1
|
Manouchehri JM, Datta J, Marcho LM, Stover D, Ganju RK, Ramaswamy B, Carson WE, Mittra A, Zhang X, Schnell PM, Yue Y, Rubinstein MP, Cherian MA. Sulfatase 2 inhibition sensitizes triple-negative breast cancer cells to paclitaxel through augmentation of extracellular ATP. Cancer Biol Ther 2025; 26:2483989. [PMID: 40140347 PMCID: PMC11951697 DOI: 10.1080/15384047.2025.2483989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/09/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
The highest incidence and cancer-related mortality rate among women worldwide is due to breast cancer. Triple-negative breast cancers (TNBC) are associated with more inferior outcomes than other breast cancers because of their progressive nature and the deficit in available therapies. Therefore, there is a need for new therapeutic approaches. Our lab determined that chemotherapy induces the release of extracellular adenosine triphosphate (eATP), and, hence, augments TNBC cells' response to chemotherapy. Despite this, eATP concentrations are restricted by a variety of extracellular ATPases. We propose that, as an ATPase inhibitor, heparan sulfate (HS) would augment eATP concentrations and TNBC vulnerability induced by chemotherapy. Sulfatase 2 (SULF2) removes sulfate from HS, the functional group essential for ATPase inhibition. Consequently, we propose that TNBC cell death and eATP release induced by chemotherapy would be intensified by SULF2 inhibitors. We examined eATP and cell viability in paclitaxel-treated TNBC and nontumorigenic immortal mammary epithelial MCF-10A cells in the presence of OKN-007, a selective SULF2 inhibitor, and/or heparan sodium sulfate. Furthermore, sulfatase 1 (SULF1) and SULF2 protein expressions were ascertained. We found that the expression of SULF2 was greater in TNBC cell lines when compared to MCF-10A cells. The release of eATP and loss of TNBC cell viability induced by chemotherapy was enhanced by OKN-007. The co-treatment of chemotherapy and OKN-007 also attenuated cancer-initiating cells. This data implies that the combination of SULF2 inhibitors with chemotherapy augments eATP and decreases cell viability of TNBC greater than chemotherapy alone.
Collapse
Affiliation(s)
| | - Jharna Datta
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lynn M. Marcho
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Daniel Stover
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ramesh K. Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Arjun Mittra
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- College of Nursing, University of South Florida, Tampa, FL, USA
| | | | - Yu Yue
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mark P. Rubinstein
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mathew A. Cherian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Liu Y, Sun Q, Guo J, Yan L, Yan Y, Gong Y, Lin J, Yuan H, Jin J, Wang B, Chen H, Zhang L, Zhang W, Luan X. Dual ferroptosis induction in N2-TANs and TNBC cells via FTH1 targeting: A therapeutic strategy for triple-negative breast cancer. Cell Rep Med 2025; 6:101915. [PMID: 39809268 PMCID: PMC11866498 DOI: 10.1016/j.xcrm.2024.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Tumor-associated neutrophils (TANs) play a critical role in the progression and prognosis of triple-negative breast cancer (TNBC), with N2-type TANs known for their pro-tumor characteristics. This study introduces CT-1, a derivative of cryptotanshinone that effectively suppresses TNBC growth while selectively reducing the proportion of N2-type TANs within tumor tissue. Notably, CT-1 induces simultaneous ferroptosis in both N2-type TANs and TNBC cells, a dual mechanism that enhances its therapeutic efficacy. The study identifies ferritin heavy chain 1 (FTH1), a key protein in iron metabolism, as the direct target of CT-1. By targeting FTH1, CT-1 facilitates the interaction between NCOA4 and ferritin, triggering ferritinophagy-mediated ferroptosis. These findings position CT-1 as a promising therapeutic agent, offering a strategy to combat TNBC by inducing ferroptosis in both N2-type TANs and cancer cells. This approach underscores the potential of FTH1 as a therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Yichen Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyan Sun
- National Key Laboratory of Lead Druggability Research (Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry Co. Ltd.), Shanghai 200040, China
| | - Jingwen Guo
- National Key Laboratory of Lead Druggability Research (Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry Co. Ltd.), Shanghai 200040, China
| | - Li Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yue Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiting Gong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hu Yuan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Manouchehri JM, Datta J, Marcho LM, Reardon JJ, Stover D, Wesolowski R, Borate U, Cheng TYD, Schnell PM, Ramaswamy B, Sizemore GM, Rubinstein MP, Cherian MA. The role of heparan sulfate in enhancing the chemotherapeutic response in triple-negative breast cancer. Breast Cancer Res 2024; 26:153. [PMID: 39506780 PMCID: PMC11539583 DOI: 10.1186/s13058-024-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Breast cancer, one of the most common forms of cancer, is associated with the highest cancer-related mortality among women worldwide. In comparison to other types of breast cancer, patients diagnosed with the triple-negative breast cancer (TNBC) subtype have the worst outcome because current therapies do not produce long-lasting responses. Hence, innovative therapies that produce persisting responses are a critical need. We previously discovered that hyperactivating purinergic receptors (P2RXs) by increasing extracellular adenosine triphosphate (eATP) concentrations enhances TNBC cell lines' response to chemotherapy. Heparan sulfate inhibits multiple extracellular ATPases, so it is a molecule of interest in this regard. In turn, heparanase degrades polysulfated polysaccharide heparan sulfate. Importantly, previous work suggests that breast cancer and other cancers express heparanase at high levels. Hence, as heparan sulfate can inhibit extracellular ATPases to facilitate eATP accumulation, it may intensify responses to chemotherapy. We postulated that heparanase inhibitors would exacerbate chemotherapy-induced decreases in TNBC cell viability by increasing heparan sulfate in the cellular microenvironment and hence, augmenting eATP. METHODS We treated TNBC cell lines MDA-MB 231, Hs 578t, and MDA-MB 468 and non-tumorigenic immortal mammary epithelial MCF-10A cells with paclitaxel (cytotoxic chemotherapeutic) with or without the heparanase inhibitor OGT 2115 and/or supplemental heparan sulfate. We evaluated cell viability and the release of eATP. Also, we compared the expression of heparanase protein in cell lines and tissues by immunoblot and immunohistochemistry, respectively. In addition, we examined breast-cancer-initiating cell populations using tumorsphere formation efficiency assays on treated cells. RESULTS We found that combining heparanase inhibitor OGT 2115 with chemotherapy decreased TNBC cell viability and tumorsphere formation through increases in eATP and activation of purinergic receptors as compared to TNBC cells treated with single-agent paclitaxel. CONCLUSION Our data shows that by preventing heparan sulfate breakdown, heparanase inhibitors make TNBC cells more susceptible to chemotherapy by enhancing eATP concentrations.
Collapse
Affiliation(s)
- Jasmine M Manouchehri
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Jharna Datta
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Lynn M Marcho
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Jesse J Reardon
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Daniel Stover
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Robert Wesolowski
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Uma Borate
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Ting-Yuan David Cheng
- Division of Cancer Prevention and Control, Department of Internal Medicine, The Ohio State University, Suite 525, 1590 North High St., Columbus, OH, 43201, USA
| | - Patrick M Schnell
- Division of Biostatistics, The Ohio State University College of Public Health, 1841 Neil Ave., Columbus, OH, 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Gina M Sizemore
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Mark P Rubinstein
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA
| | - Mathew A Cherian
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 410 W 10th Ave., Columbus, OH, 43210, USA.
- Division of Medical Oncology, 460 W 12th Ave., 888 BRT, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Lin X, Yang P, Wang M, Huang X, Wang B, Chen C, Xu A, Cai J, Khan M, Liu S, Lin J. Dissecting gastric cancer heterogeneity and exploring therapeutic strategies using bulk and single-cell transcriptomic analysis and experimental validation of tumor microenvironment and metabolic interplay. Front Pharmacol 2024; 15:1355269. [PMID: 38962317 PMCID: PMC11220201 DOI: 10.3389/fphar.2024.1355269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024] Open
Abstract
Gastric cancer, the fifth most prevalent cancer worldwide, is often diagnosed in advanced stages with limited treatment options. Examining the tumor microenvironment (TME) and its metabolic reprogramming can provide insights for better diagnosis and treatment. This study investigates the link between TME factors and metabolic activity in gastric cancer using bulk and single-cell RNA-sequencing data. We identified two molecular subtypes in gastric cancer by analyzing the distinct expression patterns of 81 prognostic genes related to the TME and metabolism, which exhibited significant protein-level interactions. The high-risk subtype had increased stromal content, fibroblast and M2 macrophage infiltration, elevated glycosaminoglycans/glycosphingolipids biosynthesis, and fat metabolism, along with advanced clinicopathological features. It also exhibited low mutation rates and microsatellite instability, associating it with the mesenchymal phenotype. In contrast, the low-risk group showed higher tumor content and upregulated protein and sugar metabolism. We identified a 15-gene prognostic signature representing these characteristics, including CPVL, KYNU, CD36, and GPX3, strongly correlated with M2 macrophages, validated through single-cell analysis and an internal cohort. Despite resistance to immunotherapy, the high-risk group showed sensitivity to molecular targeted agents directed at IGF-1R (BMS-754807) and the PI3K-mTOR pathways (AZD8186, AZD8055). We experimentally validated these promising drugs for their inhibitory effects on MKN45 and MKN28 gastric cells. This study unveils the intricate interplay between TME and metabolic pathways in gastric cancer, offering potential for enhanced diagnosis, patient stratification, and personalized treatment. Understanding molecular features in each subtype enriches our comprehension of gastric cancer heterogeneity and potential therapeutic targets.
Collapse
Affiliation(s)
- XianTao Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Ping Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - MingKun Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiuting Huang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Baiyao Wang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chengcong Chen
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Anan Xu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiazuo Cai
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Muhammad Khan
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Sha Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
5
|
Li X, Zhao Y, Sun W, Zhang C, Yu Y, Du B, Jin A, Liu Y. Neutrophil depletion attenuates antibody-mediated rejection in a renal transplantation mouse model. Clin Exp Immunol 2024; 216:211-219. [PMID: 38150328 PMCID: PMC11036104 DOI: 10.1093/cei/uxad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/05/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023] Open
Abstract
Antibody-mediated rejection (AMR) can cause graft failure following renal transplantation. Neutrophils play a key role in AMR progression, but the exact mechanism remains unclear. We investigated the effect of neutrophils on AMR in a mouse kidney transplantation model. The mice were divided into five groups: syngeneic transplantation (Syn), allograft transplantation (Allo), and three differently treated AMR groups. The AMR mouse model was established using skin grafts to pre-sensitize recipient mice. Based on the AMR model, Ly6G-specific monoclonal antibodies were administered to deplete neutrophils (NEUT-/- + AMR) and TACI-Fc was used to block B-cell-activating factor (BAFF)/a proliferation-inducing ligand (APRIL) signaling (TACI-Fc + AMR). Pathological changes were assessed using hematoxylin-eosin and immunohistochemical staining. Banff values were evaluated using the Banff 2015 criteria. Donor-specific antibody (DSA) levels were assessed using flow cytometry, and BAFF and APRIL concentrations were measured using ELISA. Compared to the Syn and Allo groups, a significantly increased number of neutrophils and increased C4d and IgG deposition were observed in AMR mice, accompanied by elevated DSA levels. Neutrophil depletion inhibited inflammatory cell infiltration and reduced C4d and IgG deposition. Neutrophil depletion significantly decreased DSA levels after transplantation and suppressed BAFF and APRIL concentrations, suggesting a mechanism for attenuating AMR-induced graft damage. Similar results were obtained after blockading BAFF/APRIL using a TACI-Fc fusion protein. In summary, neutrophil infiltration increased in the AMR mouse renal transplantation model. Neutrophil depletion or blockading the BAFF/APRIL signaling pathway significantly alleviated AMR and may provide better options for the clinical treatment of AMR.
Collapse
Affiliation(s)
- Xingku Li
- Experimental Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yakun Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wenying Sun
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Cong Zhang
- Department of Microbiology and Immunology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yadi Yu
- Department of Immunology, College of Basic Medicine, Harbin Medical University, Harbin, People’s Republic of China
| | - Bo Du
- Experimental Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - AiShun Jin
- Department of Immunology, College of Basic Medicine, Harbin Medical University, Harbin, People’s Republic of China
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ye Liu
- Department of Immunology, College of Basic Medicine, Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
6
|
Jung HH, Kim JY, Cho EY, Lee JE, Kim SW, Nam SJ, Park YH, Ahn JS, Im YH. A Retrospective Exploratory Analysis for Serum Extracellular Vesicles Reveals APRIL (TNFSF13), CXCL13, and VEGF-A as Prognostic Biomarkers for Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:15576. [PMID: 37958571 PMCID: PMC10647725 DOI: 10.3390/ijms242115576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) is widely used as a standard treatment for early-stage triple-negative breast cancer (TNBC). While patients who achieve pathologic complete response (pCR) have a highly favorable outcome, patients who do not achieve pCR have variable prognoses. It is important to identify patients who are most likely to have poor survival outcomes to identify candidates for more aggressive therapeutic approaches after NAC. Many studies have demonstrated that cytokines and growth factors packaged into extracellular vesicles (EVs) have an essential role in tumor progression and drug resistance. In this study, we examined the role of serum-derived EV-associated cytokines as prognostic biomarkers for long-term outcomes in patients who underwent anthracycline-taxane-based NAC. We isolated extracellular vesicles from the serum of 190 TNBC patients who underwent NAC between 2015 and 2018 at Samsung Medical Center. EV-associated cytokine concentrations were measured with ProcartaPlex Immune Monitoring 65-plex panels. The prognostic value of EV-associated cytokines was studied. We found that patients with high EV_APRIL, EV_CXCL13, and EV_VEGF-A levels had shorter overall survival (OS). We further evaluated the role of these selected biomarkers as prognostic factors in patients with residual disease (RD) after NAC. Even in patients with RD, high levels of EV_APRIL, EV_CXCL13, and EV_VEGF-A were correlated with poor OS. In all subgroup analyses, EV_CXCL13 overexpression was significantly associated with poor overall survival. Moreover, multivariate analysis indicated that a high level of EV_CXCL13 was an independent predictor of poor OS. Correlation analysis between biomarker levels in EVs and serum showed that EV_VEGF-A positively correlated with soluble VEGF-A but not CXCL13. An elevated level of soluble VEGF-A was also associated with poor OS. These findings suggest that EV_APRIL, EV_CXCL13, and EV_VEGF-A may be useful in identifying TNBC patients at risk of poor survival outcomes after NAC.
Collapse
Affiliation(s)
- Hae Hyun Jung
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (H.H.J.); (J.-Y.K.); (Y.H.P.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Ji-Yeon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (H.H.J.); (J.-Y.K.); (Y.H.P.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea;
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Eun Yoon Cho
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
- Department of Pathology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jeong Eon Lee
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Seok Won Kim
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Seok Jin Nam
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
- Department of Surgery, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Yeon Hee Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (H.H.J.); (J.-Y.K.); (Y.H.P.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea;
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea;
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
| | - Young-Hyuck Im
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (H.H.J.); (J.-Y.K.); (Y.H.P.)
- Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea;
- School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.Y.C.); (J.E.L.); (S.W.K.); (S.J.N.)
| |
Collapse
|
7
|
Manouchehri JM, Marcho L, Cherian MA. Sulfatase 2 Inhibition Sensitizes Triple-Negative Breast Cancer Cells to Chemotherapy Through Augmentation of Extracellular ATP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557965. [PMID: 37745565 PMCID: PMC10516004 DOI: 10.1101/2023.09.15.557965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Breast cancer is the leading cause of cancer-related death among women worldwide. Patients diagnosed with triple-negative breast cancer (TNBC) have limited therapeutic options that produce durable responses. Hence, a diagnosis of TNBC is associated with a poor prognosis compared to other types of breast cancer. As a result, there is a critical need for novel therapies that can deepen and prolong responses.We previously found that chemotherapy causes the release of extracellular adenosine triphosphate (eATP). Augmenting eATP release can boost the response of TNBC cells to chemotherapy and cause increased cell death. However, eATP concentrations are limited by several families of extracellular ATPases, which complicates the design of compounds that attenuate eATP degradation.In this study, we hypothesized that heparan sulfate (HS) would inhibit extracellular ATPases and accentuate chemotherapy-induced cytotoxicity in TNBC by augmenting eATP. HS can be desulfated by sulfatase 1 and 2; sulfatase 2 is consistently highly expressed in a variety of cancers including breast cancer, whereas sulfatase 1 is not. We hypothesized that the sulfatase 2 inhibitor OKN-007 would exacerbate chemotherapy-induced eATP release and TNBC cell death. Methods TNBC cell lines and nontumorigenic immortal mammary epithelial cells were treated with paclitaxel in the presence of heparan sodium sulfate and/or OKN-007; eATP content and cell viability were evaluated. In addition, protein and cell surface expression of sulfatases 1 and 2 were determined in all examined cell lines via ELISA, Western blot, and flow cytometry analyses. Results Sulfatase 2 was highly expressed in TNBC cell lines and human breast cancer samples but not in immortal mammary epithelial cells and much less so in normal human breast tissue and ductal carcinoma in situ samples. OKN-007 exacerbated chemotherapy-induced eATP release and chemotherapy-induced TNBC cell death. When combined with chemotherapy, OKN-007 attenuated cells with a cancer-initiating cell phenotype. Conclusions These results suggest that sulfatase 2 inhibitors in combination with chemotherapy attenuate the viability of TNBC cells more than chemotherapy alone by exacerbating eATP release. These effects, as well as their capacity to attenuate the cancer-initiating cell fraction, may translate into combination therapies for TNBC that induce deeper and more durable responses.
Collapse
|
8
|
Manouchehri JM, Marcho L, Cherian MA. The role of heparan sulfate in enhancing the chemotherapeutic response in triple-negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556819. [PMID: 37745355 PMCID: PMC10515779 DOI: 10.1101/2023.09.08.556819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Among women worldwide, breast cancer has the highest incidence and is the leading cause of cancer-related death. Patients with the triple-negative breast cancer (TNBC) subtype have an inferior prognosis in comparison to other breast cancers because current therapies do not facilitate long-lasting responses. Thus, there is a demand for more innovative therapies that induce durable responses.In our previous research, we discovered that augmenting the concentration of extracellular ATP (eATP) greatly enhances the chemotherapeutic response of TNBC cell lines by activating purinergic receptors (P2RXs), leading to cell death through the induction of non-selective membrane permeability. However, eATP levels are limited by several classes of extracellular ATPases. One endogenous molecule of interest that can inhibit multiple classes of extracellular ATPases is heparan sulfate. Polysulfated polysaccharide heparan sulfate itself is degraded by heparanase, an enzyme that is known to be highly expressed in various cancers, including breast cancer. Heparan sulfate has previously been shown to regulate several cancer-related processes such as fibroblast growth factor signaling, neoangiogenesis by sequestering vascular endothelial growth factors in the extracellular matrix, hedgehog signaling and cell adhesion. In this project, we identified an additional mechanism for a tumor suppressor role of heparan sulfate: inhibition of extracellular ATPases, leading to augmented levels of eATP.Several heparanase inhibitors have been previously identified, including OGT 2115, suramin, PI-88, and PG 545. We hypothesized that heparanase inhibitors would augment eATP concentrations in TNBC by increasing heparan sulfate in the tumor microenvironment, resulting in enhanced cell death in response to chemotherapy. Methods We treated TNBC cell lines MDA-MB 231, Hs 578t, and MDA-MB 468 and non-tumorigenic immortal mammary epithelial MCF-10A cells with increasing concentrations of the chemotherapeutic agent paclitaxel in the presence of heparan sulfate and/or the heparanase inhibitor OGT 2115 while analyzing eATP release and cell viability. Moreover, to verify that the effects of OGT 2115 are mediated through eATP, we applied specific antagonists to the purinergic receptors P2RX4 and P2RX7. In addition, the protein expression of heparanase was compared in the cell lines by Western blot analysis. We also evaluated the consequences of this therapeutic strategy on the breast cancer-initiating cell population in the treated cells using flow cytometry and tumorsphere formation efficiency assays. Results Heparanase was found to be highly expressed in immortal mammary epithelial cells in comparison to TNBC cell lines. The heparanase inhibitor OGT 2115 augmented chemotherapy-induced TNBC cell death and eATP release. Conclusion These results demonstrate that inhibiting the degradation of heparan sulfate in the tumor microenvironment augments the susceptibility of TNBC cell lines to chemotherapy by increasing extracellular ATP concentrations. This strategy could potentially be applied to induce more enhanced and enduring responses in TNBC patients.
Collapse
|
9
|
An S, Kim SK, Kwon HY, Kim CS, Bang HJ, Do H, Kim B, Kim K, Kim Y. Expression of Immune-Related and Inflammatory Markers and Their Prognostic Impact in Colorectal Cancer Patients. Int J Mol Sci 2023; 24:11579. [PMID: 37511338 PMCID: PMC10380610 DOI: 10.3390/ijms241411579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The tumor microenvironment of colorectal cancer (CRC) is heterogenous; thus, it is likely that multiple immune-related and inflammatory markers are simultaneously expressed in the tumor. The aim of this study was to identify immune-related and inflammatory markers expressed in freshly frozen CRC tissues and to investigate whether they are related to the clinicopathological features and prognosis of CRC. Seventy patients with CRC who underwent curative surgical resection between December 2014 and January 2017 were included in this study. Tissue samples were obtained from tumor and non-tumor areas in the patients' colons. The concentrations of immune-related markers (APRIL/TNFSF13, BAFF, LAG-3, PD-1, PD-L1, and CTLA-4) and inflammatory markers (CHIT, MMP-3, osteocalcin, pentraxin-3, sTNF-R1, and sTNF-R2) in the samples were measured using the Bio-plex Multiplex Immunoassay system. The concentrations of APRIL/TNFSF13, BAFF, and MMP-3 in the samples were significantly high; thus, we conducted analyses based on the cut-off values for these three markers. The high-APRIL/TNFSH13-expression group showed a significantly higher rate of metastatic lesions than the low-expression group, whereas the high-MMP-3-expression group had higher CEA levels, more lymph node metastases, and more advanced disease stages than the low-expression group. The five-year disease-free survival of the high-MMP-3-expression group was significantly shorter than that of the low-expression group (65.1% vs. 90.2%, p = 0.033). This study provides evidence that the APRIL/TNFSF13, BAFF, and MMP-3 pathway is overexpressed in CRC tissues and is associated with unfavorable clinicopathological features and poor prognosis in CRC patients. These markers could serve as diagnostic or prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Sanghyun An
- Department of Colorectal Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Wonju Surgical Research Collaboration, Wonju 26465, Republic of Korea
| | - Soo-Ki Kim
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hye Youn Kwon
- Department of Colorectal Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Wonju Surgical Research Collaboration, Wonju 26465, Republic of Korea
| | - Cheol Su Kim
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hui-Jae Bang
- Wonju Surgical Research Collaboration, Wonju 26465, Republic of Korea
- Department of Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Hyejin Do
- Department of Anesthesiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - BoRa Kim
- Department of Internal Medicine, Division of Gastroenterology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Kwangmin Kim
- Department of Colorectal Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Wonju Surgical Research Collaboration, Wonju 26465, Republic of Korea
| | - Youngwan Kim
- Department of Colorectal Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Wonju Surgical Research Collaboration, Wonju 26465, Republic of Korea
| |
Collapse
|
10
|
Inoue R, Nishi H, Osaka M, Yoshida M, Nangaku M. Neutrophil Protein Kinase R Mediates Endothelial Adhesion and Migration by the Promotion of Neutrophil Actin Polymerization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2173-2183. [PMID: 35396220 DOI: 10.4049/jimmunol.2001349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Neutrophils protect against bacterial and fungal infections, but tight regulation of cell activation is essential for avoiding tissue damage in autoimmune disorders. Protein kinase R (PKR) is a serine/threonine kinase originally characterized by its role in the defense mechanisms against viral infection. Although PKR is involved in the signaling pathways of neurodegenerative diseases and metabolic disorders, its function in neutrophils is not well delineated. In this study, we demonstrate that human neutrophil PKR mediates adhesion to endothelial cells under physiological flow conditions but does not mediate rolling on those cells. Also, neutrophil PKR activation contributes to migration toward chemoattractants. Mechanistically, neutrophil PKR mediates the cell spreading and binding to ICAM-1 in static condition. Moreover, Ab microarray reveals that calcium/calmodulin-dependent protein kinase II is phosphorylated downstream of PKR and affects actin polymerization that is a cytoskeleton rearrangement indispensable for neutrophil migration induced by fMLF. In vivo, neutrophil recruitment into the dorsal air pouch of mice is reduced by PKR inhibitor treatment. Also, in mice with nephrotoxic serum nephritis, the compound treatment suppresses neutrophil accumulation in kidney glomerulus and subsequent development of albuminuria. Thus, in vascular inflammation, neutrophil PKR plays a critical role in the recruitment process, including endothelial adhesion and migration via leukocyte actin polymerization.
Collapse
Affiliation(s)
- Reiko Inoue
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; and
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; and
| | - Mizuko Osaka
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; and
| |
Collapse
|
11
|
Nowacka KH, Jabłońska E. Role of the APRIL molecule in solid tumors. Cytokine Growth Factor Rev 2021; 61:38-44. [PMID: 34446365 DOI: 10.1016/j.cytogfr.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
The APRIL molecule, produced by immune cells, their precursors, and cancer cells, is one of the important factors that influences the process of survival and proliferation of cancer cells. In the present review, we summarize the current knowledge on the effects of APRIL on human cancer development and develop a scheme demonstrating the mechanism of the action of APRIL on solid tumors. Understanding the effects of APRIL, including the intracellular signal transduction pathway, may be key for the use of this protein as a biomarker of the cancer process. The correlations observed between APRIL levels and cancer parameters (e.g., disease stage and presence of malignant phenotypes) indicate that APRIL may play an important role, not only in the diagnostic process, but also as a therapeutic target in various cancers.
Collapse
Affiliation(s)
- Kinga Henryka Nowacka
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269 Białystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269 Białystok, Poland.
| |
Collapse
|
12
|
Identification and validation of a novel ferroptosis-related gene model for predicting the prognosis of gastric cancer patients. PLoS One 2021; 16:e0254368. [PMID: 34252149 PMCID: PMC8274920 DOI: 10.1371/journal.pone.0254368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ferroptosis is a novel form of regulated cell death that plays a critical role in tumorigenesis. The purpose of this study was to establish a ferroptosis-associated gene (FRG) signature and assess its clinical outcome in gastric cancer (GC). Methods Differentially expressed FRGs were identified using gene expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were performed to construct a prognostic signature. The model was validated using an independent GEO dataset, and a genomic-clinicopathologic nomogram integrating risk scores and clinicopathological features was established. Results An 8-FRG signature was constructed to calculate the risk score and classify GC patients into two risk groups (high- and low-risk) according to the median value of the risk score. The signature showed a robust predictive capacity in the stratification analysis. A high-risk score was associated with advanced clinicopathological features and an unfavorable prognosis. The predictive accuracy of the signature was confirmed using an independent GSE84437 dataset. Patients in the two groups showed different enrichment of immune cells and immune-related pathways. Finally, we established a genomic-clinicopathologic nomogram (based on risk score, age, and tumor stage) to predict the overall survival (OS) of GC patients. Conclusions The novel FRG signature may be a reliable tool for assisting clinicians in predicting the OS of GC patients and may facilitate personalized treatment.
Collapse
|
13
|
Bian WY, Chen YP, Xu B, Tang J. Pretreatment with Propofol Reduces Pulmonary Injury in a Pig Model of Intestinal Ischemia-Reperfusion via Suppressing the High-Mobility Group Box 1 Protein (HMGB1)/Toll-Like Receptor 4 (TLR4)/Protein Kinase R (PKR) Signaling Pathway. Med Sci Monit 2021; 27:e930478. [PMID: 34010266 PMCID: PMC8142706 DOI: 10.12659/msm.930478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Propofol improves rodent pulmonary injury after intestinal ischemia-reperfusion (IIR). However, its effect and underlying mechanisms in large animals remain unclear. Here, we examined whether pretreatment with propofol could relieve lung injury during IIR in pigs, then investigated the underlying mechanism. MATERIAL AND METHODS A porcine model of IIR-induced lung injury was built by clamping the super mesenteric artery for 2 h and loosening the clamp for 4 h. Randomized grouping was used, and pigs were assigned to a sham-operated group, an IIR with saline pretreatment group, and an IIR with propofol pretreatment group. Pulmonary histopathologic changes, permeability, and oxygenation were assessed to evaluate the effect of propofol. We assessed levels of methane dicarboxylic aldehyde (MDA), superoxide dismutase (SOD), myeloperoxidase (MPO), high-mobility group box 1 protein (HMGB1), Toll-like receptor 4 (TLR4), and double-stranded RNA activated protein kinase R (PKR) to investigate the underlying mechanism. RESULTS IIR caused severe lung damage, including morphological changes, high permeability, airway resistance, low static compliance, hypoxemia, and acidemia. Pulmonary and plasma MDA content and MPO activity increased, whereas SOD activity decreased. The HMGB1/TLR4/PKR signaling pathway was activated following IIR. Pretreatment with propofol markedly attenuated lung injury (such as reducing the lung edema and permeability), increased MDA content and MPO activity, and restored SOD activity induced by IIR, accompanied by inhibiting the effect of the HMGB1/TLR4/PKR signaling pathway. CONCLUSIONS IIR caused acute lung injury in pigs. Pretreatment with propofol alleviated the lung injury, which was related to its suppression of the HMGB1/TLR4/PKR signaling pathway.
Collapse
Affiliation(s)
- Wen-yu Bian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P.R. China
| | - Ya-ping Chen
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, P.R. China
| | - Bo Xu
- Department of Anesthesiology and Surgical Intensive Care Unit (SICU), Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, P.R. China
| | - Jun Tang
- Department of Anesthesiology, Fifth People’s Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
14
|
Ratajczak-Wrona W, Wawrusiewicz-Kurylonek N, Garley M, Kretowski AJ, Jablonska E. A Proliferation-Inducing Ligand Regulation in Polymorphonuclear Neutrophils by Panax ginseng. Arch Immunol Ther Exp (Warsz) 2020; 68:32. [PMID: 33125603 PMCID: PMC7599173 DOI: 10.1007/s00005-020-00597-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor superfamily that was first identified as a factor favoring tumorigenesis. APRIL is important fitness and survival factors for B cells and plasma cells in the periphery. Considering this, as well as the quantitative predominance of neutrophils among the peripheral blood leukocytes, we carried out the first study assessing the influence of the transforming growth factor (TGF)-β signaling pathway on APRIL expression in these cells. Furthermore, as the Rb1 ginsenoside is known to exhibit multiple pharmacological activities, we verified if the saponin is capable of modulating the process. The present study shows that TGF-β increased the expression of APRIL and the level of phospho-p38, phospho-Akt(T308), and phospho-Akt(S473) in the cytoplasmic fraction, as well as the expression of Fra1, c-Fos, and c-Jun in the nuclear fraction, of neutrophils. However, exposure of these cells to Rb1 reduced the expression and level of the investigated proteins. No changes were found in the expression of APRIL and the level of p-p38 in the cytoplasmic fraction of neutrophils following the application of Rb1 alone, as well as in the neutrophils incubated first with Rb1 and then with TGF-β, whereas a higher level of phosphorylation was observed for Akt and PI3 kinases in the cells. Moreover, a higher expression of all the studied transcription factors was observed in the nuclear fraction of neutrophils. Based on the observed changes, it may be assumed that the expression of APRIL molecule in TGF-β-induced neutrophils and its regulation by Rb1 are associated with PI3K/AKT signaling pathways and transcription factors Fra-1, Fra-2, c-Jun, and c-Fos. Rb1 appears to be a favorable factor that may be potentially used in the modulation of tumor-promoting APRIL expression.
Collapse
Affiliation(s)
- Wioletta Ratajczak-Wrona
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Bialystok, Poland.
| | | | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Bialystok, Poland
| | - Adam Jacek Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Jablonska
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Bialystok, Poland
| |
Collapse
|
15
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
16
|
Wu A, Li Y, Kong M, Zhu B, Liu R, Bao F, Ju S, Chen L, Wang F. Upregulated hsa_circ_0005785 Facilitates Cell Growth and Metastasis of Hepatocellular Carcinoma Through the miR-578/APRIL Axis. Front Oncol 2020; 10:1388. [PMID: 32974140 PMCID: PMC7466587 DOI: 10.3389/fonc.2020.01388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Although accumulating documents have expounded the pivotal position of circular RNAs (circRNAs) in hepatocarcinogenesis and progression, the overwhelming majority of their functions and molecular mechanisms in hepatocellular carcinoma (HCC) are elusive. Herein, we explored the functions and potential mechanisms of hsa_circ_0005785 in HCC, which was aberrantly overexpressed in HCC and related to HCC patients' TNM stage and overall survival. Moreover, hsa_circ_0005785 depletion could repress proliferation and metastasis of the HCC cell in vitro, lead to cell apoptosis and cell-cycle arrest, and restrain HCC cell growth in vivo. Furthermore, mechanism analyses discovered that hsa_circ_0005785 adsorbed miR-578 by playing a miRNA sponge role, which resulted in the derepression of a proliferation-inducing ligand (APRIL) expression, miR-578's mRNA target. Besides, hsa_circ_0005785 reversed the suppressive influence of miR-578 on HCC and accelerated tumor malignant progression through the miR-578/APRIL axis. Taken together, our current study revealed an oncogenic role of hsa_circ_0005785 in the tumorigenesis of HCC. Moreover, targeting to the hsa_circ_0005785/miR-578/APRIL regulatory pathway might be a promising diagnostic and therapeutic strategy for HCC clinical practice.
Collapse
Affiliation(s)
- Anqi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Mingzhu Kong
- Department of Laboratory Medicine, School of Public Health, Nantong University, Nantong, China
| | - Baihui Zhu
- Department of Laboratory Medicine, School of Public Health, Nantong University, Nantong, China
| | - Ruoyu Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Fang Bao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lin Chen
- Department of Gastroenterology and Laboratory Medicine, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
Gulberti S, Mao X, Bui C, Fournel-Gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Semin Cancer Biol 2020; 62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
|
18
|
Li R, Shang Y, Yu Y, Zhou T, Xiong W, Zou X. High-mobility group box 1 protein participates in acute lung injury by activating protein kinase R and inducing M1 polarization. Life Sci 2020; 246:117415. [PMID: 32035932 DOI: 10.1016/j.lfs.2020.117415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 11/19/2022]
Abstract
High-mobility group box 1 protein (HMGB1) is a crucial proinflammatory cytokine that contributes to acute lung injury (ALI). Macrophages are known to express the primary receptors (Toll-like receptor [TLR] 2, and TLR4) of HMGB1 for transmitting intracellular signals. Studies have revealed that double-stranded RNA activated protein kinase R (PKR), which is expressed in macrophages, participates in ALI by regulating macrophage polarization and proinflammatory cytokine release, and that PKR is normally activated by a subset of TLRs. The present study investigated whether HMGB1 engages in ALI by activating PKR in macrophages and inducing classically activated macrophage (M1) polarization via TLR2- and TLR4-mediated nuclear factor (NF)-κB signaling pathways. In an vivo mouse model of lipopolysaccharide (LPS)-induced ALI, anti-HMGB1, rHMGB1, LPS-RS (TLR2 and TLR4 antagonist), or C16 (PKR inhibitor) was administered to mice 2 h after LPS challenge or 1 h before LPS challenge. In vitro, bone marrow-derived macrophages from mice primed with LPS were stimulated with or without anti-HMGB1, rHMGB1, LPS-RS, or C16. Our studies revealed that rHMGB1 stimulation induced M1 polarization in ALI, and that anti-HMGB1 and C16 treatments had the opposite effect. Anti-HMGB1 and LPS-RS significantly inhibited LPS-induced PKR expression in macrophages; however, rHMGB1 administration increased PKR expression. These results indicate that HMGB1 participates in the pathogenesis of ALI by activating PKR in macrophages and inducing M1 polarization through TLR2- and TLR4-mediated NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
19
|
Khan AR, Yang X, Du X, Yang H, Liu Y, Khan AQ, Zhai G. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydr Polym 2020; 233:115837. [PMID: 32059890 DOI: 10.1016/j.carbpol.2020.115837] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
The standard chemotherapy is facing the challenges of lack of cancer selectivity and development of drug resistance. Currently, with the application of nanotechnology, the rationally designed nanocarriers of chondroitin sulfate (CS) have been fabricated and their unique features of low toxicity, biocompatibility, and active and passive targeting made them drug delivery vehicles of the choice for cancer therapy. The hydrophilic and anionic CS could be incorporated as a building block into- or decorated on the surface of nanoformulations. Micellar nanoparticles (NPs) self-assembled from amphiphilic CS-drug conjugates and CS-polymer conjugates, polyelectrolyte complexes (PECs) and nanogels of CS have been widely implicated in cancer directed therapy. The surface modulation of organic, inorganic, lipid and metallic NPs with CS promotes the receptor-mediated internalization of NPs to the tumor cells. The potential contribution of CS and CS-proteoglycans (CSPGs) in the pathogenesis of various cancer types, and CS nanocarriers in immunotherapy, radiotherapy, sonodynamic therapy (SDT) and photodynamic therapy (PDT) of cancer are summarized in this review paper.
Collapse
Affiliation(s)
- Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Haotong Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Yuanxiu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Abdul Qayyum Khan
- Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|