1
|
Pamela RH, Minerva MR, Ernesto CMM, Manuel MAJ, Norberto SE, Francisco AH, de la Torre Silvia MD, Angélica RL, Elva JH, Carlos NEJ, Sara O, Juan XC, Ariadnna CC, Paula FA, José AG. Is the vIL-10 Protein from Cytomegalovirus Associated with the Potential Development of Acute Lymphoblastic Leukemia? Viruses 2025; 17:435. [PMID: 40143362 PMCID: PMC11945621 DOI: 10.3390/v17030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Leukemia is a hematologic malignancy; acute lymphoblastic leukemia (ALL) is the most prevalent subtype among children rather than in adults. Orthoherpesviridae family members produce proteins during latent infection phases that may contribute to cancer development. One such protein, viral interleukin-10 (vIL-10), closely resembles human interleukin-10 (IL-10) in structure. Research has explored the involvement of human cytomegalovirus (hCMV) in the pathogenesis of ALL. However, the limited characterization of its latent-phase proteins restricts a full understanding of the relationship between hCMV infection and leukemia progression. Studies have shown that hCMV induces an inflammatory response during infection, marked by the release of cytokines and chemokines. Inflammation may, therefore, play a role in how hCMV contributes to oncogenesis in pediatric ALL, possibly mediated by latent viral proteins. The classification of a virus as oncogenic is based on its alignment with cancer's established hallmarks. Viruses can manipulate host cellular mechanisms, causing dysregulated cell proliferation, evasion of apoptosis, and genomic instability. These processes lead to mutations, chromosomal abnormalities, and chronic inflammation, all of which are vital for carcinogenesis. This study aims to investigate the role of vIL-10 during the latent phase of hCMV as a potential factor in leukemia development.
Collapse
Affiliation(s)
- Ruvalcaba-Hernández Pamela
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mata-Rocha Minerva
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Doctores, Ciudad de México 06720, Mexico; (M.-R.M.); (S.-E.N.)
| | | | - Mejía-Aranguré Juan Manuel
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sánchez-Escobar Norberto
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Doctores, Ciudad de México 06720, Mexico; (M.-R.M.); (S.-E.N.)
- Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico
| | - Arenas-Huertero Francisco
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Melchor-Doncel de la Torre Silvia
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
| | - Rangel-López Angélica
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
| | - Jiménez-Hernández Elva
- Departamento de Oncología, Hospital Pediátrico Moctezuma SEDESA, Universidad Autónoma Metropolitana, Mexico City 09769, Mexico;
| | - Nuñez-Enriquez Juan Carlos
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ochoa Sara
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (O.S.); (X.-C.J.)
| | - Xicohtencatl-Cortes Juan
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (O.S.); (X.-C.J.)
| | - Cruz-Córdova Ariadnna
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | | | - Arellano-Galindo José
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
- Centro Interdisciplinario de Ciencias de la Salud Unidad Milpa Alta Instituto Politécnico Nacional, Mexico City 12000, Mexico
| |
Collapse
|
2
|
Beltrán JF, Herrera-Belén L, Yáñez AJ, Jimenez L. Prediction of viral oncoproteins through the combination of generative adversarial networks and machine learning techniques. Sci Rep 2024; 14:27108. [PMID: 39511292 PMCID: PMC11543823 DOI: 10.1038/s41598-024-77028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Viral oncoproteins play crucial roles in transforming normal cells into cancer cells, representing a significant factor in the etiology of various cancers. Traditionally, identifying these oncoproteins is both time-consuming and costly. With advancements in computational biology, bioinformatics tools based on machine learning have emerged as effective methods for predicting biological activities. Here, for the first time, we propose an innovative approach that combines Generative Adversarial Networks (GANs) with supervised learning methods to enhance the accuracy and generalizability of viral oncoprotein prediction. Our methodology evaluated multiple machine learning models, including Random Forest, Multilayer Perceptron, Light Gradient Boosting Machine, eXtreme Gradient Boosting, and Support Vector Machine. In ten-fold cross-validation on our training dataset, the GAN-enhanced Random Forest model demonstrated superior performance metrics: 0.976 accuracy, 0.976 F1 score, 0.977 precision, 0.976 sensitivity, and 1.0 AUC. During independent testing, this model achieved 0.982 accuracy, 0.982 F1 score, 0.982 precision, 0.982 sensitivity, and 1.0 AUC. These results establish our new tool, VirOncoTarget, accessible via a web application. We anticipate that VirOncoTarget will be a valuable resource for researchers, enabling rapid and reliable viral oncoprotein prediction and advancing our understanding of their role in cancer biology.
Collapse
Affiliation(s)
- Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco, Chile
| | - Alejandro J Yáñez
- Departamento de Investigación y Desarrollo, Greenvolution SpA, Puerto Varas, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepcion, Chile
| | - Luis Jimenez
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| |
Collapse
|
3
|
Wu T, Hu Y, Tang LV. Gene therapy for polygenic or complex diseases. Biomark Res 2024; 12:99. [PMID: 39232780 PMCID: PMC11375922 DOI: 10.1186/s40364-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Gene therapy utilizes nucleic acid drugs to treat diseases, encompassing gene supplementation, gene replacement, gene silencing, and gene editing. It represents a distinct therapeutic approach from traditional medications and introduces novel strategies for genetic disorders. Over the past two decades, significant advancements have been made in the field of gene therapy, leading to the approval of various gene therapy drugs. Gene therapy was initially employed for treating genetic diseases and cancers, particularly monogenic conditions classified as orphan diseases due to their low prevalence rates; however, polygenic or complex diseases exhibit higher incidence rates within populations. Extensive research on the etiology of polygenic diseases has unveiled new therapeutic targets that offer fresh opportunities for their treatment. Building upon the progress achieved in gene therapy for monogenic diseases and cancers, extending its application to polygenic or complex diseases would enable targeting a broader range of patient populations. This review aims to discuss the strategies of gene therapy, methods of gene editing (mainly CRISPR-CAS9), and carriers utilized in gene therapy, and highlight the applications of gene therapy in polygenic or complex diseases focused on applications that have either entered clinical stages or are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| | - Liang V Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapies of the Chinese Ministry of Education, Wuhan, China.
| |
Collapse
|
4
|
Moore PS, Chang Y. Are There More Human Cancer Viruses Left to Be Found? Annu Rev Virol 2024; 11:239-259. [PMID: 39326883 DOI: 10.1146/annurev-virology-111821-103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Of the thousands of viruses infecting humans, only seven cause cancer in the general population. Tumor sequencing is now a common cancer medicine procedure, and so it seems likely that more human cancer viruses already would have been found if they exist. Here, we review cancer characteristics that can inform a dedicated search for new cancer viruses, focusing on Kaposi sarcoma herpesvirus and Merkel cell polyomavirus as the most recent examples of successful genomic and transcriptomic searches. We emphasize the importance of epidemiology in determining which cancers to examine and describe approaches to virus discovery. Barriers to virus discovery, such as novel genomes and viral suppression of messenger RNA expression, may exist that prevent virus discovery using existing approaches. Optimally virus hunting should be performed in such a way that if no virus is found, the tumor can be reasonably excluded from having an infectious etiology and new information about the biology of the tumor can be found.
Collapse
Affiliation(s)
- Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Yuan Chang
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
5
|
Caetano-Anollés G. Are Viruses Taxonomic Units? A Protein Domain and Loop-Centric Phylogenomic Assessment. Viruses 2024; 16:1061. [PMID: 39066224 PMCID: PMC11281659 DOI: 10.3390/v16071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Virus taxonomy uses a Linnaean-like subsumption hierarchy to classify viruses into taxonomic units at species and higher rank levels. Virus species are considered monophyletic groups of mobile genetic elements (MGEs) often delimited by the phylogenetic analysis of aligned genomic or metagenomic sequences. Taxonomic units are assumed to be independent organizational, functional and evolutionary units that follow a 'natural history' rationale. Here, I use phylogenomic and other arguments to show that viruses are not self-standing genetically-driven systems acting as evolutionary units. Instead, they are crucial components of holobionts, which are units of biological organization that dynamically integrate the genetics, epigenetic, physiological and functional properties of their co-evolving members. Remarkably, phylogenomic analyses show that viruses share protein domains and loops with cells throughout history via massive processes of reticulate evolution, helping spread evolutionary innovations across a wider taxonomic spectrum. Thus, viruses are not merely MGEs or microbes. Instead, their genomes and proteomes conduct cellularly integrated processes akin to those cataloged by the GO Consortium. This prompts the generation of compositional hierarchies that replace the 'is-a-kind-of' by a 'is-a-part-of' logic to better describe the mereology of integrated cellular and viral makeup. My analysis demands a new paradigm that integrates virus taxonomy into a modern evolutionarily centered taxonomy of organisms.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Mohamed HT, El-Shinawi M, Mohamed MM. Editorial: Inflammatory tumor microenvironment: role of cytokines and virokines in breast cancer progression and metastasis. Front Cell Dev Biol 2024; 12:1414734. [PMID: 38903531 PMCID: PMC11188433 DOI: 10.3389/fcell.2024.1414734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
- Hossam Taha Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Science, Galala University, Suez, Egypt
| | | | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
7
|
Detrés Román CR, Rudloff MW, Revetta F, Favret NR, Murray KA, Roetman JJ, Erwin MM, Washington MK, Philip M. Vaccination generates functional progenitor tumor-specific CD8 T cells and long-term tumor control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582064. [PMID: 38464229 PMCID: PMC10925145 DOI: 10.1101/2024.02.26.582064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Immune checkpoint blockade (ICB) therapies are an important treatment for patients with advanced cancers; however only a subset of patients with certain types of cancer achieves durable remissions. Cancer vaccines are an attractive strategy to boost patient immune responses, but less is known about whether and how immunization can induce long-term tumor immune reprogramming and arrest cancer progression. We developed a clinically-relevant genetic cancer mouse model in which hepatocytes sporadically undergo oncogenic transformation. We compared how tumor-specific CD8 T cells (TST) differentiate in mice with early sporadic lesions as compared to late lesions and tested how immunotherapeutic strategies, including vaccination and ICB, reprogram TST and impact liver cancer progression. Methods Mice with a germline floxed allele of the SV40 large T antigen (TAG) undergo spontaneous recombination and activation of the TAG oncogene, leading to rare early pre-cancerous lesions that inevitably progress to established liver cancer. We assessed the immunophenotype and function of TAG-specific CD8 T cells in mice with early and late liver lesions. We vaccinated mice, either alone or in combination with ICB, to test whether these immunotherapeutic interventions could stop liver cancer progression. Results In mice with early lesions, a subset of TST were PD1 + TCF1 + TOX - and could produce IFNγ, while TST present in mice with late liver cancers were PD1 + TCF1 lo/- TOX + and unable to make effector cytokines. Strikingly, vaccination with attenuated TAG epitope-expressing Listeria monocytogenes (LM TAG ) blocked liver cancer development and led to a population of TST that were TCF1 + TOX - TST and polyfunctional cytokine producers. In contrast, ICB administration did not slow cancer progression or improve LM TAG vaccine efficacy. Conclusion Vaccination, but not ICB, generated a population of progenitor TST and halted cancer progression in a clinically relevant model of sporadic liver cancer. In patients with early cancers or at high-risk of cancer recurrence, immunization may be the most effective strategy. What is already known on this topic Immunotherapy, including immune checkpoint blockade and cancer vaccines, fails to induce long-term remissions in most patients with cancer. What this study adds Hosts with early lesions but not hosts with advanced cancer retain a progenitor TCF1+ TST population. This population can be reprogrammed and therapeutically exploited by vaccination, but not ICB, to block tumor progression. How this study might affect research practice or policy For people at high-risk of cancer progression, vaccination administered when a responsive progenitor TST population is present may be the optimal immunotherapy to induce long-lasting progression-free survival.
Collapse
|
8
|
Huang J, Duan F, Xie C, Xu J, Zhang Y, Wang Y, Tang YP, Leung ELH. Microbes mediated immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:128-142. [PMID: 37553793 DOI: 10.1111/imr.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Immunogenic cell death (ICD) is one of the 12 distinct cell death forms, which can trigger immune system to fight against cancer cells. During ICD, a number of cellular changes occur that can stimulate an immune response, including the release of molecules called damage-associated molecular patterns (DAMPs), signaling to immune cells to recognize and attack cancer cells. By virtue of their pivotal role in immune surveillance, ICD-based drug development has been a new approach to explore novel therapeutic combinations and personalized strategies in cancer therapy. Several small molecules and microbes can induce ICD-relevant signals and cause cancer cell death. In this review, we highlighted the role of microbe-mediate ICD in cancer immunotherapy and described the mechanisms through which microbes might serve as ICD inducers in cancer treatment. We also discussed current attempts to combine microbes with chemotherapy regimens or immune checkpoint inhibitors (ICIs) in the treatment of cancer patients. We surmise that manipulation of microbes may guide personalized therapeutic interventions to facilitate anticancer immune response.
Collapse
Affiliation(s)
- Jumin Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Fugang Duan
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun Xie
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Jiahui Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Yizhong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Dr. Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| |
Collapse
|
9
|
Roetman JJ, Erwin MM, Rudloff MW, Favret NR, Detrés Román CR, Apostolova MKI, Murray KA, Lee TF, Lee YA, Philip M. Tumor-Reactive CD8+ T Cells Enter a TCF1+PD-1- Dysfunctional State. Cancer Immunol Res 2023; 11:1630-1641. [PMID: 37844197 PMCID: PMC10841346 DOI: 10.1158/2326-6066.cir-22-0939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
T cells recognize several types of antigens in tumors, including aberrantly expressed, nonmutated proteins, which are therefore shared with normal tissue and referred to as self/shared-antigens (SSA), and mutated proteins or oncogenic viral proteins, which are referred to as tumor-specific antigens (TSA). Immunotherapies such as immune checkpoint blockade (ICB) can activate T-cell responses against TSA, leading to tumor control, and also against SSA, causing immune-related adverse events (irAE). To improve anti-TSA immunity while limiting anti-SSA autoreactivity, we need to understand how tumor-specific CD8+ T cells (TST) and SSA-specific CD8+ T (SST) cells differentiate in response to cognate antigens during tumorigenesis. Therefore, we developed a genetic cancer mouse model in which we can track TST and SST differentiation longitudinally as liver cancers develop. We found that both TST and SST lost effector function over time, but while TST persisted long term and had a dysfunctional/exhausted phenotype (including expression of PD1, CD39, and TOX), SST exited cell cycle prematurely and disappeared from liver lesions. However, SST persisted in spleens in a dysfunctional TCF1+PD-1- state: unable to produce effector cytokines or proliferate in response to ICB targeting PD-1 or PD-L1. Thus, our studies identify a dysfunctional T-cell state occupied by T cells reactive to SSA: a TCF1+PD-1- state lacking in effector function, demonstrating that the type/specificity of tumor antigen may determine tumor-reactive T-cell differentiation.
Collapse
Affiliation(s)
- Jessica J. Roetman
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Megan M. Erwin
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael W. Rudloff
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Natalie R. Favret
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carlos R. Detrés Román
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Minna K. I. Apostolova
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kristen A. Murray
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - Youngmin A. Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Beltrán JF, Belén LH, Farias JG, Zamorano M, Lefin N, Miranda J, Parraguez-Contreras F. VirusHound-I: prediction of viral proteins involved in the evasion of host adaptive immune response using the random forest algorithm and generative adversarial network for data augmentation. Brief Bioinform 2023; 25:bbad434. [PMID: 38033292 PMCID: PMC10753651 DOI: 10.1093/bib/bbad434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Throughout evolution, pathogenic viruses have developed different strategies to evade the response of the adaptive immune system. To carry out successful replication, some pathogenic viruses encode different proteins that manipulate the molecular mechanisms of host cells. Currently, there are different bioinformatics tools for virus research; however, none of them focus on predicting viral proteins that evade the adaptive system. In this work, we have developed a novel tool based on machine and deep learning for predicting this type of viral protein named VirusHound-I. This tool is based on a model developed with the multilayer perceptron algorithm using the dipeptide composition molecular descriptor. In this study, we have also demonstrated the robustness of our strategy for data augmentation of the positive dataset based on generative antagonistic networks. During the 10-fold cross-validation step in the training dataset, the predictive model showed 0.947 accuracy, 0.994 precision, 0.943 F1 score, 0.995 specificity, 0.896 sensitivity, 0.894 kappa, 0.898 Matthew's correlation coefficient and 0.989 AUC. On the other hand, during the testing step, the model showed 0.964 accuracy, 1.0 precision, 0.967 F1 score, 1.0 specificity, 0.936 sensitivity, 0.929 kappa, 0.931 Matthew's correlation coefficient and 1.0 AUC. Taking this model into account, we have developed a tool called VirusHound-I that makes it possible to predict viral proteins that evade the host's adaptive immune system. We believe that VirusHound-I can be very useful in accelerating studies on the molecular mechanisms of evasion of pathogenic viruses, as well as in the discovery of therapeutic targets.
Collapse
Affiliation(s)
- Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | | | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Mauricio Zamorano
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Fernanda Parraguez-Contreras
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| |
Collapse
|
11
|
Pang F, Long Q, Wei M. Immune evasion strategies of bovine viral diarrhea virus. Front Cell Infect Microbiol 2023; 13:1282526. [PMID: 37900320 PMCID: PMC10613064 DOI: 10.3389/fcimb.2023.1282526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a significant pathogen that causes great economic losses in the global livestock industry. During the long-term interactions between BVDV and its hosts, the virus has evolved multiple strategies to evade the host's innate immunity and adaptive immunity, thereby promoting viral survival and replication. This review focuses on the most recent research on immune evasion strategies employed by BVDV, including evading type I IFN signaling pathway, evading host adaptive immunity, mediating NF-κB signaling pathway, mediating cell apoptosis and inducing autophagy. Unraveling BVDV's immune evasion strategies will enhance our understanding of the pathogenesis of BVDV and contribute to the development of more effective therapies for the prevention, control and eradication of BVDV.
Collapse
Affiliation(s)
- Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | | | | |
Collapse
|
12
|
Zhang Q, An ZY, Jiang W, Jin WL, He XY. Collagen code in tumor microenvironment: Functions, molecular mechanisms, and therapeutic implications. Biomed Pharmacother 2023; 166:115390. [PMID: 37660648 DOI: 10.1016/j.biopha.2023.115390] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer progression, and the extracellular matrix (ECM) is an important TME component. Collagen is a major ECM component that contributes to tumor cell infiltration, expansion, and distant metastasis during cancer progression. Recent studies reported that collagen is deposited in the TME to form a collagen wall along which tumor cells can infiltrate and prevent drugs from working on the tumor cells. Collagen-tumor cell interaction is complex and requires the activation of multiple signaling pathways for biochemical and mechanical signaling interventions. In this review, we examine the effect of collagen deposition in the TME on tumor progression and discuss the interaction between collagen and tumor cells. This review aims to illustrate the functions and mechanisms of collagen in tumor progression in the TME and its role in tumor therapy. The findings indicated collagen in the TME appears to be a better target for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, PR China; Anhui Public Health Clinical Center, Hefei 230001, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xin-Yang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China; Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei 230001, PR China.
| |
Collapse
|
13
|
Peng JM, Su YL. Lymph node metastasis and tumor-educated immune tolerance: Potential therapeutic targets against distant metastasis. Biochem Pharmacol 2023; 215:115731. [PMID: 37541450 DOI: 10.1016/j.bcp.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|
14
|
Sainova I, Kolyovska V, Ilieva I, Markova T, Dimitrova-Dikanarova D, Hadjiolova R. The Development of Methods for the Production of New Molecular Vaccines and Appropriate RNA Fragments to Counteract Unwanted Genes: A Pilot Study. Vaccines (Basel) 2023; 11:1226. [PMID: 37515042 PMCID: PMC10386085 DOI: 10.3390/vaccines11071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of viruses as appropriate vectors for the development of new therapeutic strategies, as well as for the design of molecular (DNA, RNA, and/or protein) vaccines via substitution of nucleotide sequences, has been proven. Among the most appropriate DNA and/or RNA fragments, members belonging to families Parvoviridae (particularly adeno-associated virus, AAV) and Poxviridae have frequently been suggested for this purpose. In previous studies, the vaccine avipoxvirus strains FK (fowl) and Dessau (pigeon) have been proven able to infect mammalian cells (as well as avian cells), and to replicate productively in a small number of them; thus, we may be able to adapt them using incubation, and in these conditions. Additionally, we have previously proved, based on AAV recombinant DNA vectors, that it is possible to transfer appropriate genes of interest via mouse embryonic stem cells (mESCs). In the current study, we develop methods for the application of the same vaccine avipoxviral strains, based on the AAV DNA genome recombinant constructs, to be used for gene transfer in cells, for the transfer of DNA and/or RNA fragments (for the suppression of unwanted viral and/or cellular genes), and for the production of molecular (DNA, RNA, and/or protein) anti-cancer and anti-viral vaccines. To this end, sub-populations of embryonic mammalian cells infected with the two forms of both vaccine avipoxviral strains were frozen in the presence of cryo-protector dimethylsulfoxide (DMSO), subsequently thawed, and re-incubated. In most cases, the titers of the intra-cellular forms of the two strains were higher than those of their extra-cellular forms. These data were explained by the probable existence of the intra-cellular forms as different sub-forms, including those integrated in the cellular genome proviruses at a given stage of the cellular infection, and suggest the possibility of transferring nucleotide (DNA and/or RNA) fragments between cellular and viral genomes; this is due to the influence of activated fusion processes on DMSO, as well as drastic temperature variations.
Collapse
Affiliation(s)
- Iskra Sainova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Vera Kolyovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Iliana Ilieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Tzvetanka Markova
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | | - Radka Hadjiolova
- Department of Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
15
|
Yang C, Li D, Ko CN, Wang K, Wang H. Active ingredients of traditional Chinese medicine for enhancing the effect of tumor immunotherapy. Front Immunol 2023; 14:1133050. [PMID: 36969211 PMCID: PMC10036358 DOI: 10.3389/fimmu.2023.1133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Immunotherapy is a type of treatment that uses our own immune system to fight cancer. Studies have shown that traditional Chinese medicine (TCM) has antitumor activity and can enhance host immunity. This article briefly describes the immunomodulatory and escape mechanisms in tumors, as well as highlights and summarizes the antitumor immunomodulatory activities of some representative active ingredients of TCM. Finally, this article puts forward some opinions on the future research and clinical application of TCM, aiming to promote the clinical applications of TCM in tumor immunotherapy and to provide new ideas for the research of tumor immunotherapy using TCM.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| |
Collapse
|
16
|
Ghosh M, Saha S, Li J, Montrose DC, Martinez LA. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol Cell 2023; 83:266-280.e6. [PMID: 36638783 PMCID: PMC9993620 DOI: 10.1016/j.molcel.2022.12.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Tumor suppression by TP53 involves cell-autonomous and non-cell-autonomous mechanisms. TP53 can suppress tumor growth by modulating immune system functions; however, the mechanistic basis for this activity is not well understood. We report that p53 promotes the degradation of the DNA exonuclease TREX1, resulting in cytosolic dsDNA accumulation. We demonstrate that p53 requires the ubiquitin ligase TRIM24 to induce TREX1 degradation. The cytosolic DNA accumulation resulting from TREX1 degradation activates the cytosolic DNA-sensing cGAS/STING pathway, resulting in induction of type I interferons. TREX1 overexpression sufficed to block p53 activation of the cGAS/STING pathway. p53-mediated induction of type I interferon (IFNB1) is suppressed by cGAS/STING knockout, and p53's tumor suppressor activities are compromised by the loss of signaling through the cGAS/STING pathway. Thus, our study reveals that p53 utilizes the cGAS/STING innate immune system pathway for both cell-intrinsic and cell-extrinsic tumor suppressor activities.
Collapse
Affiliation(s)
- Monisankar Ghosh
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Suchandrima Saha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Luis A Martinez
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA.
| |
Collapse
|