, no potential pathogenic mediators were detected for the other four tumors. CONCLUSIONS The current systematic MR analysis elucidated the potential role of isovalerylcarnitine as a causal mediator in the development of liver cancer. Leveraging the power of Phe-MR study facilitated the identification of potential adverse effects associated with drug targets for liver cancer prevention. Considering the weighing of pros and cons, isovalerylcarnitine emerges as a promising candidate for targeted drug interventions in the realm of liver cancer prevention.
Collapse
Affiliation(s)
- Jiamin Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Feng
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Kaibo Guo
- Department of Oncology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Kai Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Anji Traditional Chinese Medical Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
28
|
Zhang J, Liu B, Xu C, Ji C, Yin A, Liu Y, Yao Y, Li B, Chen T, Shen L, Wu Y. Cholesterol homeostasis confers glioma malignancy triggered by hnRNPA2B1-dependent regulation of SREBP2 and LDLR. Neuro Oncol 2024; 26:684-700. [PMID: 38070488 PMCID: PMC10995519 DOI: 10.1093/neuonc/noad233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Dysregulation of cholesterol metabolism is a significant characteristic of glioma, yet the underlying mechanisms are largely unknown. N6-methyladenosine (m6A) modification has been implicated in promoting tumor development and progression. The aim of this study was to determine the key m6A regulatory proteins involved in the progression of glioma, which is potentially associated with the reprogramming of cholesterol homeostasis. METHODS Bioinformatics analysis was performed to determine the association of m6A modification with glioma malignancy from The Cancer Genome Atlas and Genotype-Tissue Expression datasets. Glioma stem cell (GSC) self-renewal was determined by tumor sphere formation and bioluminescence image assay. RNA sequencing and lipidomic analysis were performed for cholesterol homeostasis analysis. RNA immunoprecipitation and luciferase reporter assay were performed to determine hnRNPA2B1-dependent regulation of sterol regulatory element-binding protein 2 (SREBP2) and low-density lipoprotein receptor (LDLR) mRNA. The methylation status of hnRNPA2B1 promoter was determined by bioinformatic analysis and methylation-specific PCR assay. RESULTS Among the m6A-regulatory proteins, hnRNPA2B1 was demonstrated the most important independent prognostic risk factor for glioma. hnRNPA2B1 ablation exhibited a significant tumor-suppressive effect on glioma cell proliferation, GSC self-renewal and tumorigenesis. hnRNPA2B1 triggers de novo cholesterol synthesis by inducing HMGCR through the stabilization of SREBP2 mRNA. m6A modification of SREBP2 or LDLR mRNA is required for hnRNPA2B1-mediated mRNA stability. The hypomethylation of cg21815882 site on hnRNPA2B1 promoter confers elevated expression of hnRNPA2B1 in glioma tissues. The combination of targeting hnRNPA2B1 and cholesterol metabolism exhibited remarkable antitumor effects, suggesting valuable clinical implications for glioma treatment. CONCLUSIONS hnRNPA2B1 facilitates cholesterol uptake and de novo synthesis, thereby contributing to glioma stemness and malignancy.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bei Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Aerospace Hygiene, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Changwei Xu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chenchen Ji
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Anan Yin
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yifeng Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yan Yao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Aerospace Hygiene, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Tangdong Chen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
29
|
Ran X, Wu BX, Shi M, Song L, Nixon K, Philip V, He HH, Tsao MS, Lok BH. CRISPR Screen of Druggable Targets in Small Cell Lung Cancer Identified ATM Inhibitor (AZD1390) as a Radiosensitizer. Int J Radiat Oncol Biol Phys 2024; 118:1308-1314. [PMID: 38104868 DOI: 10.1016/j.ijrobp.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Small cell lung cancer (SCLC) is an aggressive and lethal form of lung cancer and the overall 5-year survival (OS) for patients is a dismal 7%. Radiation therapy (RT) provides some benefit for selected patients with SCLC but could be improved with radiosensitizing agents. In this study, we identified novel radiosensitizers for SCLC by a CRISPR-Cas9 screen and evaluated the efficacy of ATM inhibitor AZD1390 as a radiosensitizer of SCLC. METHODS AND MATERIALS We transduced the SCLC cell line SBC5 with a custom CRISPR sgRNA library focused on druggable gene targets and treated cells with RT. Cells collected at multiple timepoints were subjected to next-generation sequencing. We determined radiosensitization both in vitro with cell lines assessed by short-term viability and clonogenic assays, and in vivo mouse models by tumor growth delay. Pharmacodynamic effects of AZD1390 were quantified by ATM-Ser1981 phosphorylation, and RT-induced DNA damage by comet assay. RESULTS Using a CRISPR dropout screen, we identified multiple radiosensitizing genes for SCLC at various timepoints with ATM as a top determinant gene for radiosensitivity. Validation by ATM knockout (KO) demonstrated increased radiosensitivity by short-term viability assay (dose modification factor [DMF]50 = 3.25-3.73 in SBC5 ATM-KO) and clonogenic assays (DMF37 1.25-1.65 in SBC5 ATM-KO). ATM inhibition by AZD1390 effectively abrogated ATM Ser1981 phosphorylation in SCLC cell lines and increased RT-induced DNA damage. AZD1390 synergistically increased the radiosensitivity of SCLC cell lines (cell viability assay: SBC5 DMF37 = 2.19, SHP77 DMF37 = 1.56, H446 DMF37 = 3.27, KP1 DMF37 = 1.65 at 100nM; clonogenic assay: SBC5 DMF37 = 4.23, H1048 DMF37 = 1.91), and in vivo murine syngeneic, KP1, and patient-derived xenograft (PDX) models, JHU-LX108 and JHU-LX33. CONCLUSIONS In this study, we demonstrated that genetically and pharmacologically (AZD1390) inhibiting ATM markedly enhanced RT against SCLC, providing a novel pharmacologically tractable radiosensitizing strategy for patients with SCLC.
Collapse
Affiliation(s)
- Xiaozhuo Ran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bell Xi Wu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mary Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lifang Song
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kevin Nixon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vivek Philip
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Guo X, Li Y, Chen X, Sun B, Guo X. Urocortin-1 promotes colorectal cancer cell migration and proliferation and inhibits apoptosis via inhibition of the p53 signaling pathway. J Cancer Res Clin Oncol 2024; 150:163. [PMID: 38546882 PMCID: PMC10978644 DOI: 10.1007/s00432-024-05693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
PURPOSE To investigate the effect of urocortin-1 (UCN-1) on growth, migration, and apoptosis in colorectal cancer (CRC) in vivo and vitro and the mechanism by which UCN-1 modulates CRC cells in vitro. METHODS The correlation between UCN-1 and CRC was evaluated using The Cancer Genome Atlas (TCGA) database and a tissue microarray. The expression of UCN-1 in CRC cells was assessed using quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. In vitro, the influence of UCN-1 on the proliferation, apoptosis, and migration of HT-29, HCT-116, and RKO cells was explored using the celigo cell counting assay or cell counting kit-8 (CCK8), flow cytometry, and wound healing or Transwell assays, respectively. In vivo, the effect of UCN-1 on CRC growth and progression was evaluated in nude mice. The downstream pathway underlying UCN-1-mediated regulation of CRC was determined using the phospho-kinase profiler array in RKO cells. Lentiviruses were used to knockdown or upregulate UCN-1 expression in cells. RESULTS Both the TCGA and tissue microarray results showed that UCN-1 was strongly expressed in the tissues of patients with CRC. Furthermore, the tissue microarray results showed that the expression of UCN-1 was higher in male than in female patients, and high expression of UCN-1 was associated with higher risk of lymphatic metastasis and later pathological stage. UCN-1 knockdown caused a reduction in CRC cell proliferation, migration, and colony formation, as well as an increase in apoptosis. In xenograft experiments, tumors generated from RKO cells with UCN-1 knockdown exhibited reduced volumes and weights. A reduction in the expression of Ki-67 in xenograft tumors indicated that UCN-1 knockdown curbed tumor growth. The human phospho-kinase array showed that the p53 signaling pathway participated in UCN-1-mediated CRC development. The suppression in migration and proliferation caused by UCN-1 knockdown was reversed by inhibitors of p53 signal pathway, while the increase in cell apoptosis was suppressed. On the other hand, overexpression of UCN-1 promoted proliferation and migration and inhibited apoptosis in CRC cells. Overexpression of p53 reversed the effect of UCN-1 overexpression on CRC development. CONCLUSION UCN-1 promotes migration and proliferation and inhibits apoptosis via inhibition of the p53 signaling pathway.
Collapse
Affiliation(s)
- Xiaolan Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolan Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
31
|
Marks MP, Giménez CA, Isaja L, Vera MB, Borzone FR, Pereyra-Bonnet F, Romorini L, Videla-Richardson GA, Chasseing NA, Calvo JC, Vellón L. Role of hydroxymethylglutharyl-coenzyme A reductase in the induction of stem-like states in breast cancer. J Cancer Res Clin Oncol 2024; 150:106. [PMID: 38418798 PMCID: PMC10902018 DOI: 10.1007/s00432-024-05607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE De novo synthesis of cholesterol and its rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMGCR), is deregulated in tumors and critical for tumor cell survival and proliferation. However, the role of HMGCR in the induction and maintenance of stem-like states in tumors remains unclear. METHODS A compiled public database from breast cancer (BC) patients was analyzed with the web application SurvExpress. Cell Miner was used for the analysis of HMGCR expression and statin sensitivity of the NCI-60 cell lines panel. A CRISPRon system was used to induce HMGCR overexpression in the luminal BC cell line MCF-7 and a lentiviral pLM-OSKM system for the reprogramming of MCF-7 cells. Comparisons were performed by two-tailed unpaired t-test for two groups and one- or two-way ANOVA. RESULTS Data from BC patients showed that high expression of several members of the cholesterol synthesis pathway were associated with lower recurrence-free survival, particularly in hormone-receptor-positive BC. In silico and in vitro analysis showed that HMGCR is expressed in several BC cancer cell lines, which exhibit a subtype-dependent response to statins in silico and in vitro. A stem-like phenotype was demonstrated upon HMGCR expression in MCF-7 cells, characterized by expression of the pluripotency markers NANOG, SOX2, increased CD44 +/CD24low/ -, CD133 + populations, and increased mammosphere formation ability. Pluripotent and cancer stem cell lines showed high expression of HMGCR, whereas cell reprogramming of MCF-7 cells did not increase HMGCR expression. CONCLUSION HMGCR induces a stem-like phenotype in BC cells of epithelial nature, thus affecting tumor initiation, progression and statin sensitivity.
Collapse
Affiliation(s)
- María Paula Marks
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Alejandra Giménez
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Potosí 4265, C1199ACL, Buenos Aires, Argentina
- CASPR Biotech, Buenos Aires, Argentina
- CASPR Biotech, San Francisco, USA
| | - Luciana Isaja
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Mariana Belén Vera
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Pereyra-Bonnet
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Potosí 4265, C1199ACL, Buenos Aires, Argentina
- CASPR Biotech, Buenos Aires, Argentina
- CASPR Biotech, San Francisco, USA
| | - Leonardo Romorini
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Guillermo Agustín Videla-Richardson
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Inmunohematología, (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Carlos Calvo
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciano Vellón
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
32
|
Hosseini A, Lindholm HT, Chen R, Mehdipour P, Marhon SA, Ishak CA, Moore PC, Classon M, Di Gioacchino A, Greenbaum B, De Carvalho DD. Retroelement decay by the exonuclease XRN1 is a viral mimicry dependency in cancer. Cell Rep 2024; 43:113684. [PMID: 38261511 PMCID: PMC11724374 DOI: 10.1016/j.celrep.2024.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
Viral mimicry describes the immune response induced by endogenous stimuli such as double-stranded RNA (dsRNA) from endogenous retroelements. Activation of viral mimicry has the potential to kill cancer cells or augment anti-tumor immune responses. Here, we systematically identify mechanisms of viral mimicry adaptation associated with cancer cell dependencies. Among the top hits is the RNA decay protein XRN1 as an essential gene for the survival of a subset of cancer cell lines. XRN1 dependency is mediated by mitochondrial antiviral signaling protein and protein kinase R activation and is associated with higher levels of cytosolic dsRNA, higher levels of a subset of Alus capable of forming dsRNA, and higher interferon-stimulated gene expression, indicating that cells die due to induction of viral mimicry. Furthermore, dsRNA-inducing drugs such as 5-aza-2'-deoxycytidine and palbociclib can generate a synthetic dependency on XRN1 in cells initially resistant to XRN1 knockout. These results indicate that XRN1 is a promising target for future cancer therapeutics.
Collapse
Affiliation(s)
- Amir Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Håvard T Lindholm
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Pathology, Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
| | - Raymond Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Paul C Moore
- Pfizer Centers for Therapeutic Innovation, South San Francisco, CA 94080, USA
| | - Marie Classon
- Pfizer Centers for Therapeutic Innovation, South San Francisco, CA 94080, USA
| | - Andrea Di Gioacchino
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL & CNRS UMR8063, Sorbonne Université, Université de Paris, Paris, France
| | - Benjamin Greenbaum
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
33
|
Lu J, Chen S, Bai X, Liao M, Qiu Y, Zheng LL, Yu H. Targeting cholesterol metabolism in Cancer: From molecular mechanisms to therapeutic implications. Biochem Pharmacol 2023; 218:115907. [PMID: 37931664 DOI: 10.1016/j.bcp.2023.115907] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Cholesterol is an essential component of cell membranes and helps to maintain their structure and function. Abnormal cholesterol metabolism has been linked to the development and progression of tumors. Changes in cholesterol metabolism triggered by internal or external stimuli can promote tumor growth. During metastasis, tumor cells require large amounts of cholesterol to support their growth and colonization of new organs. Recent research has shown that cholesterol metabolism is reprogrammed during tumor development, and this can also affect the anti-tumor activity of immune cells in the surrounding environment. However, identifying the specific targets in cholesterol metabolism that regulate cancer progression and the tumor microenvironment is still a challenge. Additionally, exploring the potential of combining statin drugs with other therapies for different types of cancer could be a worthwhile avenue for future drug development. In this review, we focus on the molecular mechanisms of cholesterol and its derivatives in cell metabolism and the tumor microenvironment, and discuss specific targets and relevant therapeutic agents that inhibit aspects of cholesterol homeostasis.
Collapse
Affiliation(s)
- Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xuejiao Bai
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- Department of Anesthesiology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
34
|
Jarak I, Isabel Santos A, Helena Pinto A, Domingues C, Silva I, Melo R, Veiga F, Figueiras A. Colorectal cancer cell exosome and cytoplasmic membrane for homotypic delivery of therapeutic molecules. Int J Pharm 2023; 646:123456. [PMID: 37778515 DOI: 10.1016/j.ijpharm.2023.123456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of death in the world. The multi-drug resistance, especially in metastatic colorectal cancer, drives the development of new strategies that secure a positive outcome and reduce undesirable side effects. Nanotechnology has made an impact in addressing some pharmacokinetic and safety issues related to administration of free therapeutic agents. However, demands of managing complex biointerfacing require equally complex methods for introducing stimuli-responsive or targeting elements. In order to procure a more efficient solution to the overcoming of biological barriers, the physiological functions of cancer cell plasma and exosomal membranes provided the source of highly functionalized coatings. Biomimetic nanovehicles based on colorectal cancer (CRC) membranes imparted enhanced biological compatibility, immune escape and protection to diverse classes of therapeutic molecules. When loaded with therapeutic load or used as a coating for other therapeutic nanovehicles, they provide highly efficient and selective cell targeting and uptake. This review presents a detailed overview of the recent application of homotypic biomimetic nanovehicles in the management of CRC. We also address some of the current possibilities and challenges associated with the CRC membrane biomimetics.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Porto, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ana Isabel Santos
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Ana Helena Pinto
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Inês Silva
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Raquel Melo
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Coimbra, Portugal.
| |
Collapse
|
35
|
Peng Y, Liu QZ, Xu D, Fu JY, Zhang LX, Qiu L, Lin JG. M 4IDP stimulates ROS elevation through inhibition of mevalonate pathway and pentose phosphate pathway to inhibit colon cancer cells. Biochem Pharmacol 2023; 217:115856. [PMID: 37838274 DOI: 10.1016/j.bcp.2023.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Maintaining redox homeostasis is an essential feature of cancer cells, and disrupting this homeostasis to cause oxidative stress and induce cell death is an important strategy in cancer therapy. M4IDP, a zoledronic acid derivative, can cause the death of human colorectal cancer cells by increasing the level of intracellular reactive oxygen species (ROS). However, its potential molecular mechanism is unclear. Our in vitro studies showed that treatment with M4IDP promoted oxidative stress in HCT116 cells, as measured by the decreased ratios of GSH/GSSG and NADPH/NADP+ and increased level of MDA. M4IDP could cause the decrease of GSH content, the increase of GSSG content, the decrease of NADPH content and pentose phosphate pathway flux, the downregulation of G6PD expression, the upregulation of unprenylated Rap1A and total expression of RhoA and CDC42. The increase of ROS and cytotoxicity induced by M4IDP could be reversed by the supplementation of NADPH, the overexpression of G6PD and the supplementation of GGOH. In vivo studies showed that M4IDP inhibited tumor growth in the human colorectal cancer xenograft mouse model, which was accompanied with a decreased [18F]FDG uptake. Collectively, these results provide evidence that M4IDP can promote oxidation in colon cancer cells by inhibiting mevalonate pathway and pentose phosphate pathway and produce therapeutic effect. This study revealed for the first time a possible mechanism of bisphosphonate-induced increase of ROS in malignant tumor cells. This is helpful for the development of new molecular therapeutic targets and can provide new ideas for the combined therapy of bisphosphonates in tumors.
Collapse
Affiliation(s)
- Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing-Zhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Dong Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jia-Yu Fu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Li-Xia Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian-Guo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
36
|
Zhang X, Dong Z, Yang Y, Liu C, Li J, Sun W, Zhu Y, Shen Y, Wang Z, Lü M, Cui H. Morusinol Extracted from Morus alba Inhibits Cell Proliferation and Induces Autophagy via FOXO3a Nuclear Accumulation-Mediated Cholesterol Biosynthesis Obstruction in Colorectal Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16016-16031. [PMID: 37870273 DOI: 10.1021/acs.jafc.3c01244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The incidence rate of colorectal cancer (CRC) has been increasing significantly in recent years, and it is urgent to develop novel drugs that have more effects for its treatment. It has been reported that many molecules extracted from the root bark of Morus alba L. (also known as Cortex Mori) have antitumor activities. In our study, we identified morusinol as a promising anticancer agent by selecting from 30 molecules extracted from Morus alba L. We found that morusinol treatment suppressed cell proliferation and promoted apoptosis of CRC cells in vitro. Besides this, we observed that morusinol induced cytoprotective autophagy. The GO analysis of differentially expressed genes from RNA-seq data showed that morusinol affected cholesterol metabolism. Then we found that key enzyme genes in the cholesterol biosynthesis pathway as well as the sterol regulatory element binding transcription factor 2 (SREBF2) were significantly downregulated. Furthermore, additional cholesterol treatment reversed the anti-CRC effect of morusinol. Interestingly, we also found that morusinol treatment could promote forkhead box O3 (FOXO3a) nuclear accumulation, which subsequently suppressed SREBF2 transcription. Then SREBF2-controlled cholesterol biosynthesis was blocked, resulting in the suppression of cell proliferation, promotion of apoptosis, and production of autophagy. The experiments in animal models also showed that morusinol significantly impeded tumor growth in mice models. Our results suggested that morusinol may be used as a candidate anticancer drug for the treatment of CRC.
Collapse
Affiliation(s)
- Xiaolin Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Zhen Dong
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Yuanmiao Yang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Chaolong Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Jisheng Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Wenli Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Yikang Zhu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Yang Shen
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Zhi Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Muhan Lü
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
37
|
Jin H, Zhu M, Zhang D, Liu X, Guo Y, Xia L, Chen Y, Chen Y, Xu R, Liu C, Xi Q, Xia S, Shi T, Zhang G. B7H3 increases ferroptosis resistance by inhibiting cholesterol metabolism in colorectal cancer. Cancer Sci 2023; 114:4225-4236. [PMID: 37661645 PMCID: PMC10637087 DOI: 10.1111/cas.15944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Ferroptosis, a newly discovered form of regulated cell death, has been reported to be associated with multiple cancers, including colorectal cancer (CRC). However, the underlying molecular mechanism is still unclear. In this study, we identified B7H3 as a potential regulator of ferroptosis resistance in CRC. B7H3 knockdown decreased but B7H3 overexpression increased the ferroptosis resistance of CRC cells, as evidenced by the expression of ferroptosis-associated genes (PTGS2, FTL, FTH, and GPX4) and the levels of important indicators of ferroptosis (malondialdehyde, iron load). Moreover, B7H3 promoted ferroptosis resistance by regulating sterol regulatory element binding protein 2 (SREBP2)-mediated cholesterol metabolism. Both exogenous cholesterol supplementation and treatment with the SREBP2 inhibitor betulin reversed the effect of B7H3 on ferroptosis in CRC cells. Furthermore, we verified that B7H3 downregulated SREBP2 expression by activating the AKT pathway. Additionally, multiplex immunohistochemistry was carried out to show the expression of B7H3, prostaglandin-endoperoxide synthase 2, and SREBP2 in CRC tumor tissues, which was associated with the prognosis of patients with CRC. In summary, our findings reveal a role for B7H3 in regulating ferroptosis by controlling cholesterol metabolism in CRC.
Collapse
Affiliation(s)
- Haiyan Jin
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Mengxin Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Dongze Zhang
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Xiaoshan Liu
- Pasteurien College, Suzhou Medical College, Soochow UniversitySuzhouChina
| | - Yuesheng Guo
- Pasteurien College, Suzhou Medical College, Soochow UniversitySuzhouChina
| | - Lu Xia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yanjun Chen
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuqi Chen
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ruyan Xu
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Cuiping Liu
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Qinhua Xi
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Suhua Xia
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tongguo Shi
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| | - Guangbo Zhang
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
| |
Collapse
|
38
|
Bakand A, Moghaddam SV, Naseroleslami M, André H, Mousavi-Niri N, Alizadeh E. Efficient targeting of HIF-1α mediated by YC-1 and PX-12 encapsulated niosomes: potential application in colon cancer therapy. J Biol Eng 2023; 17:58. [PMID: 37749603 PMCID: PMC10521571 DOI: 10.1186/s13036-023-00375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
A number of molecular biofactors have been documented in pathogenesis and poor prognosis of colorectal cancer (CRC). Among them, the Hypoxia-Inducible Factor (HIF-1a) is frequently reported to become over-expressed, and its targeting could restrict and control a variety of essential hallmarks of CRC. Niosomes are innovative drug delivery vehicles with the encapsulating capacity for co-loading both hydrophilic and hydrophobic drugs at the same time. Also, they can enhance the local accumulation while minimizing the dose and side effects of drugs. YC-1 and PX-12 are two inhibitors of HIF-1a. The purpose of this work was to synthesize dual-loaded YC-1 and PX-12 niosomes to efficiently target HIF-1α in CRC, HT-29 cells. The niosomes were prepared by the thin-film hydration method, then the niosomal formulation of YC-1 and PX-12 (NIO/PX-YC) was developed and optimized by the central composition method (CCD) using the Box-Behnken design in terms of size, polydispersity index (PDI), entrapment efficiency (EE). Also, they are characterized by DLS, FESEM, and TEM microscopy, as well as FTIR spectroscopy. Additionally, entrapment efficiency, in vitro drug release kinetics, and stability were assessed. Cytotoxicity, apoptosis, and cell cycle studies were performed after the treatment of HT-29 cells with NIO/PX-YC. The expression of HIF-1αat both mRNA and protein levels were studied after NIO/PX-YC treatment. The prepared NIO/PX-YC showed a mean particle size of 185 nm with a zeta potential of about-7.10 mv and a spherical morphology. Also, PX-12 and YC-1 represented the entrapment efficiency of about %78 and %91, respectively, with a sustainable and controllable release. The greater effect of NIO/PX-YC than the free state of PX-YC on the cell survival rate, cell apoptosis, and HIF-1α gene/protein expression were detected (p < 0.05). In conclusion, dual loading of niosomes with YC-1 and PX-12 enhanced the effect of drugs on HIF-1α inhibition, thus boosting their anticancer effects.
Collapse
Affiliation(s)
- Azar Bakand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282, Stockholm, Sweden
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Mohammadjani N, Karimi S, Moetasam Zorab M, Ashengroph M, Alavi M. Comparative molecular docking and toxicity between carbon-capped metal oxide nanoparticles and standard drugs in cancer and bacterial infections. BIOIMPACTS : BI 2023; 14:27778. [PMID: 38505671 PMCID: PMC10945298 DOI: 10.34172/bi.2023.27778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 03/21/2024]
Abstract
Introduction Nanoparticles (NPs) are of great interest in the design of various drugs due to their high surface-to-volume ratio, which result from their unique physicochemical properties. Because of the importance of examining the interactions between newly designed particles with different targets in the case of various diseases, techniques for examining the interactions between these particles with different targets, many of which are proteins, are now very common. Methods In this study, the interactions between metal oxide nanoparticles (MONPs) covered with a carbon layer (Ag2O3, CdO, CuO, Fe2O3, FeO, MgO, MnO, and ZnO NPs) and standard drugs related to the targets of Cancer and bacterial infections were investigated using the molecular docking technique with AutoDock 4.2.6 software tool. Finally, the PRO TOX-II online tool was used to compare the toxicity (LD50) and molecular weight of these MONPs to standard drugs. Results According to the data obtained from the semi flexible molecular docking process, MgO and Fe2O3 NPs performed better than standard drugs in several cases. MONPs typically have a lower 50% lethal dose (LD50) and a higher molecular weight than standard drugs. MONPs have shown a minor difference in binding energy for different targets in three diseases, which probably can be attributed to the specific physicochemical and pharmacophoric properties of MONPs. Conclusion The toxicity of MONPs is one of the major challenges in the development of drugs based on them. According to the results of these molecular docking studies, MgO and Fe2O3 NPs had the highest efficiency among the investigated MONPs.
Collapse
Affiliation(s)
- Navid Mohammadjani
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Sahand Karimi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | | | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| |
Collapse
|
40
|
Wu J, Xia C, Liu C, Zhang Q, Xia C. The role of gut microbiota and drug interactions in the development of colorectal cancer. Front Pharmacol 2023; 14:1265136. [PMID: 37680706 PMCID: PMC10481531 DOI: 10.3389/fphar.2023.1265136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human gut microbiota is a complex ecosystem regulating the host's environmental interaction. The same functional food or drug may have varying bioavailability and distinct effects on different individuals. Drugs such as antibiotics can alter the intestinal flora, thus affecting health. However, the relationship between intestinal flora and non-antibiotic drugs is bidirectional: it is not only affected by drugs; nevertheless, it can alter the drug structure through enzymes and change the bioavailability, biological activity, or toxicity of drugs to improve their efficacy and safety. This review summarizes the roles and mechanisms of antibiotics, antihypertensive drugs, nonsteroidal anti-inflammatory drugs, lipid-lowering drugs, hypoglycemic drugs, virus-associated therapies, metabolites, and dietary in modulating the colorectal cancer gut microbiota. It provides a reference for future antitumor therapy targeting intestinal microorganisms.
Collapse
Affiliation(s)
- Jinna Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Pharmacy, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Pan Y, Chen H, Zhang X, Liu W, Ding Y, Huang D, Zhai J, Wei W, Wen J, Chen D, Zhou Y, Liang C, Wong N, Man K, Cheung AHK, Wong CC, Yu J. METTL3 drives NAFLD-related hepatocellular carcinoma and is a therapeutic target for boosting immunotherapy. Cell Rep Med 2023; 4:101144. [PMID: 37586322 PMCID: PMC10439254 DOI: 10.1016/j.xcrm.2023.101144] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging risk factor of hepatocellular carcinoma (HCC). However, the mechanism and target therapy of NAFLD-HCC are still unclear. Here, we identify that the N6-methyladenosine (m6A) methyltransferase METTL3 promotes NAFLD-HCC. Hepatocyte-specific Mettl3 knockin exacerbated NAFLD-HCC formation, while Mettl3 knockout exerted the opposite effect in mice. Single-cell RNA sequencing revealed that METTL3 suppressed antitumor immune response by reducing granzyme B (GZMB+) and interferon gamma-positive (IFN-γ+) CD8+ T cell infiltration, thereby facilitating immune escape. Mechanistically, METTL3 mediates sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) mRNA m6A to promote its translation, leading to the activation of cholesterol biosynthesis. This enhanced secretion of cholesterol and cholesteryl esters that impair CD8+ T cell function in the tumor microenvironment. Targeting METTL3 by single-guide RNA, nanoparticle small interfering RNA (siRNA), or pharmacological inhibitor (STM2457) in combination with anti-programmed cell death protein 1 (PD-1) synergized to reinvigorate cytotoxic CD8+ T cells and mediate tumor regression. Together, METTL3 is a therapeutic target in NAFLD-HCC, especially in conjunction with immune checkpoint blockade (ICB) therapy.
Collapse
Affiliation(s)
- Yasi Pan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanqiang Ding
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Huang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianning Zhai
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenchao Wei
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Wen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Danyu Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yunfei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cong Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nathalie Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
42
|
Hockney S, Parker J, Turner JE, Todd X, Todryk S, Gieling RG, Hilgen G, Simoes DCM, Pal D. Next generation organoid engineering to replace animals in cancer drug testing. Biochem Pharmacol 2023; 213:115586. [PMID: 37164297 DOI: 10.1016/j.bcp.2023.115586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Cancer therapies have several clinical challenges associated with them, namely treatment toxicity, treatment resistance and relapse. Due to factors ranging from patient profiles to the tumour microenvironment (TME), there are several hurdles to overcome in developing effective treatments that have low toxicity that can mitigate emergence of resistance and occurrence of relapse. De novo cancer development has the highest drug attrition rates with only 1 in 10,000 preclinical candidates reaching the market. To alleviate this high attrition rate, more mimetic and sustainable preclinical models that can capture the disease biology as in the patient, are required. Organoids and next generation 3D tissue engineering is an emerging area that aims to address this problem. Advancement of three-dimensional (3D) in vitro cultures into complex organoid models incorporating multiple cell types alongside acellular aspects of tissue microenvironments can provide a system for therapeutic testing. Development of microfluidic technologies have furthermore increased the biomimetic nature of these models. Additionally, 3D bio-printing facilitates generation of tractable ex vivo models in a controlled, scalable and reproducible manner. In this review we highlight some of the traditional preclinical models used in cancer drug testing and debate how next generation organoids are being used to replace not only animal models, but also some of the more elementary in vitro approaches, such as cell lines. Examples of applications of the various models will be appraised alongside the future challenges that still need to be overcome.
Collapse
Affiliation(s)
- Sean Hockney
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jessica Parker
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jasmin E Turner
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Xanthea Todd
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Stephen Todryk
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Roben Ger Gieling
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gerrit Hilgen
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Davina Camargo Madeira Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Deepali Pal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
43
|
Yang QC, Wang S, Liu YT, Song A, Wu ZZ, Wan SC, Li HM, Sun ZJ. Targeting PCSK9 reduces cancer cell stemness and enhances antitumor immunity in head and neck cancer. iScience 2023; 26:106916. [PMID: 37305703 PMCID: PMC10250824 DOI: 10.1016/j.isci.2023.106916] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been demonstrated to play a critical role in regulating cholesterol homeostasis and T cell antitumor immunity. However, the expression, function, and therapeutic value of PCSK9 in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. Here, we found that the expression of PCSK9 was upregulated in HNSCC tissues, and higher PCSK9 expression indicated poorer prognosis in HNSCC patients. We further found that pharmacological inhibition or siRNA downregulating PCSK9 expression suppressed the stemness-like phenotype of cancer cells in an LDLR-dependent manner. Moreover, PCSK9 inhibition enhanced the infiltration of CD8+ T cells and reduced the myeloid-derived suppressor cells (MDSCs) in a 4MOSC1 syngeneic tumor-bearing mouse model, and it also enhanced the antitumor effect of anti-PD-1 immune checkpoint blockade (ICB) therapy. Together, these results indicated that PCSK9, a traditional hypercholesterolemia target, may be a novel biomarker and therapeutic target to enhance ICB therapy in HNSCC.
Collapse
Affiliation(s)
- Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan-Tong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - An Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Yue H, Tian Y, Wu X, Yang X, Xu P, Zhu H, Sang N. Exploration of the damage and mechanisms of BPS exposure on the uterus and ovary of adult female mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161660. [PMID: 36690098 DOI: 10.1016/j.scitotenv.2023.161660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol S (BPS) has been followed with interest for its endocrine disrupting effects, but exploration on the reproductive system of adult females is lack of deep investigation. In the present study, adult female CD-1 mice were treated with BPS for 28 days at 300 μg/kg/day. After that, uteruses and ovaries were harvested for histopathological examination, RNA-seq analysis, and diseases risk prediction. Hematoxylin-eosin (H&E) staining results showed significant histological alterations in the uterus and ovary of the BPS-exposed mice. Bioinformatics analysis of the RNA-seq screened a certain number of differentially expressed genes (DEGs) in both uterus and ovary between BPS group and their corresponding vehicle control groups (Veh), respectively. Functional enrichment analysis of DEGs found that hormone metabolism and immunoinflammatory related pathways were enriched. Disease risk evaluation of the hub genes was performed and the results indicated that diseases associated with uterus and ovary were mainly related to tumors and cancers. Further pan cancer and ovarian cancer survival analysis based on human diseases database pointed out, Foxa1, Gata3, S100a8 and Shh for uterus, Itgam, Dhcr7, Fdps, Hmgcr, Hsd11b1, Hsd3b1, Ptges, F3, Fn1, Ptger4 and Srd5a1 for ovary were significant correlation with cancer. The findings suggest that BPS causes some histopathological changes, alters the expressions of hub genes, enhances uterine and ovarian tumors or even cancer risks.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
45
|
du Plessis TL, Abdulla N, Kaur M. The utility of 3D models to study cholesterol in cancer: Insights and future perspectives. Front Oncol 2023; 13:1156246. [PMID: 37077827 PMCID: PMC10106729 DOI: 10.3389/fonc.2023.1156246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Cholesterol remains a vital molecule required for life; however, increasing evidence exists implicating cholesterol in cancer development and progression. Numerous studies investigating the relationship between cholesterol and cancer in 2-dimensional (2D) culture settings exist, however these models display inherent limitations highlighting the incipient need to develop better models to study disease pathogenesis. Due to the multifaceted role cholesterol plays in the cell, researchers have begun utilizing 3-dimensional (3D) culture systems, namely, spheroids and organoids to recapitulate cellular architecture and function. This review aims to describe current studies exploring the relationship between cancer and cholesterol in a variety of cancer types using 3D culture systems. We briefly discuss cholesterol dyshomeostasis in cancer and introduce 3D in-vitro culture systems. Following this, we discuss studies performed in cancerous spheroid and organoid models that focused on cholesterol, highlighting the dynamic role cholesterol plays in various cancer types. Finally, we attempt to provide potential gaps in research that should be explored in this rapidly evolving field of study.
Collapse
|
46
|
Yang Z, Gao S, Wong CC, Liu W, Chen H, Shang H, Wu ZY, Xu L, Zhang X, Wong N, Kuang M, Yu J. TUBB4B is a novel therapeutic target in non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Pathol 2023; 260:71-83. [PMID: 36787097 DOI: 10.1002/path.6065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 02/12/2023] [Indexed: 02/15/2023]
Abstract
Non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC) is an emerging malignancy due to the rising prevalence of NAFLD. However, no drug is available to target NAFLD-HCC. In this study, we aim to unravel novel therapeutic targets of NAFLD-HCC utilizing a high-throughput CRISPR/Cas9 screening strategy. We utilized the Epi-drug CRISPR/Cas9 library consisting of single-guide RNAs (sgRNAs) targeting over 1,000 genes representing the FDA-approved drug targets and epigenetic regulators to perform loss-of-function screening in two NAFLD-HCC cell lines (HKCI2 and HKCI10). CRISPR/Cas9 library screening unraveled TUBB4B as an essential gene for NAFLD-HCC cell growth. TUBB4B was overexpressed in NAFLD-HCC tumors compared with adjacent normal tissues (N = 17) and was associated with poor survival (p < 0.01). RNA-sequencing and functional assays revealed that TUBB4B knockout in NAFLD-HCC promoted cell apoptosis, cell cycle arrest, and cellular senescence, leading to suppressed NAFLD-HCC growth in vitro and in vivo. We identified that TUBB4B inhibitor mebendazole (MBZ), an FDA-approved drug, inhibited NAFLD-HCC growth by inducing apoptosis and cellular senescence. Since protein expression of pro-survival Bcl-xL was induced in TUBB4B knockout NAFLD-HCC cells, we examined combination of TUBB4B inhibition with navitoclax, a Bcl-xL inhibitor that selectively targets senescent cells. Consistent with our hypothesis, either TUBB4B knockout or MBZ synergized with navitoclax to inhibit NAFLD-HCC cell growth via the induction of intrinsic and extrinsic apoptosis pathways. In summary, TUBB4B is a novel therapeutic target in NAFLD-HCC. Inhibition of TUBB4B with MBZ in combination with navitoclax synergistically inhibited NAFLD-HCC cell growth, representing a promising strategy for the treatment of NAFLD-HCC. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhenjie Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Shanshan Gao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Haiyun Shang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zoe Yuet Wu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Nathalie Wong
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Kuang
- Department of Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
47
|
Dashtaki ME, Ghasemi S. CRISPR/Cas9-based Gene Therapies for Fighting Drug Resistance Mediated by Cancer Stem Cells. Curr Gene Ther 2023; 23:41-50. [PMID: 36056851 DOI: 10.2174/1566523222666220831161225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are cancer-initiating cells found in most tumors and hematological cancers. CSCs are involved in cells progression, recurrence of tumors, and drug resistance. Current therapies have been focused on treating the mass of tumor cells and cannot eradicate the CSCs. CSCs drug-specific targeting is considered as an approach to precisely target these cells. Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene-editing systems are making progress and showing promise in the cancer research field. One of the attractive applications of CRISPR/Cas9 as one approach of gene therapy is targeting the critical genes involved in drug resistance and maintenance of CSCs. The synergistic effects of gene editing as a novel gene therapy approach and traditional therapeutic methods, including chemotherapy, can resolve drug resistance challenges and regression of the cancers. This review article considers different aspects of CRISPR/Cas9 ability in the study and targeting of CSCs with the intention to investigate their application in drug resistance.
Collapse
Affiliation(s)
- Masoumeh Eliyasi Dashtaki
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
48
|
Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol (Lausanne) 2023; 14:1148412. [PMID: 37020597 PMCID: PMC10067930 DOI: 10.3389/fendo.2023.1148412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Colon cancer is the fourth leading cause of cancer death worldwide, and its progression is accompanied by a complex array of genetic variations. CRISPR/Cas9 can identify new drug-resistant or sensitive mutations in colon cancer, and can use gene editing technology to develop new therapeutic targets and provide personalized treatments, thereby significantly improving the treatment of colon cancer patients. CRISPR/Cas9 systems are driving advances in biotechnology. RNA-directed Cas enzymes have accelerated the pace of basic research and led to clinical breakthroughs. This article reviews the rapid development of CRISPR/Cas in colon cancer, from gene editing to transcription regulation, gene knockout, genome-wide CRISPR tools, therapeutic targets, stem cell genomics, immunotherapy, metabolism-related genes and inflammatory bowel disease. In addition, the limitations and future development of CRISPR/Cas9 in colon cancer studies are reviewed. In conclusion, this article reviews the application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Meng
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| | - Manman Nan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhen Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Ding
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhui Yin
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| |
Collapse
|
49
|
Cellular signals integrate cell cycle and metabolic control in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:397-423. [PMID: 37061338 DOI: 10.1016/bs.apcsb.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Growth factors are the small peptides that can promote growth, differentiation, and survival of most living cells. However, aberrant activation of receptor tyrosine kinases by GFs can generate oncogenic signals, resulting in oncogenic transformation. Accumulating evidence support a link between GF/RTK signaling through the major signaling pathways, Ras/Erk and PI3K/Akt, and cell cycle progression. In response to GF signaling, the quiescent cells in the G0 stage can re-enter the cell cycle and become the proliferative stage. While in the proliferative stage, tumor cells undergo profound changes in their metabolism to support biomass production and bioenergetic requirements. Accumulating data show that the cell cycle regulators, specifically cyclin D, cyclin B, Cdk2, Cdk4, and Cdk6, and anaphase-promoting complex/cyclosome (APC/C-Cdh1) play critical roles in modulating various metabolic pathways. These cell cycle regulators can regulate metabolic enzyme activities through post-translational mechanisms or the transcriptional factors that control the expression of the metabolic genes. This fine-tune control allows only the relevant metabolic pathways to be active in a particular phase of the cell cycle, thereby providing suitable amounts of biosynthetic precursors available during the proliferative stage. The imbalance of metabolites in each cell cycle phase can induce cell cycle arrest followed by p53-induced apoptosis.
Collapse
|
50
|
Morita A, Nakayama M, Wang D, Murakami K, Oshima M. Frequent loss of metastatic ability in subclones of Apc, Kras, Tgfbr2, and Trp53 mutant intestinal tumor organoids. Cancer Sci 2022; 114:1437-1450. [PMID: 36576236 PMCID: PMC10067385 DOI: 10.1111/cas.15709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer evolution is explained by the accumulation of driver mutations and subsequent positive selection by acquired growth advantages, like Darwin's evolution theory. However, whether the negative selection of cells that have lost malignant properties contributes to cancer progression has not yet been fully investigated. Using intestinal metastatic tumor-derived organoids carrying Apc, Kras, Tgfbr2, and Trp53 quadruple mutations, we demonstrate here that approximately 30% of subclones of the organoids show loss of metastatic ability to the liver while keeping the driver mutations and oncogenic pathways. Notably, highly metastatic subclones also showed a gradual loss of metastatic ability during further passages. Such non-metastatic subclones revealed significantly decreased survival and proliferation ability in Matrigel and collagen gel culture conditions, which may cause elimination from the tumor tissues in vivo. RNA sequencing indicated that stemness-related genes, including Lgr5 and Myb, were significantly downregulated in non-metastatic subclones as well as subclones that lost metastatic ability during additional passages. Furthermore, a CGH analysis showed that non-metastatic subclones were derived from a minor population of parental organoid cells. These results indicate that metastatic ability is continuously lost with decreased stem cell property in certain subpopulations of malignant tumors, and such subpopulations are eliminated by negative selection. Therefore, it is possible that cancer evolution is regulated not only by positive selection but also by negative selection. The mechanism underlying the loss of metastatic ability will be important for the future development of therapeutic strategies against metastasis.
Collapse
Affiliation(s)
- Atsuya Morita
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Dong Wang
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Murakami
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|