1
|
Offenbacher R, Lazar P, Fabish L, Fox J, Lee A, Loeb DM, Baker A. Strategies for the Treatment of Desmoplastic Small Round Cell Tumor: A Case Series. Pediatr Blood Cancer 2025:e31734. [PMID: 40275528 DOI: 10.1002/pbc.31734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025]
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive pediatric sarcoma that has a poor prognosis despite a multimodal approach of surgical resection, chemotherapy, and radiation. Incidence is only approximately 0.2 cases per million, limiting clinical trials from which to derive a standard of treatment. Advancement instead relies on case reports and series. The Children's Hospital at Montefiore in the Bronx, New York, a tertiary care hospital associated with the Montefiore Einstein Comprehensive Cancer Center, has treated eight such patients in the last decade, resulting in one of the largest single-institution case series of DSRCT patients to date. Though these patients are demographically unusual for DSRCT, including two women and two with rare extra-abdominal tumors of the brain and bone, through treatment of these patients we have accrued experience regarding various treatment strategies in both primary and refractory DSRCT. We treat primary DSRCT with interval-compressed vincristine/doxorubicin/cyclophosphamide alternating with cycles of ifosfamide/etoposide and irinotecan/temozolomide/temsirolimus (ITT). This is the first descriptive series of this size describing the use of ITT in DSRCT. Treatment for refractory cases focuses on targeted therapies when available, emphasizing the personalization that DSRCT treatment requires.
Collapse
Affiliation(s)
- Rachel Offenbacher
- Department of Pediatrics, Albert Einstein College of Medicine and Division of Pediatric Hematology, Oncology and Cellular Therapy, Children's Hospital at Montefiore, Bronx, New York, USA
- Department of Pediatrics, Children's Hospital at Montefiore, Bronx, New York, USA
| | - Paige Lazar
- Department of Pediatrics, Albert Einstein College of Medicine and Division of General Pediatrics, Children's Hospital at Montefiore, Bronx, New York, USA
| | - Lara Fabish
- Department of Pediatrics, Albert Einstein College of Medicine and Division of Pediatric Hematology, Oncology and Cellular Therapy, Children's Hospital at Montefiore, Bronx, New York, USA
| | - Jana Fox
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore, Bronx, New York, USA
| | - Alice Lee
- Department of Pediatrics, Albert Einstein College of Medicine and Division of Pediatric Hematology, Oncology and Cellular Therapy, Children's Hospital at Montefiore, Bronx, New York, USA
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine and Division of Pediatric Hematology, Oncology and Cellular Therapy, Children's Hospital at Montefiore, Bronx, New York, USA
| | - Alissa Baker
- Department of Pediatrics, Albert Einstein College of Medicine and Division of Pediatric Hematology, Oncology and Cellular Therapy, Children's Hospital at Montefiore, Bronx, New York, USA
| |
Collapse
|
2
|
Geyer FH, Ritter A, Kinn-Gurzo S, Faehling T, Li J, Jarosch A, Ngo C, Vinca E, Aljakouch K, Orynbek A, Ohmura S, Kirchner T, Imle R, Romero-Pérez L, Díaz-Martín J, Bertram S, de Álava E, Henon C, Postel-Vilnay S, Banito A, Sill M, Versleijen-Jonkers Y, Mayer BFB, Ebinger M, Sparber-Sauer M, Stegmaier S, Baumhoer D, Hartmann W, Krijgsveld J, Horst D, Delattre O, Grohar PJ, Grünewald TGP, Cidre-Aranaz F. Comprehensive DSRCT multi-omics analyses unveil CACNA2D2 as a diagnostic hallmark and super-enhancer-driven EWSR1::WT1 signature gene. Cancer Commun (Lond) 2025. [PMID: 40088092 DOI: 10.1002/cac2.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Affiliation(s)
- Florian Henning Geyer
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Alina Ritter
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Seneca Kinn-Gurzo
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tobias Faehling
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Jing Li
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Armin Jarosch
- Department of Pathology, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin and Humboldt-University of Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Carine Ngo
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Endrit Vinca
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Karim Aljakouch
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and Heidelberg University Medical Faculty, Heidelberg, Germany
| | - Azhar Orynbek
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and Heidelberg University Medical Faculty, Heidelberg, Germany
| | - Shunya Ohmura
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Roland Imle
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, DKFZ, Heidelberg, Germany
| | - Laura Romero-Pérez
- Institute of Biomedicine of Seville (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Seville/CIBERONC, Seville, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Seville, Seville, Spain
| | - Juan Díaz-Martín
- Institute of Biomedicine of Seville (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Seville/CIBERONC, Seville, Spain
| | - Stefanie Bertram
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Enrique de Álava
- Institute of Biomedicine of Seville (IBiS)/University Hospital Virgen del Rocío/CSIC/University of Seville/CIBERONC, Seville, Spain
- Department of Normal and Pathological Histology and Cytology, Faculty of Medicine, University of Seville, Seville, Spain
- Department of Pathology, University Hospital Virgen del Rocío, Pathology Unit, Seville, Spain
| | - Clémence Henon
- ERC Chromatin Remodeling, DNA Repair, and Epigenetics Laboratory, ARC Team for Fundamental Research, INSERM U981, and Drug Development Department, Gustave Roussy, Villejuif, France
| | - Sophie Postel-Vilnay
- ERC Chromatin Remodeling, DNA Repair, and Epigenetics Laboratory, ARC Team for Fundamental Research, INSERM U981, and Drug Development Department, Gustave Roussy, Villejuif, France
- University College of London Cancer Institute, London, UK
| | - Ana Banito
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, DKFZ, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | | | | | - Martin Ebinger
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Monika Sparber-Sauer
- Stuttgart University Hospital gKAöR, Olgahospital, Stuttgart Cancer Center, Center for Child, Adolescent, and Women's Medicine, Pediatrics 5 (Pediatric Oncology, Hematology, Immunology), Stuttgart, Germany
- University of Medicine Tübingen, Tübingen, Germany
| | - Sabine Stegmaier
- Stuttgart University Hospital gKAöR, Olgahospital, Stuttgart Cancer Center, Center for Child, Adolescent, and Women's Medicine, Pediatrics 5 (Pediatric Oncology, Hematology, Immunology), Stuttgart, Germany
| | - Daniel Baumhoer
- Bone Tumor Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, and Basel Research Centre of Child Health, Basel, Switzerland
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Muenster, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and Heidelberg University Medical Faculty, Heidelberg, Germany
| | - David Horst
- Department of Pathology, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin and Humboldt-University of Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Olivier Delattre
- Diversity and Plasticity of Pediatric Tumors, Paris Sciences and Letters University, SIREDO Oncology Centre, Institut Curie, Paris, France
| | | | - Thomas Georg Phillip Grünewald
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
3
|
Seidmann L, Wingerter A, Oliver Metzig M, Bornas A, El Malki K, Ustjanzew A, Ortmüller F, Kamyshanskiy Y, Kindler T, Laible M, Mohr X, Henninger N, Russo A, Beck O, Alt F, Wehling P, Roth W, Paret C, Faber J. The Chimeric Antigen Receptor T Cell Target Claudin 6 Is a Marker for Early Organ-Specific Epithelial Progenitors and Is Expressed in Some Pediatric Solid Tumor Entities. Cancers (Basel) 2025; 17:920. [PMID: 40149257 PMCID: PMC11940025 DOI: 10.3390/cancers17060920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The oncofetal membrane protein Claudin 6 (CLDN6) is an attractive target for T cell-based therapies. There is a lack of detailed analyses on the age-dependent expression of CLDN6 in normal tissues is lacking, which limits the expansion of CLDN6 CAR-T cell clinical trials to pediatric populations. Methods: We analyzed CLDN6 expression in extracranial solid tumors and normal tissues of children using RNA-sequencing data from over 500 pediatric solid tumor samples, qRT-PCR and immunohistochemistry (IHC) in more than 100 fresh-frozen tumor samples and, approximately, 250 formalin-fixed paraffin-embedded (FFPE) samples. We examined normal tissue expression via qRT-PCR in 32 different infant tissues and via IHC in roughly 290 tissues from donors across four age groups, as well as in fetal autopsy samples. Results: In fetal tissues, we detected CLDN6 expression primarily in the epithelial cells of several organs, including the skin, lungs, kidneys, intestinal tract, and pancreas, but not in undifferentiated blastemal cells. Postnatally, we found CLDN6-positive epithelial progenitors only during the first few weeks of life. In older-age groups, isolated clusters of CLDN6-positive progenitors were present, but in scarce quantities. In tumor tissues, we found strong and homogeneous CLDN6 expression in desmoplastic small round cell tumors and germ cell tumors. Wilms tumors demonstrated heterogeneous CLDN6 expression, notably absent in the blastemal component. Conclusions: These findings highlight an organ-specific presence of CLDN6-positive epithelial precursors that largely disappear in terminally differentiated epithelia within weeks after birth. Therefore, our data support CLDN6 as a viable therapeutic target in pediatric patients and justify their inclusion in basket studies for anti-CLDN6-based therapies.
Collapse
Affiliation(s)
- Larissa Seidmann
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Marie Oliver Metzig
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
| | - Angelina Bornas
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Franziska Ortmüller
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Yevgeniy Kamyshanskiy
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Thomas Kindler
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- 3rd Medical Department, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- TRON-Translational Oncology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Xenia Mohr
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Nicole Henninger
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Olaf Beck
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Francesca Alt
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Pia Wehling
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Claudia Paret
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Research Center for Immunotherapy (FZI), 55131 Mainz, Germany
| | - Jörg Faber
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Tsujimura N, Tei M, Umeda D, Ishimaru K, Minamiura S, Yamamoto T, Mori S, Nishida K, Yoshikawa Y, Nomura M, Tamai K, Hamakawa T, Takiuchi D, Yasuoka H, Tsujie M, Akamaru Y. Multiple Desmoplastic Small Round Cell Tumor in the Intestine: A Case Report. Surg Case Rep 2025; 11:24-0135. [PMID: 40034204 PMCID: PMC11873736 DOI: 10.70352/scrj.cr.24-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION Desmoplastic small round cell tumor (DSRCT) is a highly malignant sarcoma and an extremely rare tumor, predominantly found in the abdominal and pelvic regions. Here, we report the case of a patient who underwent surgical treatment for multiple desmoplastic round cell tumor in the intestine. CASE PRESENTATION A 38-year-old male patient visited our hospital after a health check revealed positive occult blood in his stool and a colonoscopy revealed tumors in descending colon and sigmoid colon. Biopsy results revealed poorly differentiated adenocarcinoma. Chest and abdominal enhanced computed tomography revealed 3 tumors from descending colon to sigmoid colon and numerous peritoneal disseminations. Based on these findings, we diagnosed multiple colon cancers and performed a laparoscopic left hemicolectomy. Hematoxylin-Eosin (H&E) staining showed that in all tumors, atypical cells with large and small swollen nuclei formed irregular solid nests of various sizes against a background of extensive desmoplastic or myxomatous stroma. Immunohistochemistry showed that tumor cells were AE1/3 (+), S-100 (-), Desmin (-), WT1 (-). Genetic analysis detected the Ewing's sarcoma and Wilms tumor fusion gene at another inspection agency. Histopathological examination identified desmoplastic small round cell tumor. The patient was discharged on the 19th postoperative day without postoperative complications. He will undergo chemotherapy at another hospital. CONCLUSIONS We experienced a very rare case of DSRCT. DSRCT is a fatal disease that primarily affects adolescent and young adult males. Currently, there is no proven treatment. More case reports are essential to improve management of this disease.
Collapse
Affiliation(s)
- Naoto Tsujimura
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Mitsuyoshi Tei
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Daisuke Umeda
- Department of Diagnostic Pathology, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Koki Ishimaru
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Shoko Minamiura
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Takehiro Yamamoto
- Department of Diagnostic Pathology, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Soichiro Mori
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Kentaro Nishida
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Yukihiro Yoshikawa
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Masatoshi Nomura
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Koki Tamai
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Takuya Hamakawa
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Daisuke Takiuchi
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Hironao Yasuoka
- Department of Diagnostic Pathology, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Masanori Tsujie
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Yusuke Akamaru
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| |
Collapse
|
5
|
Kawai-Kawachi A, Lenormand MM, Astier C, Herbel N, Cutrona MB, Ngo C, Garrido M, Eychenne T, Dorvault N, Bordelet L, Song F, Bouyakoub R, Loktev A, Romo-Morales A, Henon C, Colmet-Daage L, Vibert J, Drac M, Brough R, Schwob E, Martella O, Pinna G, Shipley JM, Mittnacht S, Zimmermann A, Gulati A, Mir O, Le Cesne A, Faron M, Honoré C, Lord CJ, Chabanon RM, Postel-Vinay S. Replication Stress Is an Actionable Genetic Vulnerability in Desmoplastic Small Round Cell Tumors. Cancer Res 2025; 85:154-170. [PMID: 39412947 DOI: 10.1158/0008-5472.can-23-3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Desmoplastic small round cell tumor (DSRCT) is an aggressive sarcoma subtype that is driven by the EWS-WT1 chimeric transcription factor. The prognosis for DSRCT is poor, and major advances in treating DSRCT have not occurred for over two decades. To identify effective therapeutic approaches to target DSRCT, we conducted a high-throughput drug sensitivity screen in a DSRCT cell line assessing chemosensitivity profiles for 79 small-molecule inhibitors. DSRCT cells were sensitive to PARP inhibitors (PARPi) and ataxia-telangiectasia and Rad3-related inhibitors (ATRi), as monotherapies and in combination. These effects were recapitulated using multiple clinical PARPi and ATRi in three biologically distinct, clinically relevant models of DSRCT, including cell lines, a patient-derived xenograft-derived organoid model, and a cell line-derived xenograft mouse model. Mechanistically, exposure to a combination of PARPi and ATRi caused increased DNA damage, G2-M checkpoint activation, micronuclei accumulation, replication stress, and R-loop formation. EWS-WT1 silencing abrogated these phenotypes and was epistatic with exogenous expression of the R-loop resolution enzyme RNase H1 in reversing sensitivity to PARPi and ATRi monotherapies. The combination of PARPi and ATRi also induced EWS-WT1-dependent cell-autonomous activation of the cyclic GMP-AMP synthase-stimulator of IFN genes innate immune pathway and cell-surface expression of PD-L1. Taken together, these findings point toward a role for EWS-WT1 in generating R-loop-dependent replication stress that leads to a targetable vulnerability, providing a rationale for the clinical assessment of PARPi and ATRi in DSRCT. Significance: EWS-WT1, the unique oncogenic driver of desmoplastic small round cell tumors, confers sensitivity to PARP and ATR inhibitors, supporting the potential of these drugs in treating patients with this aggressive sarcoma subtype.
Collapse
Affiliation(s)
- Asuka Kawai-Kawachi
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo, Japan
| | - Madison M Lenormand
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Department of Genomes and Genetics, Institut Pasteur, CNRS UMR3525, Paris, France
| | - Clémence Astier
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Noé Herbel
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- Viroxis SAS Biotech, Gustave Roussy, Villejuif, France
| | | | - Carine Ngo
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Thomas Eychenne
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Nicolas Dorvault
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Laetitia Bordelet
- Experimental and Translational Pathology (PETRA) Platform, AMMICa Unit (CNRS Unit UMS 3655, Inserm Unit US 23), Gustave Roussy, Villejuif, France
| | - Feifei Song
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Ryme Bouyakoub
- Organoid Core Facility, Gustave Roussy, Villejuif, France
| | - Anastasia Loktev
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Antonio Romo-Morales
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Clémence Henon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Léo Colmet-Daage
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Julien Vibert
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marjorie Drac
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | | | - Guillaume Pinna
- RNA Interference Platform PARi, IRCM/IBFJ/CEA UMRE008, Fontenay-aux-Roses, France
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Sibylle Mittnacht
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Astrid Zimmermann
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Olivier Mir
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Axel Le Cesne
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | | | | | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Roman M Chabanon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sophie Postel-Vinay
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
6
|
Qian J, Yang Y, Xie X, Kang Y, Zhong J, Chen X, Chen N, Zhou Q, Nie L. Primary desmoplastic small round cell tumour of the prostate. J Clin Pathol 2024; 78:64-69. [PMID: 39074976 PMCID: PMC11671908 DOI: 10.1136/jcp-2024-209660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
Desmoplastic small round cell tumour (DSRCT) is a highly aggressive soft-tissue sarcoma with distinctive morphological features and characteristic EWSR1::WT1 gene fusion. DSRCT occurs in a variety of anatomic sites, with abdominal cavity being the most common location. Primary DSRCTs arising in the male genital system are exceedingly rare, with no documented definitive cases of primary DSRCT of the prostate to date, although 28 cases of DSRCT in the testicular or paratesticular regions have been reported. We here present two cases of primary DSRCT of the prostate. Both cases demonstrated the distinct morphology and the typical multiphenotypic immunohistochemical profile, and the characteristic EWSR1::WT1 fusion verified by fluorescent in situ hybridisation. Our cases expand the anatomic distribution of primary DSRCT and highlight the importance of considering this rare tumour in the differential diagnoses of small cell malignancies of the prostate.
Collapse
Affiliation(s)
- Jingyu Qian
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yanjin Yang
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xin Xie
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Kang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjing Zhong
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xueqin Chen
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Ni Chen
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Zhou
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Nie
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Boulay G, Broye LC, Dong R, Iyer S, Sanalkumar R, Xing YH, Buisson R, Rengarajan S, Naigles B, Duc B, Volorio A, Awad ME, Renella R, Chebib I, Nielsen GP, Choy E, Cote GM, Zou L, Letovanec I, Stamenkovic I, Rivera MN, Riggi N. EWS-WT1 fusion isoforms establish oncogenic programs and therapeutic vulnerabilities in desmoplastic small round cell tumors. Nat Commun 2024; 15:7460. [PMID: 39198430 PMCID: PMC11358472 DOI: 10.1038/s41467-024-51851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
EWS fusion oncoproteins underlie several human malignancies including Desmoplastic Small Round Cell Tumor (DSRCT), an aggressive cancer driven by EWS-WT1 fusion proteins. Here we combine chromatin occupancy and 3D profiles to identify EWS-WT1-dependent gene regulation networks and target genes. We show that EWS-WT1 is a powerful chromatin activator controlling an oncogenic gene expression program that characterizes primary tumors. Similar to wild type WT1, EWS-WT1 has two isoforms that differ in their DNA binding domain and we find that they have distinct DNA binding profiles and are both required to generate viable tumors that resemble primary DSRCT. Finally, we identify candidate EWS-WT1 target genes with potential therapeutic implications, including CCND1, whose inhibition by the clinically-approved drug Palbociclib leads to marked tumor burden decrease in DSRCT PDXs in vivo. Taken together, our studies identify gene regulation programs and therapeutic vulnerabilities in DSRCT and provide a mechanistic understanding of the complex oncogenic activity of EWS-WT1.
Collapse
Affiliation(s)
- Gaylor Boulay
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liliane C Broye
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Rui Dong
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sowmya Iyer
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Yu-Hang Xing
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Beverly Naigles
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benoît Duc
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Angela Volorio
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary E Awad
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raffaele Renella
- Department Woman-Mother-Child, Division of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ivan Chebib
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin Choy
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory M Cote
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Lee Zou
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, Sion, Switzerland
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Miguel N Rivera
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland.
- Genentech Inc, Department of Cell and Tissue Genomics (CTG), South San Francisco, CA, USA.
| |
Collapse
|
8
|
Magrath JW, Espinosa-Cotton M, Flinchum DA, Sampath SS, Cheung NK, Lee SB. Desmoplastic small round cell tumor: from genomics to targets, potential paths to future therapeutics. Front Cell Dev Biol 2024; 12:1442488. [PMID: 39139449 PMCID: PMC11319132 DOI: 10.3389/fcell.2024.1442488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a highly aggressive pediatric cancer caused by a reciprocal translocation between chromosomes 11 and 22, leading to the formation of the EWSR1::WT1 oncoprotein. DSRCT presents most commonly in the abdominal and pelvic peritoneum and remains refractory to current treatment regimens which include chemotherapy, radiotherapy, and surgery. As a rare cancer, sample and model availability have been a limiting factor to DSRCT research. However, the establishment of rare tumor banks and novel cell lines have recently propelled critical advances in the understanding of DSRCT biology and the identification of potentially promising targeted therapeutics. Here we review model and dataset availability, current understanding of the EWSR1::WT1 oncogenic mechanism, and promising preclinical therapeutics, some of which are now advancing to clinical trials. We discuss efforts to inhibit critical dependencies including NTRK3, EGFR, and CDK4/6 as well as novel immunotherapy strategies targeting surface markers highly expressed in DSRCT such as B7-H3 or neopeptides either derived from or driven by the fusion oncoprotein. Finally, we discuss the prospect of combination therapies and strategies for prioritizing clinical translation.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dane A. Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nai Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
9
|
Henon C, Vibert J, Eychenne T, Gruel N, Colmet-Daage L, Ngo C, Garrido M, Dorvault N, Marques Da Costa ME, Marty V, Signolle N, Marchais A, Herbel N, Kawai-Kawachi A, Lenormand M, Astier C, Chabanon R, Verret B, Bahleda R, Le Cesne A, Mechta-Grigoriou F, Faron M, Honoré C, Delattre O, Waterfall JJ, Watson S, Postel-Vinay S. Single-cell multiomics profiling reveals heterogeneous transcriptional programs and microenvironment in DSRCTs. Cell Rep Med 2024; 5:101582. [PMID: 38781959 PMCID: PMC11228554 DOI: 10.1016/j.xcrm.2024.101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive sarcoma driven by the EWSR1::WT1 chimeric transcription factor. Despite this unique oncogenic driver, DSRCT displays a polyphenotypic differentiation of unknown causality. Using single-cell multi-omics on 12 samples from five patients, we find that DSRCT tumor cells cluster into consistent subpopulations with partially overlapping lineage- and metabolism-related transcriptional programs. In vitro modeling shows that high EWSR1::WT1 DNA-binding activity associates with most lineage-related states, in contrast to glycolytic and profibrotic states. Single-cell chromatin accessibility analysis suggests that EWSR1::WT1 binding site variability may drive distinct lineage-related transcriptional programs, supporting some level of cell-intrinsic plasticity. Spatial transcriptomics reveals that glycolytic and profibrotic states specifically localize within hypoxic niches at the periphery of tumor cell islets, suggesting an additional role of tumor cell-extrinsic microenvironmental cues. We finally identify a single-cell transcriptomics-derived epithelial signature associated with improved patient survival, highlighting the clinical relevance of our findings.
Collapse
Affiliation(s)
- Clémence Henon
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| | - Julien Vibert
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Thomas Eychenne
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Nadège Gruel
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Léo Colmet-Daage
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Carine Ngo
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pathology, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Nicolas Dorvault
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Maria Eugenia Marques Da Costa
- INSERM U1015, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Virginie Marty
- Experimental and Translational Pathology Platform (PETRA), AMMICa, INSERM US23/UAR3655, Gustave Roussy, Villejuif, France
| | - Nicolas Signolle
- Experimental and Translational Pathology Platform (PETRA), AMMICa, INSERM US23/UAR3655, Gustave Roussy, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Noé Herbel
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Asuka Kawai-Kawachi
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Madison Lenormand
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Clémence Astier
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Roman Chabanon
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Benjamin Verret
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Breast Cancer Translational Research Group, INSERM U981, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| | - Axel Le Cesne
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; International Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fatima Mechta-Grigoriou
- INSERM U830, Equipe labellisée LNCC, Stress et Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | | | | | - Olivier Delattre
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Joshua J Waterfall
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sarah Watson
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sophie Postel-Vinay
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Drug Development Department, DITEP, Gustave Roussy, Villejuif, France; University College of London, Cancer Institute, London, UK.
| |
Collapse
|
10
|
Stanton BZ, Pomella S. Epigenetic determinants of fusion-driven sarcomas: paradigms and challenges. Front Cell Dev Biol 2024; 12:1416946. [PMID: 38946804 PMCID: PMC11211607 DOI: 10.3389/fcell.2024.1416946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024] Open
Abstract
We describe exciting recent advances in fusion-driven sarcoma etiology, from an epigenetics perspective. By exploring the current state of the field, we identify and describe the central mechanisms that determine sarcomagenesis. Further, we discuss seminal studies in translational genomics, which enabled epigenetic characterization of fusion-driven sarcomas. Important context for epigenetic mechanisms include, but are not limited to, cell cycle and metabolism, core regulatory circuitry, 3-dimensional chromatin architectural dysregulation, integration with ATP-dependent chromatin remodeling, and translational animal modeling. Paradoxically, while the genetic requirements for oncogenic transformation are highly specific for the fusion partners, the epigenetic mechanisms we as a community have uncovered are categorically very broad. This dichotomy prompts the question of whether the investigation of rare disease epigenomics should prioritize studying individual cell populations, thereby examining whether the mechanisms of chromatin dysregulation are specific to a particular tumor. We review recent advances focusing on rhabdomyosarcoma, synovial sarcoma, alveolar soft part sarcoma, clear cell sarcoma, undifferentiated round cell sarcoma, Ewing sarcoma, myxoid/round liposarcoma, epithelioid hemangioendothelioma and desmoplastic round cell tumor. The growing number of groundbreaking discoveries in the field, motivated us to anticipate further exciting advances in the area of mechanistic epigenomics and direct targeting of fusion transcription factors in the years ahead.
Collapse
Affiliation(s)
- Benjamin Z. Stanton
- Nationwide Children’s Hospital, Center for Childhood Cancer Research, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
11
|
Rask GC, Taslim C, Bayanjargal A, Cannon MV, Selich-Anderson J, Crow JC, Duncan A, Theisen ER. Seclidemstat blocks the transcriptional function of multiple FET-fusion oncoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594897. [PMID: 38826330 PMCID: PMC11142045 DOI: 10.1101/2024.05.19.594897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Genes encoding the RNA-binding proteins FUS, EWSR1, and TAF15 (FET proteins) are involved in chromosomal translocations in rare sarcomas. FET-rearranged sarcomas are often aggressive malignancies affecting patients of all ages. New therapies are needed. These translocations fuse the 5' portion of the FET gene with a 3' partner gene encoding a transcription factor (TF). The resulting fusion proteins are oncogenic TFs with a FET protein low complexity domain (LCD) and a DNA binding domain. FET fusion proteins have proven stubbornly difficult to target directly and promising strategies target critical co-regulators. One candidate is lysine specific demethylase 1 (LSD1). LSD1 is recruited by multiple FET fusions, including EWSR1::FLI1. LSD1 promotes EWSR1::FLI1 activity and treatment with the noncompetitive inhibitor SP-2509 blocks EWSR1::FLI1 transcriptional function. A similar molecule, seclidemstat (SP-2577), is currently in clinical trials for FET-rearranged sarcomas (NCT03600649). However, whether seclidemstat has pharmacological activity against FET fusions has not been demonstrated. Here, we evaluate the in vitro potency of seclidemstat against multiple FET-rearranged sarcoma cell lines, including Ewing sarcoma, desmoplastic small round cell tumor, clear cell sarcoma, and myxoid liposarcoma. We also define the transcriptomic effects of seclidemstat treatment and evaluated the activity of seclidemstat against FET fusion transcriptional regulation. Seclidemstat showed potent activity in cell viability assays across FET-rearranged sarcomas and disrupted the transcriptional function of all tested fusions. Though epigenetic and targeted inhibitors are unlikely to be effective as a single agents in the clinic, these data suggest seclidemstat remains a promising new treatment strategy for patients with FET-rearranged sarcomas.
Collapse
Affiliation(s)
- Galen C. Rask
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Cenny Taslim
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Ariunaa Bayanjargal
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew V. Cannon
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | - Jesse C. Crow
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
| | | | - Emily R. Theisen
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, 43215, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
12
|
Magrath JW, Sampath SS, Flinchum DA, Hartono AB, Goldberg IN, Boehling JR, Savkovic SD, Lee SB. Comprehensive Transcriptomic Analysis of EWSR1::WT1 Targets Identifies CDK4/6 Inhibitors as an Effective Therapy for Desmoplastic Small Round Cell Tumors. Cancer Res 2024; 84:1426-1442. [PMID: 38588409 PMCID: PMC11063761 DOI: 10.1158/0008-5472.can-23-3334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024]
Abstract
Desmoplastic small round cell tumors (DSRCT) are a type of aggressive, pediatric sarcoma characterized by the EWSR1::WT1 fusion oncogene. Targeted therapies for DSRCT have not been developed, and standard multimodal therapy is insufficient, leading to a 5-year survival rate of only 15% to 25%. Here, we depleted EWSR1::WT1 in DSRCT and established its essentiality in vivo. Transcriptomic analysis revealed that EWSR1::WT1 induces unique transcriptional alterations compared with WT1 and other fusion oncoproteins and that EWSR1::WT1 binding directly mediates gene upregulation. The E-KTS isoform of EWSR1::WT1 played a dominant role in transcription, and it bound to the CCND1 promoter and stimulated DSRCT growth through the cyclin D-CDK4/6-RB axis. Treatment with the CDK4/6 inhibitor palbociclib successfully reduced growth in two DSRCT xenograft models. As palbociclib has been approved by the FDA for the treatment of breast cancer, these findings demonstrate the sensitivity of DSRCT to palbociclib and support immediate clinical investigation of palbociclib for treating this aggressive pediatric cancer. SIGNIFICANCE EWSR1::WT1 is essential for desmoplastic small round cell tumors and upregulates the cyclin D-CDK4/6-RB axis that can be targeted with palbociclib, providing a targeted therapeutic strategy for treating this deadly tumor type.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Dane A. Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Alifiani B. Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ilon N. Goldberg
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Julia R. Boehling
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Suzana D. Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
13
|
Magrath JW, Goldberg IN, Truong DD, Hartono AB, Sampath SS, Jackson CE, Ghosh A, Cardin DL, Zhang H, Ludwig JA, Lee SB. Enzalutamide induces cytotoxicity in desmoplastic small round cell tumor independent of the androgen receptor. Commun Biol 2024; 7:411. [PMID: 38575753 PMCID: PMC10995187 DOI: 10.1038/s42003-024-06003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.
Collapse
Affiliation(s)
- Justin W Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Ilon N Goldberg
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Danh D Truong
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alifiani B Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Chandler E Jackson
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Anushka Ghosh
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Derrick L Cardin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Haitao Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Joseph A Ludwig
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sean B Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
14
|
Liu L, Zhong M, Zhou X, Kang F, Long Y, Li J. Treatment of Abdominal Desmoplastic Small Round Cell Tumor Induces Acute Myeloid Leukemia-M5: A Case Report and Literature Review. Onco Targets Ther 2024; 17:163-169. [PMID: 38435840 PMCID: PMC10908280 DOI: 10.2147/ott.s434286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/10/2024] [Indexed: 03/05/2024] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare and highly aggressive malignancy. Most patients are diagnosed at a late stage with poor prognosis. The treatment usually includes combined intensive chemotherapy, cytoreductive surgery, radiotherapy, and targeted therapy. Due to the low incidence rate and dismal survival, there is currently a lack of case reports on DSRCT with concurrent leukemia. We report a case of a young patient who achieved disease stabilization for 14 months after receiving 6 cycles of chemotherapy and whole abdominal radiation therapy (WART), followed by consolidation treatment with anlotinib. However, the treatment was terminated due to the development of Acute Myeloid Leukemia-M5 (AML-M5). Multimodal therapy may provide a survival benefit for rare tumors that lack standard treatment. However, intensive chemotherapy and extensive radiotherapy carry a risk of inducing secondary malignancies. This is the first reported case of concurrent DSRCT and AML-M5 with short intervals between onset.
Collapse
Affiliation(s)
- Lan Liu
- Department of Oncology, Xiangya Changde Hospital, Changde, Hunan, People’s Republic of China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Changde Hospital, Changde, Hunan, People’s Republic of China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xuan Zhou
- Department of Hematology, Xiangya Changde hospital, Changde, Hunan, People’s Republic of China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan, People’s Republic of China
| | - Yong Long
- Department of Oncology, Xiangya Changde Hospital, Changde, Hunan, People’s Republic of China
| | - Junfeng Li
- Department of Oncology, Xiangya Changde Hospital, Changde, Hunan, People’s Republic of China
| |
Collapse
|
15
|
Desai AN, Kurian CJ, Rafferty W, Behrens DL, Khrizman P. Case report: An unusual presentation of intra-abdominal desmoplastic small round cell tumor. Front Oncol 2024; 14:1260474. [PMID: 38440227 PMCID: PMC10910504 DOI: 10.3389/fonc.2024.1260474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Background Intra-abdominal desmoplastic small round cell tumor (IDSRCT) is a rare entity (0.2-0.74 cases per million people per year), which predominantly occurs in young men. It may present as an abdominal mass with pain, distention, and constipation. IDSRCT has a very poor prognosis, with 5-year overall survival estimated at 15%-30%. Diagnosis is made with tissue biopsy. Case description We present a case of a 28-year-old man with a history of schizophrenia and depression who presented to an emergency room (ER) in November 2022 with constipation and pelvic pain. The patient was sent home with a bowel regimen after radiography showed no obstruction. He re-presented for evaluation due to persistent pain. A computerized tomography scan of the abdomen and pelvis (CT A/P) revealed numerous pelvic masses with severe colitis, bilateral moderate hydronephrosis, and metastatic disease in the liver. A colonoscopy showed a mass extending 3 cm from the anus to 10 cm causing a partial obstruction. Biopsy was read as squamous cell carcinoma (SCC). The patient was subsequently admitted to our institution with pelvic pain, nausea, and vomiting. Colorectal surgery performed a colectomy with end-ileostomy due to colonic obstruction. He was evaluated by a medical oncologist, with previous slides requested for review. Initial review was concerning metastatic basaloid SCC with neuroendocrine features and a Ki67 of 70%. Given his recent abdominal surgeries, chemotherapy was delayed until February 2023 when he was started on reduced dose carboplatin and paclitaxel. Tumor specimen was sent for next generation sequencing (NGS) and programmed death-1 ligand 1 (PD-L1) testing. NGS results returned after the first dose of chemotherapy was given and showed a t(11;22) EWSR-WT1 translocation characteristic of desmoplastic small round cell tumor. The patient was supported in the hospital and discharged with oncology follow-up. Discussion As seen in this case, pathology review is essential to ensuring correct diagnosis and appropriate treatment plan. This is especially true when the clinical scenario does not match the listed pathology. Additional diagnostics such as NGS are invaluable in establishing correct diagnosis.
Collapse
Affiliation(s)
- Akshay Nilesh Desai
- Department of Internal Medicine at Cooper University Healthcare, Camden, NJ, United States
| | - Christine Jane Kurian
- Department of Medical Oncology and Hematology at MD Anderson Cancer Center at Cooper University Healthcare, Camden, NJ, United States
| | - William Rafferty
- Department of Pathology at Cooper University Healthcare, Camden, NJ, United States
| | - Danielle Lajoie Behrens
- Department of Medical Oncology and Hematology at MD Anderson Cancer Center at Cooper University Healthcare, Camden, NJ, United States
| | - Polina Khrizman
- Department of Medical Oncology and Hematology at MD Anderson Cancer Center at Cooper University Healthcare, Camden, NJ, United States
| |
Collapse
|
16
|
Bakaric A, Cironi L, Praz V, Sanalkumar R, Broye LC, Favre-Bulle K, Letovanec I, Digklia A, Renella R, Stamenkovic I, Ott CJ, Nakamura T, Antonescu CR, Rivera MN, Riggi N. CIC-DUX4 Chromatin Profiling Reveals New Epigenetic Dependencies and Actionable Therapeutic Targets in CIC-Rearranged Sarcomas. Cancers (Basel) 2024; 16:457. [PMID: 38275898 PMCID: PMC10814785 DOI: 10.3390/cancers16020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
CIC-DUX4-rearranged sarcoma (CDS) is a rare and aggressive soft tissue tumor that occurs most frequently in young adults. The key oncogenic driver of this disease is the expression of the CIC-DUX4 fusion protein as a result of chromosomal rearrangements. CIC-DUX4 displays chromatin binding properties, and is therefore believed to function as an aberrant transcription factor. However, the chromatin remodeling events induced by CIC-DUX4 are not well understood, limiting our ability to identify new mechanism-based therapeutic strategies for these patients. Here, we generated a genome-wide profile of CIC-DUX4 DNA occupancy and associated chromatin states in human CDS cell models and primary tumors. Combining chromatin profiling, proximity ligation assays, as well as genetic and pharmacological perturbations, we show that CIC-DUX4 operates as a potent transcriptional activator at its binding sites. This property is in contrast with the repressive function of the wild-type CIC protein, and is mainly mediated through the direct interaction of CIC-DUX4 with the acetyltransferase p300. In keeping with this, we show p300 to be essential for CDS tumor cell proliferation; additionally, we find its pharmacological inhibition to significantly impact tumor growth in vitro and in vivo. Taken together, our study elucidates the mechanisms underpinning CIC-DUX4-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Arnaud Bakaric
- Clinical Pathology Service, Department of Diagnostics, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Luisa Cironi
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Viviane Praz
- Platform Genomics Technologies, Center for Integrative Genomics, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
- Department of Cell and Tissue Genomics, Genentech. Inc., South San Francisco, CA 94103, USA
| | - Liliane C. Broye
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Kerria Favre-Bulle
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, 1951 Sion, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Christopher J. Ott
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; (C.J.O.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Takuro Nakamura
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Cristina R. Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Miguel N. Rivera
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; (C.J.O.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
- Department of Cell and Tissue Genomics, Genentech. Inc., South San Francisco, CA 94103, USA
| |
Collapse
|
17
|
Magrath JW, Flinchum DA, Hartono AB, Sampath SS, O'Grady TM, Baddoo M, Haoyang L, Xu X, Flemington EK, Lee SB. Transcriptomic analysis identifies B-lymphocyte kinase as a therapeutic target for desmoplastic small round cell tumor cancer stem cell-like cells. Oncogenesis 2024; 13:2. [PMID: 38177125 PMCID: PMC10767073 DOI: 10.1038/s41389-023-00504-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is an aggressive pediatric cancer caused by the EWSR1-WT1 fusion oncoprotein. The tumor is refractory to treatment with a 5-year survival rate of only 15-25%, necessitating the development of novel therapeutics, especially those able to target chemoresistant subpopulations. Novel in vitro cancer stem cell-like (CSC-like) culture conditions increase the expression of stemness markers (SOX2, NANOG) and reduce DSRCT cell line susceptibility to chemotherapy while maintaining the ability of DSRCT cells to form xenografts. To gain insights into this chemoresistant model, RNA-seq was performed to elucidate transcriptional alterations between DSRCT cells grown in CSC-like spheres and normal 2-dimensional adherent state. Commonly upregulated and downregulated genes were identified and utilized in pathway analysis revealing upregulation of pathways related to chromatin assembly and disassembly and downregulation of pathways including cell junction assembly and extracellular matrix organization. Alterations in chromatin assembly suggest a role for epigenetics in the DSRCT CSC-like state, which was further investigated with ATAC-seq, identifying over 10,000 differentially accessible peaks, including 4444 sphere accessible peaks and 6,120 adherent accessible peaks. Accessible regions were associated with higher gene expression, including increased accessibility of the CSC marker SOX2 in CSC-like culture conditions. These analyses were further utilized to identify potential CSC therapeutic targets, leading to the identification of B-lymphocyte kinase (BLK) as a CSC-enriched, EWSR1-WT1-regulated, druggable target. BLK inhibition and knockdown reduced CSC-like properties, including abrogation of tumorsphere formation and stemness marker expression. Importantly, BLK knockdown reduced DSRCT CSC-like cell chemoresistance, making its inhibition a promising target for future combination therapy.
Collapse
Affiliation(s)
- Justin W Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Dane A Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Alifiani B Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
- Department of Molecular & Medical Pharmacology, University of California Los Angeles, 630 Charles E Young Dr. S., Los Angeles, CA, 90095, USA
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Tina M O'Grady
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Liang Haoyang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Sean B Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
18
|
Magrath JW, Goldberg IN, Truong DD, Hartono AB, Sampath SS, Jackson CE, Ghosh A, Cardin DL, Zhang H, Ludwig JA, Lee SB. Enzalutamide Induces Cytotoxicity in Desmoplastic Small Round Cell Tumor Independent of the Androgen Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565842. [PMID: 37986851 PMCID: PMC10659336 DOI: 10.1101/2023.11.06.565842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.
Collapse
Affiliation(s)
- Justin W Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Ilon N Goldberg
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Danh D Truong
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alifiani B Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Chandler E Jackson
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Anushka Ghosh
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Derrick L Cardin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Haitao Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Joseph A Ludwig
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sean B Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| |
Collapse
|
19
|
Bohara S, Jha P, Bhat PS, Malla S, Karki S, Jha SK, Basukala S, Rawal SB. Intra-abdominal omental mass as a desmoplastic round cell tumor: A rare case report. Clin Case Rep 2023; 11:e8191. [PMID: 38028068 PMCID: PMC10651960 DOI: 10.1002/ccr3.8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Key Clinical Message Desmoplastic round cell tumor, though rare, must be taken into consideration as a differential diagnosis, thus aiding in early evaluation and changing the trajectory of the natural history of the disease condition, and improving the prognosis of patients. Abstract Desmoplastic small round cell tumor is a rare, aggressive tumor of mesenchymal origin with an incidence of 0.74 cases per million. We present a young adult with a periumbilical mass who was diagnosed as a desmoplastic round cell tumor and later was treated with exploratory laparotomy and resection of the tumor with no recurrence during a 6-month follow-up period.
Collapse
Affiliation(s)
- Sujan Bohara
- Department of General and Gastrointestinal SurgeryNepal MedicitiLalitpurNepal
| | - Pinky Jha
- Department of SurgeryShree Birendra HospitalKathmanduNepal
| | - Pawan Singh Bhat
- Department of General and Gastrointestinal SurgeryNepal MedicitiLalitpurNepal
| | - Srijan Malla
- Department of General and Gastrointestinal SurgeryNepal MedicitiLalitpurNepal
| | - Samikshya Karki
- Department of Physical Medicine and RehabilitationSpinal Injury Rehabilitation CenterSangaNepal
| | - Saroj Kumar Jha
- Department of Emergency MedicineGajendra Narayan Singh HospitalRajbirajNepal
| | - Sunil Basukala
- Department of SurgeryShree Birendra HospitalKathmanduNepal
| | | |
Collapse
|
20
|
Mukherjee S, Mukherjee SB, Frenkel-Morgenstern M. Functional and regulatory impact of chimeric RNAs in human normal and cancer cells. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1777. [PMID: 36633099 DOI: 10.1002/wrna.1777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sunanda Biswas Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
21
|
Magrath JW, Flinchum DA, Hartono AB, Goldberg IN, Espinosa-Cotton M, Moroz K, Cheung NKV, Lee SB. Genomic Breakpoint Characterization and Transcriptome Analysis of Metastatic, Recurrent Desmoplastic Small Round Cell Tumor. Sarcoma 2023; 2023:6686702. [PMID: 37457440 PMCID: PMC10344636 DOI: 10.1155/2023/6686702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare pediatric cancer caused by the EWSR1-WT1 fusion oncogene. Despite initial response to chemotherapy, DSRCT has a recurrence rate of over 80% leading to poor patient prognosis with a 5-year survival rate of only 15-25%. Owing to the rarity of DSRCT, sample scarcity is a barrier in understanding DSRCT biology and developing effective therapies. Utilizing a novel pair of primary and recurrent DSRCTs, we present the first map of DSRCT genomic breakpoints and the first comparison of gene expression alterations between primary and recurrent DSRCT. Our genomic breakpoint map includes the lone previously published DSRCT genomic breakpoint, the breakpoint from our novel primary/recurrent DSRCT pair, as well as the breakpoints of five available DSRCT cell lines and five additional DSRCTs. All mapped breakpoints were unique and most breakpoints included a 1-3 base pair microhomology suggesting microhomology-mediated end-joining as the mechanism of translocation fusion and providing novel insights into the etiology of DSRCT. Through RNA-sequencing analysis, we identified altered genes and pathways between primary and recurrent DSRCTs. Upregulated pathways in the recurrent tumor included several DNA repair and mRNA splicing-related pathways, while downregulated pathways included immune system function and focal adhesion. We further found higher expression of the EWSR1-WT1 upregulated gene set in the recurrent tumor as compared to the primary tumor and lower expression of the EWSR1-WT1 downregulated gene set, suggesting the EWSR1-WT1 fusion continues to play a prominent role in recurrent tumors. The identified pathways including upregulation of DNA repair and downregulation of immune system function may help explain DSRCT's high rate of recurrence and can be utilized to improve the understanding of DSRCT biology and identify novel therapies to both help prevent recurrence and treat recurrent tumors.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Dane A. Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Alifiani B. Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Ilon N. Goldberg
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | | | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| |
Collapse
|
22
|
Truong DD, Lamhamedi-Cherradi SE, Porter RW, Krishnan S, Swaminathan J, Gibson A, Lazar AJ, Livingston JA, Gopalakrishnan V, Gordon N, Daw NC, Navin NE, Gorlick R, Ludwig JA. Dissociation protocols used for sarcoma tissues bias the transcriptome observed in single-cell and single-nucleus RNA sequencing. BMC Cancer 2023; 23:488. [PMID: 37254069 PMCID: PMC10230784 DOI: 10.1186/s12885-023-10977-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/17/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Single-cell RNA-seq has emerged as an innovative technology used to study complex tissues and characterize cell types, states, and lineages at a single-cell level. Classification of bulk tumors by their individual cellular constituents has also created new opportunities to generate single-cell atlases for many organs, cancers, and developmental models. Despite the tremendous promise of this technology, recent evidence studying epithelial tissues and diverse carcinomas suggests the methods used for tissue processing, cell disaggregation, and preservation can significantly bias gene expression and alter the observed cell types. To determine whether sarcomas - tumors of mesenchymal origin - are subject to the same technical artifacts, we profiled patient-derived tumor explants (PDXs) propagated from three aggressive subtypes: osteosarcoma (OS), Ewing sarcoma (ES), desmoplastic small round cell tumor (DSRCT). Given the rarity of these sarcoma subtypes, we explored whether single-nuclei RNA-seq from more widely available archival frozen specimens could accurately be identified by gene expression signatures linked to tissue phenotype or pathognomonic fusion proteins. RESULTS We systematically assessed dissociation methods across different sarcoma subtypes. We compared gene expression from single-cell and single-nucleus RNA-sequencing of 125,831 whole-cells and nuclei from ES, DSRCT, and OS PDXs. We detected warm dissociation artifacts in single-cell samples and gene length bias in single-nucleus samples. Classic sarcoma gene signatures were observed regardless of the dissociation method. In addition, we showed that dissociation method biases could be computationally corrected. CONCLUSIONS We highlighted transcriptional biases, including warm dissociation and gene-length biases, introduced by the dissociation method for various sarcoma subtypes. This work is the first to characterize how the dissociation methods used for sc/snRNA-seq may affect the interpretation of the molecular features in sarcoma PDXs.
Collapse
Affiliation(s)
- Danh D Truong
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Robert W Porter
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sandhya Krishnan
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Amber Gibson
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alexander J Lazar
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - J Andrew Livingston
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nancy Gordon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Najat C Daw
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph A Ludwig
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Tam YB, Jones RL, Huang PH. Molecular profiling in desmoplastic small round cell tumours. Int J Biochem Cell Biol 2023; 157:106383. [PMID: 36736718 DOI: 10.1016/j.biocel.2023.106383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Desmoplastic small round cell tumour (DSRCT) is an ultra-rare soft tissue sarcoma that is characterised by aggressive disease and dismal patient outcomes. Despite multi-modal therapy, prognosis remains poor and there are currently no effective targeted therapies available for patients with this disease. Advances in comprehensive molecular profiling approaches including next generation sequencing and proteomics hold the promise of identifying new therapeutic targets and biomarkers. In this review, we provide an overview of the current status of molecular profiling studies in DSRCT patient specimens and cell lines, highlighting the key genomic, epigenetic and proteomic findings that have contributed to our biological knowledge base of this recalcitrant disease. In-depth analysis of these molecular profiles has led to the identification of promising novel and repurposed candidate therapies that are suitable for translation into clinical trials. We further provide a perspective on how future integrated studies including proteogenomics could further enrich our understanding of this ultra-rare entity and deliver progress that will ultimately impact the outcomes of patients with DSRCT.
Collapse
Affiliation(s)
- Yuen Bun Tam
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Robin L Jones
- The Royal Marsden NHS Foundation Trust, London, United Kingdom; Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
24
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
25
|
Abstract
Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.
Collapse
|
26
|
Wong YP, Buckley K, Iwenofu OH, Singhi A, Kahwash SB, Arnold CA, Tan GC, Arnold MA. Selective Immunoreactivity for WT1 Carboxy-Terminus Distinguishes Desmoplastic Small Round Cell Tumor From its Histologic Mimics. Pediatr Dev Pathol 2022; 25:504-510. [PMID: 35488420 DOI: 10.1177/10935266221088151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Desmoplastic small round cell tumor (DSRCT) is an aggressive pediatric round cell sarcoma containing a characteristic EWSR1-WT1 gene fusion. In the absence of genetic data, distinguishing DSRCT from other small round cell tumors of childhood can be problematic due to overlapping histologic and immunohistochemical features. We studied the utility of immunohistochemistry with antibodies targeting both the amino-terminal and carboxy-terminal regions of the Wilms tumor-1 (WT1) protein in differentiating these groups of tumors. The study cohort included 33 cases of genetically confirmed pediatric round cell tumors (10 DSRCTs, 12 Wilms tumors, 10 Ewing sarcomas, and 1 CIC-rearranged sarcoma). Immunoreactivities and immunolocalization of both the WT1 amino-terminus and carboxy-terminus were scored and documented. All DSRCTs displayed selective reactivity for only the WT1 carboxy-terminus (10/10), while dual immunoreactivity for both the WT1 carboxy-terminus (12/12) and amino-terminus antibodies (12/12) were characteristic of Wilms tumors. CIC-rearranged sarcoma showed variable WT1 nuclear immunopositivity (1/1, 1/1) and Ewing sarcomas were consistently WT1-negative for both the WT1 amino-terminus (0/10) and carboxy-terminus (0/10). Dual WT1 amino-terminus and carboxy-terminus immunohistochemistry remains a helpful diagnostic tool in discriminating intraabdominal small round cell tumors, which serves as an adjunct to the genetic information in preventing misdiagnosis.
Collapse
Affiliation(s)
- Yin Ping Wong
- Department of Pathology, Faculty of Medicine, 458203Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kaila Buckley
- Department of Pathology, 2647The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - O Hans Iwenofu
- Department of Pathology, 2647The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Aatur Singhi
- Department of Pathology, 6614University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Samir B Kahwash
- Department of Pathology, 2647The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Pathology and Laboratory Medicine, 2650Nationwide Children's Hospital, Columbus OH, USA
| | - Christina A Arnold
- Department of Pathology and Laboratory Medicine, 2932Children's Hospital of Colorado, Aurora, CO, USA
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, 458203Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Pathology and Laboratory Medicine, 2650Nationwide Children's Hospital, Columbus OH, USA
| | - Michael A Arnold
- Department of Pathology and Laboratory Medicine, 2932Children's Hospital of Colorado, Aurora, CO, USA
- Department of Pathology, 1878University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
27
|
Gedminas JM, Kaufman R, Boguslawski EA, Gross AC, Adams M, Beddows I, Kitchen-Goosen SM, Roberts RD, Grohar PJ. Lurbinectedin Inhibits the EWS-WT1 Transcription Factor in Desmoplastic Small Round Cell Tumor. Mol Cancer Ther 2022; 21:1296-1305. [PMID: 35657345 DOI: 10.1158/1535-7163.mct-21-1003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare pediatric sarcoma with poor overall survival. This tumor is absolutely dependent on the continued expression and activity of its defining molecular lesion, the EWS-WT1 transcription factor. Unfortunately, the therapeutic targeting of transcription factors is challenging, and there is a critical need to identify compounds that inhibit EWS-WT1. Here we show that the compound lurbinectedin inhibits EWS-WT1 by redistributing the protein within the nucleus to the nucleolus. This nucleolar redistribution interferes with the activity of EWS-WT1 to reverse the expression of over 70% of the transcriptome. In addition, the compound blocks the expression of the EWS-WT1 fusion protein to inhibit cell proliferation at the lowest GI50 ever reported for this compound in any cell type. The effects occur at concentrations that are easily achievable in the clinic and translate to the in vivo setting to cause tumor regressions in multiple mice in a xenograft and PDX model of DSRCT. Importantly, this mechanism of nucleolar redistribution is also seen with wild-type EWSR1 and the related fusion protein EWS-FLI1. This provides evidence for a "class effect" for the more than 18 tumors driven by EWSR1 fusion proteins. More importantly, the data establish lurbinectedin as a promising clinical candidate for DSRCT.
Collapse
Affiliation(s)
- Jenna M Gedminas
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rebecca Kaufman
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elissa A Boguslawski
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amy C Gross
- Center for Childhood Cancer, Nationwide Children's Hospital, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Marie Adams
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Ian Beddows
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | - Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Patrick J Grohar
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Lak NSM, van der Kooi EJ, Enciso-Martinez A, Lozano-Andrés E, Otto C, Wauben MHM, Tytgat GAM. Extracellular Vesicles: A New Source of Biomarkers in Pediatric Solid Tumors? A Systematic Review. Front Oncol 2022; 12:887210. [PMID: 35686092 PMCID: PMC9173703 DOI: 10.3389/fonc.2022.887210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and in vitro studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the in vivo findings are supported by in vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.
Collapse
Affiliation(s)
- Nathalie S M Lak
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cees Otto
- Medical Cell Biophysics Group, University of Twente, Enschede, Netherlands
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Godelieve A M Tytgat
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
29
|
Lamhamedi-Cherradi SE, Maitituoheti M, Menegaz BA, Krishnan S, Vetter AM, Camacho P, Wu CC, Beird HC, Porter RW, Ingram DR, Ramamoorthy V, Mohiuddin S, McCall D, Truong DD, Cuglievan B, Futreal PA, Velasco AR, Anvar NE, Utama B, Titus M, Lazar AJ, Wang WL, Rodriguez-Aguayo C, Ratan R, Livingston JA, Rai K, MacLeod AR, Daw NC, Hayes-Jordan A, Ludwig JA. The androgen receptor is a therapeutic target in desmoplastic small round cell sarcoma. Nat Commun 2022; 13:3057. [PMID: 35650195 PMCID: PMC9160255 DOI: 10.1038/s41467-022-30710-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is an aggressive, usually incurable sarcoma subtype that predominantly occurs in post-pubertal young males. Recent evidence suggests that the androgen receptor (AR) can promote tumor progression in DSRCTs. However, the mechanism of AR-induced oncogenic stimulation remains undetermined. Herein, we demonstrate that enzalutamide and AR-directed antisense oligonucleotides (AR-ASO) block 5α-dihydrotestosterone (DHT)-induced DSRCT cell proliferation and reduce xenograft tumor burden. Gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq) were performed to elucidate how AR signaling regulates cellular epigenetic programs. Remarkably, ChIP-seq revealed novel DSRCT-specific AR DNA binding sites adjacent to key oncogenic regulators, including WT1 (the C-terminal partner of the pathognomonic fusion protein) and FOXF1. Additionally, AR occupied enhancer sites that regulate the Wnt pathway, neural differentiation, and embryonic organ development, implicating AR in dysfunctional cell lineage commitment. Our findings have direct clinical implications given the widespread availability of FDA-approved androgen-targeted agents used for prostate cancer. Androgen receptor can promote tumour progression in desmoplastic small round cell tumour (DSRCT), an aggressive paediatric malignancy that predominantly affects young males. Here, the authors show that DSRCT is an AR-driven malignancy and sensitive to androgen deprivation therapy
Collapse
Affiliation(s)
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Brian A Menegaz
- Department of Surgery, Breast surgical Oncology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sandhya Krishnan
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amelia M Vetter
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pamela Camacho
- Texas Children's Cancer & Hematology Centers, Houston, TX, 77384, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert W Porter
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Davis R Ingram
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vandhana Ramamoorthy
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sana Mohiuddin
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David McCall
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Danh D Truong
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Branko Cuglievan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - P Andrew Futreal
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alejandra Ruiz Velasco
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nazanin Esmaeili Anvar
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Budi Utama
- Optical Microscopy Facility, Rice University, Houston, TX, 77030, USA
| | - Mark Titus
- Genitourinary Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alexander J Lazar
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei-Lien Wang
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Experimental Therapeutics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ravin Ratan
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - J Andrew Livingston
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | | | - Najat C Daw
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Joseph A Ludwig
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Vibert J, Saulnier O, Collin C, Petit F, Borgman KJE, Vigneau J, Gautier M, Zaidi S, Pierron G, Watson S, Gruel N, Hénon C, Postel-Vinay S, Deloger M, Raynal V, Baulande S, Laud-Duval K, Hill V, Grossetête S, Dingli F, Loew D, Torrejon J, Ayrault O, Orth MF, Grünewald TGP, Surdez D, Coulon A, Waterfall JJ, Delattre O. Oncogenic chimeric transcription factors drive tumor-specific transcription, processing, and translation of silent genomic regions. Mol Cell 2022; 82:2458-2471.e9. [PMID: 35550257 DOI: 10.1016/j.molcel.2022.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/20/2022] [Accepted: 04/14/2022] [Indexed: 12/11/2022]
Abstract
Many cancers are characterized by gene fusions encoding oncogenic chimeric transcription factors (TFs) such as EWS::FLI1 in Ewing sarcoma (EwS). Here, we find that EWS::FLI1 induces the robust expression of a specific set of novel spliced and polyadenylated transcripts within otherwise transcriptionally silent regions of the genome. These neogenes (NGs) are virtually undetectable in large collections of normal tissues or non-EwS tumors and can be silenced by CRISPR interference at regulatory EWS::FLI1-bound microsatellites. Ribosome profiling and proteomics further show that some NGs are translated into highly EwS-specific peptides. More generally, we show that hundreds of NGs can be detected in diverse cancers characterized by chimeric TFs. Altogether, this study identifies the transcription, processing, and translation of novel, specific, highly expressed multi-exonic transcripts from otherwise silent regions of the genome as a new activity of aberrant TFs in cancer.
Collapse
Affiliation(s)
- Julien Vibert
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Olivier Saulnier
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Céline Collin
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Floriane Petit
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Kyra J E Borgman
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3664, Laboratoire Dynamique du Noyau, 75005 Paris, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Jérômine Vigneau
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Maud Gautier
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, Paris, France
| | - Sarah Watson
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Medical Oncology Department, PSL Research University, Institut Curie Hospital, Paris, France
| | - Nadège Gruel
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Clémence Hénon
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Sophie Postel-Vinay
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France; Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| | - Marc Deloger
- Bioinformatics and Computational Systems Biology of Cancer, PSL Research University, Mines Paris Tech, INSERM U900, Paris, France
| | - Virginie Raynal
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Institut Curie Research Center, Paris, France
| | - Karine Laud-Duval
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Véronique Hill
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Institut Curie Research Center, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Institut Curie Research Center, Paris, France
| | - Jacob Torrejon
- Institut Curie, CNRS UMR3347, INSERM, PSL Research University, Orsay, France; CNRS UMR 3347, INSERM U1021, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Olivier Ayrault
- Institut Curie, CNRS UMR3347, INSERM, PSL Research University, Orsay, France; CNRS UMR 3347, INSERM U1021, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany; Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Antoine Coulon
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3664, Laboratoire Dynamique du Noyau, 75005 Paris, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Joshua J Waterfall
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.
| |
Collapse
|
31
|
Hartono AB, Kang HJ, Shi L, Phipps W, Ungerleider N, Giardina A, Chen W, Spraggon L, Somwar R, Moroz K, Drewry DH, Burow ME, Flemington E, Ladanyi M, Lee SB. Salt-Inducible Kinase 1 is a potential therapeutic target in Desmoplastic Small Round Cell Tumor. Oncogenesis 2022; 11:18. [PMID: 35443736 PMCID: PMC9021191 DOI: 10.1038/s41389-022-00395-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare and aggressive malignant cancer caused by a chromosomal translocation t(11;22)(p13;q12) that produces an oncogenic transcription factor, EWSR1-WT1. EWSR1-WT1 is essential for the initiation and progression of DSRCT. However, the precise mechanism by which EWSR1-WT1 drives DSRCT oncogenesis remains unresolved. Through our integrative gene expression analysis, we identified Salt Inducible Kinase 1 (SIK1) as a direct target of EWSR1-WT1. SIK1 as a member of the AMPK related kinase is involved in many biological processes. We showed that depletion of SIK1 causes inhibition of tumor cell growth, similar to the growth inhibition observed when EWSR1-WT1 is depleted. We further showed that silencing SIK1 leads to cessation of DNA replication in DSRCT cells and inhibition of tumor growth in vivo. Lastly, combined inhibition of SIK1 and CHEK1with small molecule inhibitors, YKL-05-099 and prexasertib, respectively, showed enhanced cytotoxicity in DSRCT cells compared to inhibition of either kinases alone. This work identified SIK1 as a new potential therapeutic target in DSRCT and the efficacy of SIK1 inhibition may be improved when combined with other intervention strategies.
Collapse
Affiliation(s)
- Alifiani Bonita Hartono
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Hong-Jun Kang
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Lawrence Shi
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Whitney Phipps
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Alexandra Giardina
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - WeiPing Chen
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, Maryland, USA
| | - Lee Spraggon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Krzysztof Moroz
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - David H Drewry
- University of North Carolina, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | | | - Erik Flemington
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean Bong Lee
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA.
| |
Collapse
|
32
|
Multi-site desmoplastic small round cell tumors are genetically related and immune-cold. NPJ Precis Oncol 2022; 6:21. [PMID: 35379887 PMCID: PMC8980094 DOI: 10.1038/s41698-022-00257-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is a highly aggressive soft tissue sarcoma that is characterized by the EWSR1-WT1 fusion protein. Patients present with hundreds of tumor implants in their abdominal cavity at various sites. To determine the genetic relatedness among these sites, exome and RNA sequencing were performed on 22 DSRCT specimens from 14 patients, four of whom had specimens from various tissue sites. Multi-site tumors from individual DSRCT patients had a shared origin and were highly related. Other than the EWSR1-WT1 fusion, very few secondary cancer gene mutations were shared among the sites. Among these, ARID1A, was recurrently mutated, which corroborates findings by others in DSRCT patients. Knocking out ARID1A in JN-DSRCT cells using CRISPR/CAS9 resulted in significantly lower cell proliferation and increased drug sensitivity. The transcriptome data were integrated using network analysis and drug target database information to identify potential therapeutic opportunities in EWSR1-WT1-associated pathways, such as PI3K and mTOR pathways. Treatment of JN-DSRCT cells with the PI3K inhibitor alpelisib and mTOR inhibitor temsirolimus reduced cell proliferation. In addition, the low mutation burden was associated with an immune-cold state in DSRCT. Together, these data reveal multiple genomic and immune features of DSRCT and suggest therapeutic opportunities in patients.
Collapse
|
33
|
Zhou J, Li Q, Luo B, Fu X, Ou C, Gao X, Xu Z, Feng D, Yang K. Primary desmoplastic small round cell tumor of the submandibular gland: a case report and literature review. Diagn Pathol 2022; 17:6. [PMID: 34996495 PMCID: PMC8742402 DOI: 10.1186/s13000-021-01183-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Desmoplastic small round cell tumor (DSRCT) is a sporadic, highly malignant tumor with a poor prognosis. The abdomen and pelvis have been reported as the primary localization sites. However, to the best of our knowledge, there are few reports on primary DSRCT in the submandibular gland. CASE PRESENTATION We report a case of a 26-year-old Chinese man with a mass in the right submandibular gland. Imaging studies showed a hypoechoic mass in the right submandibular region. Intraoperative pathology revealed that the tumor tissue was composed of small round tumor cells and a dense desmoplastic stroma. On immunostaining, the tumor cells showed markers of epithelial, mesenchymal, myogenic, and neural differentiation. The EWSR1 gene rearrangement was detected by fluorescence in situ hybridization. Based on the overall morphological features and immunohistochemical findings, a final diagnosis of DSRCT was made. The patient was treated with comprehensive anti-tumor therapy mainly based on radiotherapy and chemotherapy. CONCLUSIONS DSRCT is an uncommon malignant neoplasm with rare submandibular gland involvement. In this report, we have described a case of DSRCT in the submandibular gland and reviewed the literature on DSRCT over the past 5 years. Considering the importance of differential diagnosis between DSRCT, especially with rare extra-peritoneal involvement, and small round blue cell tumors, a full recognition of the clinicopathological features will help to better diagnose this neoplasm.
Collapse
Affiliation(s)
- Jiayu Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Baihua Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomei Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Deyun Feng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
34
|
Yelamanchi R, Yadav E, Gupta N, Ahuja A, Chauhan DS. Omental desmoplastic small round cell tumor with metastasis. INDIAN J PATHOL MICR 2022; 65:208-210. [PMID: 35075000 DOI: 10.4103/ijpm.ijpm_548_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is a very rare diagnosis with about 200 cases reported in literature. DSRCT is a recently described histopathological entity by Gerald and Rosai in 1989. Abdominopelvic cavity especially peritoneum is the most common site. We report a case of a huge omental DSRCT with lymph node metastasis which was initially misdiagnosed as gastrointestinal stromal tumor on radiology. A 26-year-old male presented with complaints of upper abdominal swelling associated with constant dull pain. On examination there was a large 15 × 12 cm intraabdominal mass in the epigastric and umbilical region. Imaging studies were suggestive of neoplastic mesenchymal etiology. Image-guided fine-needle aspiration cytology (FNAC) was suggestive of mesenchymal neoplastic etiology. On laparotomy, there was a huge 20 × 15 cm mass arising from omentum with multiple omental and mesenteric seedlings and mesenteric, peripancreatic and perigastric lymphadenopathy. The patient underwent debulking surgery with uneventful post-operative recovery. Histopathological examination with immunohistochemistry revealed a diagnosis of DSRCT of omentum and small bowel mesentery with lymph node metastasis. Patient then received adjuvant chemotherapy with multiple chemotherapeutic drugs as per P6 protocol and has stable disease at 1 year follow up.
Collapse
Affiliation(s)
- Raghav Yelamanchi
- Department of Surgery, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Ekta Yadav
- Department of Surgery, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Nikhil Gupta
- Department of Surgery, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Arvind Ahuja
- Department of Pathology, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - D S Chauhan
- Department of Pathology, ABVIMS and Dr. RML Hospital, New Delhi, India
| |
Collapse
|
35
|
Bleijs M, Pleijte C, Engels S, Ringnalda F, Meyer-Wentrup F, van de Wetering M, Clevers H. EWSR1-WT1 Target Genes and Therapeutic Options Identified in a Novel DSRCT In Vitro Model. Cancers (Basel) 2021; 13:cancers13236072. [PMID: 34885181 PMCID: PMC8657306 DOI: 10.3390/cancers13236072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Desmoplastic small round cell tumor (DSRCT) is an extremely rare soft tissue sarcoma arising in the abdomen of adolescents and young adults. This sarcoma is driven by a single genomic rearrangement, resulting in the expression of the EWSR1-WT1 fusion gene. No effective treatment exists for DSRCT patients, which highlights the need for preclinical models to study disease progression and drug sensitivity. The aim of this study is to develop a pre-clinical DSRCT in vitro model, which enables investigating the molecular target genes of the EWSR1-WT1 fusion gene and allows for medium-throughput drug screening to discover new therapeutic options. Abstract Desmoplastic small round cell tumor (DSRCT) is a rare and aggressive soft tissue sarcoma with a lack of effective treatment options and a poor prognosis. DSRCT is characterized by a chromosomal translocation, resulting in the EWSR1-WT1 gene fusion. The molecular mechanisms driving DSRCT are poorly understood, and a paucity of preclinical models hampers DSRCT research. Here, we establish a novel primary patient-derived DSRCT in vitro model, recapitulating the original tumor. We find that EWSR1-WT1 expression affects cell shape and cell survival, and we identify downstream target genes of the EWSR1-WT1 fusion. Additionally, this preclinical in vitro model allows for medium-throughput drug screening. We discover sensitivity to several drugs, including compounds targeting RTKs. MERTK, which has been described as a therapeutic target for several malignancies, correlates with EWSR1-WT1 expression. Inhibition of MERTK with the small-molecule inhibitor UNC2025 results in reduced proliferation of DSRCT cells in vitro, suggesting MERTK as a therapeutic target in DSRCT. This study underscores the usefulness of preclinical in vitro models for studying molecular mechanisms and potential therapeutic options.
Collapse
Affiliation(s)
- Margit Bleijs
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Corine Pleijte
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Sem Engels
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Friederike Meyer-Wentrup
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584 CT Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
36
|
Slim S, Zemni I, Bouida A, Bouhani M, Boujelbene N, Mrad K, Chargui R, Rahal K. Intraabdominal and ganglionic desmoplastic small round cell tumor: a case series. J Med Case Rep 2021; 15:500. [PMID: 34635162 PMCID: PMC8507229 DOI: 10.1186/s13256-021-03094-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Desmoplastic small round cell tumor is a rare malignancy with poor prognosis, affecting young male patients. It frequently presents as a large abdominal mass with widespread peritoneal involvement at diagnosis. In late stages, metastases may be present. Aim We retrospectively reviewed patient characteristics, presenting symptoms, tumor pathology, treatment, and outcome of four patients with desmoplastic small round cell tumor at our institution. Cases presentation The first three cases reported are 32-, 17-, and 30-year-old North African males with intraabdominal desmoplastic small round cell tumor treated by surgery, chemotherapy, and radiation therapy with different follow-ups. The final case is a 16-year-old North African male with ganglionic desmoplastic small round cell tumor but no evidence of a tissue mass. He underwent two lines of chemotherapy with no response. The patient was lost after 2 years of follow-up. In all cases, desmoplastic small round cell tumor was confirmed by presence of t(11,22) (p13,q12) translocation. Conclusion Treatment of desmoplastic small round cell tumor is based on multidisciplinary therapy. Despite high-dose chemotherapy, extensive surgical resection, and radiotherapy, desmoplastic small round cell tumor remains lethal.
Collapse
Affiliation(s)
- S Slim
- Surgical Oncology Department, Salah Azaiez Institute, Tunis, Tunisia. .,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - I Zemni
- Surgical Oncology Department, Salah Azaiez Institute, Tunis, Tunisia.,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, Tunis, Tunisia
| | - A Bouida
- Surgical Oncology Department, Salah Azaiez Institute, Tunis, Tunisia.,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - M Bouhani
- Surgical Oncology Department, Salah Azaiez Institute, Tunis, Tunisia.,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - N Boujelbene
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, Tunis, Tunisia.,Pathology Department, Salah Azaiez Institute, Tunis, Tunisia
| | - K Mrad
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Pathology Department, Salah Azaiez Institute, Tunis, Tunisia
| | - R Chargui
- Surgical Oncology Department, Salah Azaiez Institute, Tunis, Tunisia.,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - K Rahal
- Surgical Oncology Department, Salah Azaiez Institute, Tunis, Tunisia.,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
37
|
Wei G, Shu X, Zhou Y, Liu X, Chen X, Qiu M. Intra-Abdominal Desmoplastic Small Round Cell Tumor: Current Treatment Options and Perspectives. Front Oncol 2021; 11:705760. [PMID: 34604040 PMCID: PMC8479161 DOI: 10.3389/fonc.2021.705760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
Intra-abdominal desmoplastic small round cell tumor (IDSRCT) is a rare and highly malignant soft tissue neoplasm, which is characterized by rapid progression and poor prognosis. The mechanism underlying the development of this neoplasm remains elusive, but all cases are characterized by the chromosomal translocation t (11;22) (p13; q12), which results in a formation of EWSR1-WT1 gene fusion. The diagnosis of IDSRCT is often made with core-needle tissue biopsy specimens or laparoscopy or laparotomy. Immunohistochemical analyses have shown the co-expression of epithelial, neuronal, myogenic, and mesenchymal differentiation markers. FISH or reverse transcription polymerase chain reaction detecting EWS-WT1 fusion can be performed to assist in molecular confirmation. There is no standard of care for patients with IDSRCT currently, and majority of newly diagnosed patients received the aggressive therapy, which includes >90% resection of surgical debulking, high-dose alkylator-based chemotherapy, and radiotherapy. More recently, targeted therapy has been increasingly administered to recurrent IDSRCT patients and has been associated with improved survival in clinical conditions. Immunotherapy as a possible therapeutic strategy is being explored in patients with IDSRCT. In this review, we summarize currently available knowledge regarding the epidemiology, potential mechanisms, clinical manifestations, diagnosis, treatment, and prognosis of IDSRCT to assist oncologists in comprehensively recognizing and accurately treating this malignancy.
Collapse
Affiliation(s)
- Guixia Wei
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xinyao Shu
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuwen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xia Liu
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorong Chen
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Slotkin EK, Bowman AS, Levine MF, Dela Cruz F, Coutinho DF, Sanchez GI, Rosales N, Modak S, Tap WD, Gounder MM, Thornton KA, Bouvier N, You D, Gundem G, Gerstle JT, Heaton TE, LaQuaglia MP, Wexler LH, Meyers PA, Kung AL, Papaemmanuil E, Zehir A, Ladanyi M, Shukla N. Comprehensive Molecular Profiling of Desmoplastic Small Round Cell Tumor. Mol Cancer Res 2021; 19:1146-1155. [PMID: 33753552 PMCID: PMC8293793 DOI: 10.1158/1541-7786.mcr-20-0722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Desmoplastic small round cell tumor (DSRCT) is characterized by the EWSR1-WT1 t(11;22) (p13:q12) translocation. Few additional putative drivers have been identified, and research has suffered from a lack of model systems. Next-generation sequencing (NGS) data from 68 matched tumor-normal samples, whole-genome sequencing data from 10 samples, transcriptomic and affymetrix array data, and a bank of DSRCT patient-derived xenograft (PDX) are presented. EWSR1-WT1 fusions were noted to be simple, balanced events. Recurrent mutations were uncommon, but were noted in TERT (3%), ARID1A (6%), HRAS (5%), and TP53 (3%), and recurrent loss of heterozygosity (LOH) at 11p, 11q, and 16q was identified in 18%, 22%, and 34% of samples, respectively. Comparison of tumor-normal matched versus unmatched analysis suggests overcalling of somatic mutations in prior publications of DSRCT NGS data. Alterations in fibroblast growth factor receptor 4 (FGFR4) were identified in 5 of 68 (7%) of tumor samples, whereas differential overexpression of FGFR4 was confirmed orthogonally using 2 platforms. PDX models harbored the pathognomic EWSR1-WT1 fusion and were highly representative of corresponding tumors. Our analyses confirm DSRCT as a genomically quiet cancer defined by the balanced translocation, t(11;22)(p13:q12), characterized by a paucity of secondary mutations but a significant number of copy number alterations. Against this genomically quiet background, recurrent activating alterations of FGFR4 stood out, and suggest that this receptor tyrosine kinase, also noted to be highly expressed in DSRCT, should be further investigated. Future studies of DSRCT biology and preclinical therapeutic strategies should benefit from the PDX models characterized in this study. IMPLICATIONS: These data describe the general quiescence of the desmoplastic small round cell tumor (DSRCT) genome, present the first available bank of DSRCT model systems, and nominate FGFR4 as a key receptor tyrosine kinase in DSRCT, based on high expression, recurrent amplification, and recurrent activating mutations.
Collapse
Affiliation(s)
- Emily K Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Anita S Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Max F Levine
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diego F Coutinho
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Glorymar I Sanchez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nestor Rosales
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mrinal M Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine A Thornton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gunes Gundem
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin T Gerstle
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Todd E Heaton
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael P LaQuaglia
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
39
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
40
|
Mello CA, Campos FAB, Santos TG, Silva MLG, Torrezan GT, Costa FD, Formiga MN, Nicolau U, Nascimento AG, Silva C, Curado MP, Nakagawa SA, Lopes A, Aguiar S. Desmoplastic Small Round Cell Tumor: A Review of Main Molecular Abnormalities and Emerging Therapy. Cancers (Basel) 2021; 13:cancers13030498. [PMID: 33525546 PMCID: PMC7865637 DOI: 10.3390/cancers13030498] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Desmoplastic small round cell tumor is a rare neoplasm with extremely aggressive behavior. Despite the multimodal treatment for newly diagnosed patients with chemotherapy, cytoreductive surgery and radiation, the cure rate is still low. For relapsed or progressive disease, there is limited data regarding second and third-line therapies. Novel agents have shown only modest activity. Recent molecular changes have been identified in this disease and this opens opportunities to be explored in future clinical trials. Abstract Desmoplastic small round cell tumor (DSRCT) is an extremely rare, aggressive sarcoma affecting adolescents and young adults with male predominance. Generally, it originates from the serosal surface of the abdominal cavity. The hallmark characteristic of DSRCT is the EWSR1–WT1 gene fusion. This translocation up-regulates the expression of PDGFRα, VEGF and other proteins related to tumor and vascular cell proliferation. Current management of DSRCT includes a combination of chemotherapy, radiation and aggressive cytoreductive surgery plus intra-peritoneal hyperthermic chemotherapy (HIPEC). Despite advances in multimodal therapy, outcomes remain poor since the majority of patients present disease recurrence and die within three years. The dismal survival makes DSRCT an orphan disease with an urgent need for new drugs. The treatment of advanced and recurrent disease with tyrosine kinase inhibitors, such as pazopanib, sunitinib, and mTOR inhibitors was evaluated by small trials. Recent studies using comprehensive molecular profiling of DSRCT identified potential therapeutic targets. In this review, we aim to describe the current studies conducted to better understand DSRCT biology and to explore the new therapeutic strategies under investigation in preclinical models and in early phase clinical trials.
Collapse
Affiliation(s)
- Celso Abdon Mello
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
- Correspondence: ; Tel.: +55-11-2189-2779
| | - Fernando Augusto Batista Campos
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Tiago Goss Santos
- Laboratory of Tumor Biology and Biomarkers, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil;
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 05403-010, Brazil;
| | | | - Giovana Tardin Torrezan
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 05403-010, Brazil;
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Felipe D’Almeida Costa
- Department of Pathology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.D.C.); (A.G.N.)
| | - Maria Nirvana Formiga
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Ulisses Nicolau
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | | | - Cassia Silva
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Maria Paula Curado
- Department of Epidemiology, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil;
| | - Suely Akiko Nakagawa
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| | - Ademar Lopes
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| | - Samuel Aguiar
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| |
Collapse
|
41
|
Ogura K, Somwar R, Hmeljak J, Magnan H, Benayed R, Momeni Boroujeni A, Bowman AS, Mattar MS, Khodos I, de Stanchina E, Jungbluth A, Asher M, Odintsov I, Hartono AB, LaQuaglia MP, Slotkin E, Pratilas CA, Lee SB, Spraggon L, Ladanyi M. Therapeutic Potential of NTRK3 Inhibition in Desmoplastic Small Round Cell Tumor. Clin Cancer Res 2020; 27:1184-1194. [PMID: 33229458 DOI: 10.1158/1078-0432.ccr-20-2585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Desmoplastic small round cell tumor (DSRCT) is a highly lethal intra-abdominal sarcoma of adolescents and young adults. DSRCT harbors a t(11;22)(p13:q12) that generates the EWSR1-WT1 chimeric transcription factor, the key oncogenic driver of DSRCT. EWSR1-WT1 rewires global gene expression networks and activates aberrant expression of targets that together mediate oncogenesis. EWSR1-WT1 also activates a neural gene expression program. EXPERIMENTAL DESIGN Among these neural markers, we found prominent expression of neurotrophic tyrosine kinase receptor 3 (NTRK3), a druggable receptor tyrosine kinase. We investigated the regulation of NTRK3 by EWSR1-WT1 and its potential as a therapeutic target in vitro and in vivo, the latter using novel patient-derived models of DSRCT. RESULTS We found that EWSR1-WT1 binds upstream of NTRK3 and activates its transcription. NTRK3 mRNA is highly expressed in DSRCT compared with other major chimeric transcription factor-driven sarcomas and most DSRCTs are strongly immunoreactive for NTRK3 protein. Remarkably, expression of NTRK3 kinase domain mRNA in DSRCT is also higher than in cancers with NTRK3 fusions. Abrogation of NTRK3 expression by RNAi silencing reduces growth of DSRCT cells and pharmacologic targeting of NTRK3 with entrectinib is effective in both in vitro and in vivo models of DSRCT. CONCLUSIONS Our results indicate that EWSR1-WT1 directly activates NTRK3 expression in DSRCT cells, which are dependent on its expression and activity for growth. Pharmacologic inhibition of NTRK3 by entrectinib significantly reduces growth of DSRCT cells both in vitro and in vivo, providing a rationale for clinical evaluation of NTRK3 as a therapeutic target in DSRCT.
Collapse
Affiliation(s)
- Koichi Ogura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Julija Hmeljak
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heather Magnan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Anita S Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marissa S Mattar
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Inna Khodos
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marina Asher
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Igor Odintsov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alifiani B Hartono
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Michael P LaQuaglia
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine A Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Sean Bong Lee
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lee Spraggon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|