1
|
Limani R, Kondirolli L, Blakaj Gashi B, Ulamec M, Krušlin B. Dysadherin expression in prostatic adenocarcinoma and its relationship with E-cadherin and β-catenin. Future Sci OA 2025; 11:2494972. [PMID: 40292544 PMCID: PMC12039401 DOI: 10.1080/20565623.2025.2494972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND We analyzed immunoexpression of Dysadherin, E-cadherin and ß-catenin proteins in prostate. METHODS 53 radical prostatectomy specimens were included. Dysadherin, E-cadherin and ß-catenin were evaluated in prostatic adenocarcinoma and in adjacent non-tumorous tissue, and correlated with clinicomorphological features in prostatic adenocarcinoma. RESULTS We report cytoplasmic/membraneous and nuclear staining for Dysadherin in prostatic tissue. Cytoplasmic/membraneous expression was stronger in prostatic adenocarcinoma when compared to adjacent non-tumorous prostatic tissue (p < 0.001). Dysadherin positively correlated with T status (rho = 0.326, P = 0.017) and Grade Group (rho = 0.278, P = 0.044). We report no correlation with recurrence, surgical margins status, sPSA and N status. E-cadherin was negatively correlated with recurrence (rho = -0.297, P = 0.031), T status (rho = -0.430, P = 0.001), Grade Group (rho = -0.558, P < 0.001) and positive surgical margins (rho = -0.404, P = 0.003). ß-catenin negatively correlated with Grade Group (rho = -0.557, P < 0,001). No correlation was observed between Dysadherin and E-cadherin and Dysadherin and ß-catenin expression. CONCLUSION Our results suggest a potential role for Dysadherin in tumor progression. No significant correlation between Dysadherin and E-cadherin or ß-catenin indicates potential independence of Dysadherin in its regulatory role in prostatic adenocarcinoma.
Collapse
Affiliation(s)
- Rinë Limani
- Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Institute of Anatomical Pathology, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Labinota Kondirolli
- Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Institute of Anatomical Pathology, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Brikenë Blakaj Gashi
- Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Institute of Anatomical Pathology, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Monika Ulamec
- “Ljudevit Jurak” Sestre Milosrdnice Clinical Hospital Center, Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Božo Krušlin
- “Ljudevit Jurak” Sestre Milosrdnice Clinical Hospital Center, Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Mao Y, Hu Y, Meng H, Qin J, An Q, Zhang C, Guo C, Zhao Y, Tan D, Ge X, Shi C. FXYD5 regulates gastric cancer cell metastasis and drug resistance by EMT modulation. Cancer Gene Ther 2025; 32:318-326. [PMID: 39984673 DOI: 10.1038/s41417-025-00878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/19/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality and the fourth most prevalent malignancy globally. The high prevalence and mortality rates of GC are attributed to various factors, including drug resistance, local recurrence, and distant metastases. There is an urgent need to identify novel therapeutic targets for GC. Patient-derived xenografts (PDX) model offers unique advantages in maintaining the molecular heterogeneity and tumor microenvironment of primary tumors, offering significant advantages for the screening of personalized therapeutic targets. In this study, we established GC PDX models with metastatic potential through orthotopic transplantation and investigated the different gene expressions between primary and metastatic tumors using PCR-array analysis. We found that the metastatic tumors displayed elevated levels of FXYD domain-containing ion transport regulator 5 (FXYD5) compared to the primary tumors. Additionally, reducing FXYD5 expression was found to inhibit the invasion, metastasis, and proliferation of GC cells. Silencing FXYD5 also reversed the resistance of GC cells to doxorubicin and vincristine by modulating the epithelial-mesenchymal transition (EMT) process and the expression of multidrug resistance protein 2. This study indicates that FXYD5 is involved in GC progression and regulates chemotherapy resistance, suggesting its potential as a novel therapeutic target for the clinical treatment of GC.
Collapse
Affiliation(s)
- Yuning Mao
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
- Department of Pathology, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Han Meng
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Chenbo Guo
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Xu Ge
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Wu P, Zhang Q, Xu X, He S, Liu Z, Li Y, Guo R. Primary infection enhances neutrophil-mediated host defense by educating HSPCs. Int Immunopharmacol 2024; 137:112382. [PMID: 38875995 DOI: 10.1016/j.intimp.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can give rise to all kinds of immune cells including neutrophils. Neutrophils are the first line of defense in the innate immune system with a short lifespan, due to which it is well-accepted that neutrophils have no immune memory. However, recent reports showed that the changes in HSPCs induced by primary stimulation could last a long time, which contributes to enhancing response to subsequent infection by generating more monocytes or macrophages equipped with stronger anti-bacterial function. Here, we used the reinfection mice model to reveal that primary infection could improve neutrophil-mediated host defense by training neutrophil progenitors in mammals, providing a new idea to enhance neutrophil number and improve neutrophil functions, which is pretty pivotal for patients with compromised or disordered immunity.
Collapse
Affiliation(s)
- Peng Wu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qingyu Zhang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450053, Henan, China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Songjiang He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheming Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
4
|
Kollet O, Das A, Karamanos N, Auf dem Keller U, Sagi I. Redefining metalloproteases specificity through network proteolysis. Trends Mol Med 2024; 30:147-163. [PMID: 38036391 PMCID: PMC11004056 DOI: 10.1016/j.molmed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Proteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs. Systems biology advances revealed that MMPs initiate multifactorial proteolytic cascades, creating new substrates, activating or suppressing other MMPs, and generating signaling molecules. This review highlights the intricate network that underscores the role of MMPs beyond individual substrate-enzyme activities. Gaining insight into MMP function and tissue specificity is crucial for developing effective drug discovery strategies and novel therapeutics. This requires considering the dynamic cellular processes and consequences of network proteolysis.
Collapse
Affiliation(s)
- Orit Kollet
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Alakesh Das
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Nikos Karamanos
- University of Patras, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, Patras, Greece
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, Denmark
| | - Irit Sagi
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel.
| |
Collapse
|
5
|
Yu S, Cheng J, Li P, Tian L, Chen Z, Chen Z, Li Y, Song J. Association study for the role of MMP8 gene polymorphisms in Colorectal cancer susceptibility. BMC Cancer 2023; 23:1169. [PMID: 38031100 PMCID: PMC10688471 DOI: 10.1186/s12885-023-11662-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant tumors, influenced by several genetic loci in its clinical phenotypes. The aim of this study was to determine the relationship between the MMP8 gene polymorphism and CRC risk in the Chinese Han population. METHOD This study recruited 688 CRC patients and 690 healthy controls. The relationship between MMP8 polymorphism and CRC susceptibility was assessed by calculating the odds ratio (OR) and 95% confidence interval (CI) after stratifying by age, gender, body mass index (BMI), smoking, and alcohol consumption under a multi-genetic model. RESULTS MMP8 rs3740938 was associated with increased CRC predisposition (p = 0.016, OR = 1.24, 95% CI: 1.04-1.48), and this association was detected particularly in subjects aged > 60 years, females, people with BMI > 24 kg/m2, smokers, and drinkers. Moreover, rs3740938 was found to be associated with the pathological type of rectal cancer. CONCLUSIONS Our results first displayed that rs3740938 in MMP8 was a risk factor for CRC predisposition. This finding may provide a new biological perspective for understanding the role of the MMP8 gene in CRC pathogenesis.
Collapse
Affiliation(s)
- Shuyong Yu
- Department of Gastrointestinal Surgery IV, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Jiajia Cheng
- Department of Gastrointestinal Surgery IV, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Ping Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Le Tian
- Department of Digestive Endoscopy, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Zhuang Chen
- Department of Gastroenterology, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Zhaowei Chen
- Department of Gastroenterology, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Yongyu Li
- Department of Gastroenterology, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Jian Song
- Department of Gastroenterology, Southern University of Science and Technology Hospital, No. 6019 Liuxian Avenue, Nanshan District, 518000, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Das N, de Almeida LGN, Derakhshani A, Young D, Mehdinejadiani K, Salo P, Rezansoff A, Jay GD, Sommerhoff CP, Schmidt TA, Krawetz R, Dufour A. Tryptase β regulation of joint lubrication and inflammation via proteoglycan-4 in osteoarthritis. Nat Commun 2023; 14:1910. [PMID: 37024468 PMCID: PMC10079686 DOI: 10.1038/s41467-023-37598-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
PRG4 is an extracellular matrix protein that maintains homeostasis through its boundary lubricating and anti-inflammatory properties. Altered expression and function of PRG4 have been associated with joint inflammatory diseases, including osteoarthritis. Here we show that mast cell tryptase β cleaves PRG4 in a dose- and time-dependent manner, which was confirmed by silver stain gel electrophoresis and mass spectrometry. Tryptase-treated PRG4 results in a reduction of lubrication. Compared to full-length, cleaved PRG4 further activates NF-κB expression in cells overexpressing TLR2, -4, and -5. In the destabilization of the medial meniscus model of osteoarthritis in rat, tryptase β and PRG4 colocalize at the site of injury in knee cartilage and is associated with disease severity. When human primary synovial fibroblasts from male osteoarthritis patients or male healthy subjects treated with tryptase β and/or PRG4 are subjected to a quantitative shotgun proteomics and proteome changes are characterized, it further supports the role of NF-κB activation. Here we show that tryptase β as a modulator of joint lubrication in osteoarthritis via the cleavage of PRG4.
Collapse
Affiliation(s)
- Nabangshu Das
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luiz G N de Almeida
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Afshin Derakhshani
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel Young
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kobra Mehdinejadiani
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul Salo
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alexander Rezansoff
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, USA
| | - Christian P Sommerhoff
- Institute of Medical Education and Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Tannin A Schmidt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Antoine Dufour
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Kazmi A, Abbas Z, Saleem Z, Haider S, Farooqui WA, Ahmed S. Relation of salivary MMP-8 with oral submucous fibrosis and oral squamous cell carcinoma: a cross sectional analytical study. BMJ Open 2022; 12:e060738. [PMID: 36523229 PMCID: PMC9748963 DOI: 10.1136/bmjopen-2021-060738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES We aim to evaluate salivary matrix metalloproteinases (MMP-8) levels in oral submucous fibrosis (OSF) and oral squamous cell carcinoma (OSCC) for the purpose of diagnosis at the early stage via non-invasive method. SETTING The study was multicentre, carried out at a tertiary care hospital in Karachi, Pakistan. PARTICIPANTS A total 60 participants of any age, sex and ethnicity were randomly selected for the purpose of this study. Patients demonstrating clinical evidence of OSF and biopsy-proven cases of OSCC were included. Patients with indeterminate histopathological report, immunodeficiency, autoimmune disorder, chronic medical and periodontal disease (periodontal depth greater than 5 mm) and individuals with interincisal mouth opening greater than 35 mm were excluded from the study. INTERVENTIONS Salivary MMP-8 levels were observed in OSF, healthy and OSCC groups by using ELISA. One way analysis of variance was applied to establish whether MMP-8 levels of disease-free individuals and patients suffering from OSF and OSCC differed from each other. RESULTS Statistically significant difference in salivary MMP-8 expression in diseased and control group was observed. MMP-8 levels in OSCC (0.64 ng/mL) and OSF (0.66 ng/mL) were underexpressed as compared with healthy participants (7.9 ng/mL). CONCLUSION MMP-8 levels were underexpressed in OSCC and OSF patients as compared with controls, which imply that MMP-8 level has an inverse relation with OSCC and OSF.
Collapse
Affiliation(s)
- Anum Kazmi
- Oral and Maxillofacial Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Zia Abbas
- Oral and Maxillofacial Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Zohra Saleem
- Oral and Maxillofacial Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Safdar Haider
- Oral and maxillofacial surgery, Bahria University medical and dental college, Karachi, Pakistan
| | - Waqas Ahmed Farooqui
- School of Public Health, Dow University of Health Sciences - Ojha Campus, Karachi, Pakistan
| | - Shaheen Ahmed
- Oral and Maxillofacial Surgery, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
8
|
Haack AM, Overall CM, Auf dem Keller U. Degradomics technologies in matrisome exploration. Matrix Biol 2022; 114:1-17. [PMID: 36280126 DOI: 10.1016/j.matbio.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Consisting of a defined set of extracellular proteins secreted from resident cells and with minor contributions from serum proteins, the extracellular matrix (ECM) is an essential component of all tissues. Maintaining tissue homeostasis, structural support and cellular control through cell-ECM communication, the ECM has come to be viewed as not just a passive structural entity but rather as a dynamic signaling conduit between cells and the extracellular compartment. Proteins and their cleavage products mediate this communication, and aberrant signaling, either directly or indirectly distorting the ECM, results in pathological conditions including cancer, inflammation, fibrosis, and neurodegenerative diseases. Characterization of ECM components, the matrisome, the extracellular environment and their changes in disease is therefore of importance to understand and mitigate by developing novel therapeutics. Liquid chromatography-mass spectrometry (LC-MS) proteomics has been integral to protein and proteome research for decades and long superseded the obsolescent gel-based approaches. A continuous effort has ensured progress with increased sensitivity and throughput as more advanced equipment has been developed hand in hand with specialized enrichment, detection, and identification methods. Part of this effort lies in the field of degradomics, a branch of proteomics focused on discovering novel protease substrates by identification of protease-generated neo-N termini, the N-terminome, and characterizing the responsible protease networks. Various methods to do so have been developed, some specialized for specific tissue types, others for particular proteases, throughput, or ease of use. This review aims to provide an overview of the state-of-the-art proteomics techniques that have successfully been recently utilized to characterize proteolytic cleavages in the ECM and thereby guided new research and understanding of the ECM and matrisome biology.
Collapse
Affiliation(s)
- Aleksander M Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, Department of Oral Biological and Medical Sciences, Centre for Blood Research, University of British Columbia, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
9
|
Niinivirta A, Salo T, Åström P, Juurikka K, Risteli M. Prognostic value of dysadherin in cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:945992. [PMID: 36119538 PMCID: PMC9479204 DOI: 10.3389/fonc.2022.945992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer is a leading cause of death worldwide and novel prognostic factors are reported with increasing numbers. Systematic reviews and meta-analyses on cumulative research data are crucial in estimating the true prognostic value of proposed factors. Dysadherin (FXYD Domain Containing Ion Transport Regulator 5; FXYD5) is a cell membrane glycoprotein that modulates Na+, K+-ATPase activity and cell-cell adhesion. It is abundantly expressed in a variety of cancer cells, but only in a limited number of normal cells and its levels are increased in many different tumor types. The expression or level of dysadherin has been suggested as an independent predictor for metastasis and poor prognosis by number of studies, yet we lack a definitive answer. In this study, we systematically evaluated the prognostic value of dysadherin in cancer and summarized the current knowledge on the subject. PubMed, Scopus, Web of Science and relevant clinical trial and preprint databases were searched for relevant publications and PRISMA and REMARK guidelines were applied in the process. After a careful review, a total of 23 original research articles were included. In each study, dysadherin was pointed as a marker for poor prognosis. Meta-analyses revealed 3- and 1.5-fold increases in the risk of death (fixed effects HR 3.08, 95% CI 1.88-5.06, RR 1.47, 95% CI 1.06-2.05 on overall survival, respectively) for patients with high (>50%) tumoral FXYD5 level. In many studies, a connection between dysadherin expression or level and metastatic behavior of the cancer as well as inverse correlation with E-cadherin level were reported. Thus, we conclude that dysadherin might be a useful prognostic biomarker in the assessment of disease survival of patients with solid tumors.
Collapse
Affiliation(s)
- Aino Niinivirta
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
- Department of Pathology (HUSLAB), Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Krista Juurikka
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Maija Risteli
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
10
|
Tan XP, Xiong BH, Zhang YX, Wang SL, Zuo Q, Li J. FXYD5 promotes sorafenib resistance through the Akt/mTOR signaling pathway in hepatocellular carcinoma. Eur J Pharmacol 2022; 931:175186. [PMID: 35977595 DOI: 10.1016/j.ejphar.2022.175186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022]
Abstract
Tumor chemoresistance is often a major cause for the failure of chemotherapy. The resistance of hepatocellular carcinoma (HCC) cells to sorafenib significantly limits its therapeutic effect in HCC patients. For the first time, we found that FXYD domain-containing ion transport regulator 5 (FXYD5) is highly expressed in sorafenib-resistant HCC cells. In addition, the protein expression level of FXYD5 was markedly higher in HCC tissues than in paracancerous tissues. Remarkably, downregulation of FXYD5 expression in Huh7/sora cells reversed their resistance to sorafenib. Moreover, overexpression of FXYD5 reduced the sensitivity of HCC cells to sorafenib, while the downregulation of its expression in HCC cells had the opposite effect. We also found abnormal activation of the Akt/mTOR signaling pathway in Huh7/sora cells. Furthermore, MK2206, an Akt inhibitor, was found to significantly increase the sensitivity of HCC cells to sorafenib. More importantly, the expression level of p-Akt was positively correlated with the expression of FXYD5 in HCC tissues. Therefore, mechanistically, FXYD5 enhances the resistance of HCC cells to sorafenib by activating the Akt/mTOR signaling pathway. In conclusion, this study showed that the activation of the FXYD5/Akt/mTOR signaling axis plays key role in the resistance of HCC cells to sorafenib, and FXYD5 may represent a new potential target for HCC therapy.
Collapse
Affiliation(s)
- Xiang-Peng Tan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ben-Han Xiong
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuan-Xu Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shen-Li Wang
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Qian Zuo
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jing Li
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
11
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
12
|
Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol 2021; 14:173. [PMID: 34674757 PMCID: PMC8529570 DOI: 10.1186/s13045-021-01187-y] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, neutrophils have attracted increasing attention because of their cancer-promoting effects. An elevated neutrophil-to-lymphocyte ratio is considered a prognostic indicator for patients with cancer. Neutrophils are no longer regarded as innate immune cells with a single function, let alone bystanders in the pathological process of cancer. Their diversity and plasticity are being increasingly recognized. This review summarizes previous studies assessing the roles and mechanisms of neutrophils in cancer initiation, progression, metastasis and relapse. Although the findings are controversial, the fact that neutrophils play a dual role in promoting and suppressing cancer is undeniable. The plasticity of neutrophils allows them to adapt to different cancer microenvironments and exert different effects on cancer. Given the findings from our own research, we propose a reasonable hypothesis that neutrophils may be reprogrammed into a cancer-promoting state in the cancer microenvironment. This new perspective indicates that neutrophil reprogramming in the course of cancer treatment is a problem worthy of attention. Preventing or reversing the reprogramming of neutrophils may be a potential strategy for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Shumin Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liaoliao Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
13
|
Abstract
All living organisms depend on tightly regulated cellular networks to control biological functions. Proteolysis is an important irreversible post-translational modification that regulates most, if not all, cellular processes. Proteases are a large family of enzymes that perform hydrolysis of protein substrates, leading to protein activation or degradation. The 473 known and 90 putative human proteases are divided into 5 main mechanistic groups: metalloproteases, serine proteases, cysteine proteases, threonine proteases, and aspartic acid proteases. Proteases are fundamental to all biological systems, and when dysregulated they profoundly influence disease progression. Inhibiting proteases has led to effective therapies for viral infections, cardiovascular disorders, and blood coagulation just to name a few. Between 5 and 10% of all pharmaceutical targets are proteases, despite limited knowledge about their biological roles. More than 50% of all human proteases have no known substrates. We present here a comprehensive list of all current known human proteases. We also present current and novel biochemical tools to characterize protease functions in vitro, in vivo, and ex vivo. These tools make it achievable to define both beneficial and detrimental activities of proteases in health and disease.
Collapse
Affiliation(s)
- Longxiang Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kimberly Main
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henry Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|