1
|
Crawford KJ, Humphrey KS, Cortes E, Wang J, Feigin ME, Witkiewicz AK, Knudsen ES, Abel EV. Targeting FGFR4 Abrogates HNF1A-driven Metastasis in Pancreatic Ductal Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636643. [PMID: 39974881 PMCID: PMC11839031 DOI: 10.1101/2025.02.06.636643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Purpose We previously identified an oncogenic role for the transcription factor HNF1A in pancreatic ductal adenocarcinoma (PDAC). However, the role of HNF1A in the metastatic progression of PDAC remains unknown and targeting modalities for HNF1A -dependent phenotypes have yet to be identified. Experimental Design Transwell chambers were used to assess the effects of HNF1A and FGFR4 modulation on the migration and invasion of ATCC and patient-derived PDAC cells in vitro . An intrasplenic injection xenograft model was used to evaluate the impact of HNF1A knockdown and overexpression on metastatic tumor burden. Single-cell RNA sequencing, tissue microarray (TMA) data, and UMAP spatial profiling were used to identify FGFR4 as an HNF1A target gene upregulated in metastatic cells. RNAi and two FGFR4 inhibiting modalities (H3B-6527 and U3- 1784) were utilized to demonstrate the efficacy of FGFR4 inhibiting agents at reducing HNF1A- driven metastasis. Results Knockdown of HNF1A significantly decreases and HNF1A overexpression significantly increases PDAC cell migration and invasion. In vivo studies show that HNF1A knockdown significantly abrogates metastasis, while overexpression significantly promotes metastasis. Single-cell RNAseq shows that FGFR4 is upregulated in metastatic PDAC cells and staining for HNF1A and FGFR4 in a PDAC TMA reveals significant correlation between HNF1A and FGFR4 in PDAC patients. Further, knockdown and inhibition of FGFR4 significantly decreases HNF1A- mediated cell migration and invasion, and blocks HNF1A-driven metastasis in vivo . Conclusions These findings demonstrate that HNF1A drives PDAC metastasis via upregulation of FGFR4, and FGFR4 inhibition is a potential mechanism to target metastasis in PDAC patients. Translational Relevance Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, made even more devastating when metastases overwhelm major organs. The vast majority of PDAC patients either present with metastases or will relapse with recurrent metastatic PDAC after primary tumor resection. Unfortunately, toxic and largely ineffective chemotherapies are currently the only approved treatment options for these patients and therefore there exists a critical and unmet clinical need for targeted therapies against pro-metastatic pathways in PDAC. In the current study, we identify HNF1A as an oncogenic transcription factor that drives metastasis in PDAC, and it does so through upregulation of the receptor tyrosine kinase FGFR4. Importantly, FGFR4 is a targetable vulnerability and treatment with an FGFR4 blocking antibody reduces HNF1A-driven metastasis. These findings suggest that FGFR4 inhibitors could be an efficacious treatment for PDAC patients for the prevention or delay of metastatic tumor development.
Collapse
|
2
|
Veghini L, Pasini D, Fang R, Delfino P, Filippini D, Neander C, Vicentini C, Fiorini E, Lupo F, D'Agosto SL, Carbone C, Agostini A, Piro G, Rosa D, Bevere M, Markus P, Behrens D, Luchini C, Lawlor RT, Scarpa A, Biffi G, Cheung PF, Siveke JT, Corbo V. Differential activity of MAPK signalling defines fibroblast subtypes in pancreatic cancer. Nat Commun 2024; 15:10534. [PMID: 39627211 PMCID: PMC11615044 DOI: 10.1038/s41467-024-54975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Fibroblast heterogeneity is increasingly recognised across cancer conditions. Given their important contribution to disease progression, mapping fibroblasts' heterogeneity is critical to devise effective anti-cancer therapies. Cancer-associated fibroblasts (CAFs) represent the most abundant cell population in pancreatic ductal adenocarcinoma (PDAC). Whether CAF phenotypes are differently specified by PDAC cell lineages remains to be elucidated. Here, we reveal an important role for the MAPK signalling pathway in defining PDAC CAF phenotypes. We show that epithelial MAPK activity promotes the myofibroblastic differentiation of CAFs by sustaining the expression and secretion of TGF-β1. We integrate single-cell profiling of post-perturbation transcriptional responses from mouse models with cellular and spatial profiles of human tissues to define a MAPKhigh CAF (mapCAF) phenotype. We show that this phenotype associates with basal-like tumour cells and reduced frequency of CD8+ T cells. In addition to elevated MAPK activity, this mapCAF phenotype is characterized by TGF-β signalling, hypoxia responsive signatures, and immunoregulatory gene programs. Furthermore, the mapCAF signature is enriched in myofibroblastic CAFs from various cancer conditions and correlates with reduced response to immune checkpoint inhibition in melanoma. Altogether, our data expand our knowledge on CAF phenotype heterogeneity and reveal a potential strategy for targeting myofibroblastic CAFs in vivo.
Collapse
Affiliation(s)
- Lisa Veghini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Davide Pasini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rui Fang
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dea Filippini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Christian Neander
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Caterina Vicentini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Fiorini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Sabrina L D'Agosto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Human Technopole, Milan, Italy
| | - Carmine Carbone
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Agostini
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Geny Piro
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Diego Rosa
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Peter Markus
- Department of General, Visceral, and Trauma Surgery, Elisabeth Hospital Essen, Essen, Germany
| | - Diana Behrens
- EPO-Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Claudio Luchini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Rita T Lawlor
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Phyllis F Cheung
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Spatiotemporal Tumor Heterogeneity, DKTK, Partner Site Essen, A Partnership Between DKFZ and University Hospital Essen, Essen, Germany
| | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
3
|
Orlandi E, Guasconi M, Vecchia S, Trubini S, Giuffrida M, Proietto M, Anselmi E, Capelli P, Romboli A. Exploring the Horizon: Anti-Fibroblast Growth Factor Receptor Therapy in Pancreatic Cancer with Aberrant Fibroblast Growth Factor Receptor Expression-A Scoping Review. Cancers (Basel) 2024; 16:2912. [PMID: 39199681 PMCID: PMC11352631 DOI: 10.3390/cancers16162912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease, often diagnosed at advanced stages, with a 5-year overall survival rate of around 10%. Current treatments have limited effectiveness, underscoring the need for new therapeutic options. This scoping review aims to identify and summarize preclinical and clinical studies on FGFR (Fibroblast Growth Factor Receptor) inhibitors, including tyrosine kinase inhibitors (TKIs) and FGFR-specific inhibitors, in pancreatic cancer with FGFR alterations. We included studies analyzing efficacy, safety, and survival outcomes in various populations. A comprehensive search across major databases identified 73 relevant studies: 32 preclinical, 16 clinical, and 25 from gray literature. The clinical trials focused primarily on efficacy (20 studies) and safety (14 studies), with fewer studies addressing survival outcomes. FGFR1 was the most studied alteration, followed by FGFR2 and FGFR4. Although FGFR alterations are relatively rare in pancreatic cancer, the available data, including promising real-life outcomes, suggest significant potential for FGFR inhibitors. However, more extensive research is needed to identify the correct genetic drivers and gather robust survival data. Ongoing and future trials are expected to provide more comprehensive insights, potentially leading to improved targeted therapies for pancreatic cancer patients with FGFR alterations.
Collapse
Affiliation(s)
- Elena Orlandi
- Department of Oncology-Hematology, Azienda USL of Piacenza, 29121 Piacenza, Italy; (S.T.); (M.P.); (E.A.)
| | - Massimo Guasconi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
- Department of Health Professions Management, Azienda USL of Piacenza, 29121 Piacenza, Italy
| | - Stefano Vecchia
- Department of Pharmacy, Azienda USL of Piacenza, 29121 Piacenza, Italy;
| | - Serena Trubini
- Department of Oncology-Hematology, Azienda USL of Piacenza, 29121 Piacenza, Italy; (S.T.); (M.P.); (E.A.)
| | - Mario Giuffrida
- Department of General Surgery, Azienda USL of Piacenza, 29121 Piacenza, Italy; (M.G.); (P.C.); (A.R.)
| | - Manuela Proietto
- Department of Oncology-Hematology, Azienda USL of Piacenza, 29121 Piacenza, Italy; (S.T.); (M.P.); (E.A.)
| | - Elisa Anselmi
- Department of Oncology-Hematology, Azienda USL of Piacenza, 29121 Piacenza, Italy; (S.T.); (M.P.); (E.A.)
| | - Patrizio Capelli
- Department of General Surgery, Azienda USL of Piacenza, 29121 Piacenza, Italy; (M.G.); (P.C.); (A.R.)
| | - Andrea Romboli
- Department of General Surgery, Azienda USL of Piacenza, 29121 Piacenza, Italy; (M.G.); (P.C.); (A.R.)
| |
Collapse
|
4
|
Easter M, Hirsch MJ, Harris E, Howze PH, Matthews EL, Jones LI, Bollenbecker S, Vang S, Tyrrell DJ, Sanders YY, Birket SE, Barnes JW, Krick S. FGF receptors mediate cellular senescence in the cystic fibrosis airway epithelium. JCI Insight 2024; 9:e174888. [PMID: 38916962 PMCID: PMC11383597 DOI: 10.1172/jci.insight.174888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
The number of adults living with cystic fibrosis (CF) has already increased significantly because of drastic improvements in life expectancy attributable to advances in treatment, including the development of highly effective modulator therapy. Chronic airway inflammation in CF contributes to morbidity and mortality, and aging processes like inflammaging and cell senescence influence CF pathology. Our results show that single-cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr-knockout (Cftr-/-) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1, attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging population with CF.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Elex Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Patrick Henry Howze
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Emma Lea Matthews
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Luke I. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Shia Vang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Daniel J. Tyrrell
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | | | - Susan E. Birket
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| |
Collapse
|
5
|
Ciulla C, Luchini C. Genomic determinants of biological aggressiveness and poor prognosis of pancreatic cancers: KRAS and beyond. Expert Rev Mol Diagn 2024; 24:355-362. [PMID: 38708441 DOI: 10.1080/14737159.2024.2348676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION A marked histomolecular heterogeneity characterizes pancreatic cancer. Thus, different tumor histologies with divergent genomic profiles exist within the same category. AREAS COVERED Using data from PubMed, SCOPUS, and Embase (last search date: 04/04/2024), this expert-based, narrative review presents and discusses the essential molecular determinants of biological aggressiveness and poor prognosis in pancreatic cancer. First, KRAS mutation still represents one of the most critical difficulties in treating pancreatic cancers. In this district, it is mutated in > 90% of malignant tumors. Notably, actionable alterations for molecular-based therapies are typically lacking in KRAS-mutated pancreatic cancer. Furthermore, transcriptome-based studies clarified that the squamous phenotype is characterized by poorer prognosis and response to standard chemotherapy. We also discuss molecular biomarkers related to dismal prognosis in specific subsets of pancreatic cancer, such as SMAD4 in signet-ring cell carcinoma and TP53 in invasive cancers derived from intraductal tubulopapillary neoplasms. EXPERT OPINION The identification of the subgroups of pancreatic cancer with particularly unfavorable prognoses is a critical step for addressing specific research efforts. In addition to implementing and strengthening current precision oncology strategies, the decisive step for improving the survival of patients affected by pancreatic cancer must pass through targeting the KRAS gene.
Collapse
Affiliation(s)
- Calogero Ciulla
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Center, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Carrillo-Dávila IA, Garibaldi-Ríos AF, Figuera LE, Gómez-Meda BC, Zúñiga-González GM, Puebla-Pérez AM, García-Verdín PM, Castro-García PB, Gutiérrez-Hurtado IA, Torres-Mendoza BM, Gallegos-Arreola MP. Association of the rs1966265 and rs351855 FGFR4 Variants with Colorectal Cancer in a Mexican Population and Their Analysis In Silico. Biomedicines 2024; 12:602. [PMID: 38540215 PMCID: PMC10968131 DOI: 10.3390/biomedicines12030602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 05/25/2025] Open
Abstract
The aim of this study was to associate FGFR4 rs1966265 and rs351855 variants with colorectal cancer (CRC) in a Mexican population and to perform in silico analysis. Genomic DNA from 412 healthy individuals and 475 CRC patients was analyzed. In silico analysis was performed using the PolyPhen-V2, GEPIA, GTEx, and Cytoscape platforms. The GA genotype dominant model (GAAA) of rs1966265 and the AA genotype dominant and recessive models of rs351855 were identified as CRC risk factors (p < 0.05). CRC patients aged ≥ 50 years at diagnosis who consumed alcohol had a higher incidence of the rs351855 GA genotype than the control group (p < 0.05). Associations were observed between the rs1966265 GA genotype and patients with rectal cancer and stage III-IV disease. The rs351855 AA genotype was a risk factor for partial chemotherapy response, and the GA + AA genotype for age ≥ 50 years at diagnosis and rectal cancer was associated with a partial response to chemotherapy (p < 0.05). The AA haplotype was associated with increased susceptibility to CRC. In silico analysis indicated that the rs351855 variant is likely pathogenic (score = 0.998). Genotypic expression analysis in blood samples showed statistically significant differences (p < 0.05). EFNA4, SLC3A2, and HNF1A share signaling pathways with FGFR4. Therefore, rs1966265 and rs351855 may be potential CRC risk factors.
Collapse
Affiliation(s)
- Irving Alejandro Carrillo-Dávila
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Asbiel Felipe Garibaldi-Ríos
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Belinda Claudia Gómez-Meda
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Guillermo M. Zúñiga-González
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| | - Ana María Puebla-Pérez
- Laboratorio de Inmunofarmacología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara (UdeG), Guadalajara 44430, Jalisco, Mexico; (A.M.P.-P.); (P.B.C.-G.)
| | - Patricia Montserrat García-Verdín
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Paola Beatriz Castro-García
- Laboratorio de Inmunofarmacología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara (UdeG), Guadalajara 44430, Jalisco, Mexico; (A.M.P.-P.); (P.B.C.-G.)
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias Humanas y Retrovirus, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
- Departamento de Disciplinas Filosófico Metodológicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
| |
Collapse
|
7
|
Mancini V, Raffa S, Fiorio Pla A, French D, Torrisi MR, Ranieri D, Belleudi F. TRPA1 Contributes to FGFR2c Signaling and to Its Oncogenic Outcomes in Pancreatic Ductal Adenocarcinoma-Derived Cell Lines. Cancers (Basel) 2024; 16:609. [PMID: 38339360 PMCID: PMC10854535 DOI: 10.3390/cancers16030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Fibroblast growth factor receptor (FGFR) signaling is a key modulator of cellular processes dysregulated in cancer. We recently found that the high expression of the mesenchymal FGFR2c variant in human pancreatic ductal adenocarcinoma (PDAC)-derived cells triggers the PKCε-mediated improvement of EMT and of MCL-1/SRC-dependent cell invasion. Since other membrane proteins can affect the receptor tyrosine kinase signaling, including transient receptor potential channels (TRPs), in this work, we investigated the role of TRPs in the FGFR2c/PKCε oncogenic axis. Our results highlighted that either the FGFR2c/PKCε axis shut-off obtained by shRNA or its sustained activation via ligand stimulation induces TRPA1 downregulation, suggesting a channel/receptor dependence. Indeed, biochemical molecular and immunofluorescence approaches demonstrated that the transient depletion of TRPA1 by siRNA was sufficient to attenuate FGFR2c downstream signaling pathways, as well as the consequent enhancement of EMT. Moreover, the biochemical check of MCL1/SRC signaling and the in vitro assay of cellular motility suggested that TRPA1 also contributes to the FGFR2c-induced enhancement of PDAC cell invasiveness. Finally, the use of a selective channel antagonist indicated that the contribution of TRPA1 to the FGFR2c oncogenic potential is independent of its pore function. Thus, TRPA1 could represent a putative candidate for future target therapies in PDAC.
Collapse
Affiliation(s)
- Vanessa Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.R.); (D.F.); (M.R.T.); (F.B.)
| | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.R.); (D.F.); (M.R.T.); (F.B.)
| | - Alessandra Fiorio Pla
- Turin Cell Physiology Laboratory, Department of Life Sciences and Systems Biology, University of Turin, 10125 Torino, Italy;
| | - Deborah French
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.R.); (D.F.); (M.R.T.); (F.B.)
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.R.); (D.F.); (M.R.T.); (F.B.)
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.R.); (D.F.); (M.R.T.); (F.B.)
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi “Link Campus University”, 00165 Rome, Italy
| | - Francesca Belleudi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.M.); (S.R.); (D.F.); (M.R.T.); (F.B.)
| |
Collapse
|