1
|
Zhang L, Chun Y, Grishina G, Lo T, Reed K, Wang J, Sicherer S, Berin MC, Bunyavanich S. Oral and Gut Microbial Hubs Associated With Reaction Threshold Interact With Circulating Immune Factors in Peanut Allergy. Allergy 2025. [PMID: 39887792 DOI: 10.1111/all.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Among peanut-allergic individuals, there is high variability in the amount of peanut that triggers reactions (i.e., reaction threshold) that is not predictable or well-understood. We conducted this study to characterize relationships between the oral and gut microbiomes and systemic processes associated with reaction threshold in peanut allergy (PA). METHODS In a cohort of 120 children with suspected PA who underwent double-blind, placebo-controlled food challenges, we generated and analyzed parallel profiles of the oral microbiome, gut microbiome, peripheral blood transcriptome, peripheral blood cytometry, and serum antibody levels to identify threshold-associated markers and their inter-relationships. RESULTS The 120 participants included 23 children with no PA, 74 with high-threshold PA (reacting to ≥ 443 mg cumulative peanut protein), and 23 with low-threshold PA (reacting to < 443 mg cumulative peanut protein). Ten hub microbes were each identified in saliva and stool microbiome networks that were constructed, including the hub microbes Rothia aeria in saliva and Bacteroides sp. in stool that were associated with reaction threshold. These hub microbes were also associated with peripheral blood transcript levels for threshold-associated key drivers of FcγR-mediated phagocytosis and TLR signaling. Correlation network construction with additional data on threshold-associated peripheral blood neutrophil abundance and peanut-specific serum IgE and Ara h 2 antibody levels revealed central roles for saliva Rothia aeria and stool Bacteroides sp. in local-systemic networks for IgE- and IgG-mediated peanut allergy. CONCLUSIONS This integrated study of oral and stool microbiomes, blood transcriptome, cellular profiles, and peanut-specific serum antibodies revealed new relationships between local microbiota and systemic measures associated with reaction threshold in peanut allergy.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Galina Grishina
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracy Lo
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyle Reed
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott Sicherer
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Allergy and Immunology, Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Hesser LA, Puente AA, Arnold J, Ionescu E, Mirmira A, Talasani N, Lopez J, Maccio-Maretto L, Mimee M, Nagler CR. A synbiotic of Anaerostipes caccae and lactulose prevents and treats food allergy in mice. Cell Host Microbe 2024; 32:1163-1176.e6. [PMID: 38906158 PMCID: PMC11239278 DOI: 10.1016/j.chom.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Depletion of beneficial microbes by modern lifestyle factors correlates with the rising prevalence of food allergies. Re-introduction of allergy-protective bacteria may be an effective treatment strategy. We characterized the fecal microbiota of healthy and food-allergic infants and found that the anaerobe Anaerostipes caccae (A. caccae) was representative of the protective capacity of the healthy microbiota. We isolated a strain of A. caccae from the feces of a healthy infant and identified lactulose as a prebiotic to optimize butyrate production by A. caccae in vitro. Administration of a synbiotic composed of our isolated A. caccae strain and lactulose increased luminal butyrate in gnotobiotic mice colonized with feces from an allergic infant and in antibiotic-treated specific pathogen-free (SPF) mice, and prevented or treated an anaphylactic response to allergen challenge. The synbiotic's efficacy in two models and microbial contexts suggests that it may be a promising approach for the treatment of food allergy.
Collapse
Affiliation(s)
- Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Armando A Puente
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Anjali Mirmira
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Nidhi Talasani
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Jacqueline Lopez
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Mark Mimee
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Department of Pathology, The University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Ramkumar D, Marty A, Ramkumar J, Rosencranz H, Vedantham R, Goldman M, Meyer E, Steinmetz J, Weckle A, Bloedorn K, Rosier C. Food for thought: Making the case for food produced via regenerative agriculture in the battle against non-communicable chronic diseases (NCDs). One Health 2024; 18:100734. [PMID: 38711478 PMCID: PMC11070632 DOI: 10.1016/j.onehlt.2024.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Non-communicable diseases (NCDs) pose a global health challenge, leading to substantial morbidity, mortality, and economic strain. Our review underscores the escalating incidence of NCDs worldwide and highlights the potential of regenerative agriculture (RA) products in mitigating these diseases. We also explore the efficacy of dietary interventions in NCD management and prevention, emphasizing the superiority of plant-based diets over those high in processed foods and red meat. Examining the role of the gut microbiome in various diseases, including liver disorders, allergies, metabolic syndrome, inflammatory bowel disease, and colon cancer, we find compelling evidence implicating its influence on disease development. Notably, dietary modifications can positively affect the gut microbiome, fostering a symbiotic relationship with the host and making this a critical strategy in disease prevention and treatment. Investigating agricultural practices, we identify parallels between soil/plant and human microbiome studies, suggesting a crucial link between soil health, plant- and animal-derived food quality, and human well-being. Conventional/Industrial agriculture (IA) practices, characterized in part by use of chemical inputs, have adverse effects on soil microbiome diversity, food quality, and ecosystems. In contrast, RA prioritizes soil health through natural processes, and includes avoiding synthetic inputs, crop rotation, and integrating livestock. Emerging evidence suggests that food from RA systems surpasses IA-produced food in quality and nutritional value. Recognizing the interconnection between human, plant, and soil microbiomes, promoting RA-produced foods emerges as a strategy to improve human health and environmental sustainability. By mitigating climate change impacts through carbon sequestration and water cycling, RA offers dual benefits for human and planetary health and well-being. Emphasizing the pivotal role of diet and agricultural practices in combating NCDs and addressing environmental concerns, the adoption of regional RA systems becomes imperative. Increasing RA integration into local food systems can enhance food quality, availability, and affordability while safeguarding human health and the planet's future.
Collapse
Affiliation(s)
- Davendra Ramkumar
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Aileen Marty
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Japhia Ramkumar
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Holly Rosencranz
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Radhika Vedantham
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Modan Goldman
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Erin Meyer
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| | - Jasia Steinmetz
- University of Wisconsin – Stevens Point 202 College of Professional Studies, Stevens Point, WI 54481-3897, USA
| | - Amy Weckle
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Kelly Bloedorn
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| | - Carl Rosier
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| |
Collapse
|
4
|
Di Costanzo M, Vella A, Infantino C, Morini R, Bruni S, Esposito S, Biasucci G. Probiotics in Infancy and Childhood for Food Allergy Prevention and Treatment. Nutrients 2024; 16:297. [PMID: 38257190 PMCID: PMC10819136 DOI: 10.3390/nu16020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Food allergy represents a failure of oral tolerance mechanisms to dietary antigens. Over the past few years, food allergies have become a growing public health problem worldwide. Gut microbiota is believed to have a significant impact on oral tolerance to food antigens and in initiation and maintenance of food allergies. Therefore, probiotics have also been proposed in this field as a possible strategy for modulating both the gut microbiota and the immune system. In recent years, results from preclinical and clinical studies suggest a promising role for probiotics in food allergy prevention and treatment. However, future studies are needed to better understand the mechanisms of action of probiotics in food allergies and to design comparable study protocols using specific probiotic strains, defined doses and exposure times, and longer follow-up periods.
Collapse
Affiliation(s)
- Margherita Di Costanzo
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Adriana Vella
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Claudia Infantino
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Riccardo Morini
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Simone Bruni
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
5
|
Ji J, Jin W, Liu S, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm (Beijing) 2023; 4:e420. [PMID: 37929014 PMCID: PMC10625129 DOI: 10.1002/mco2.420] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
The gut microbiota and its homeostasis play a crucial role in human health. However, for some diseases related to the gut microbiota, current traditional medicines can only relieve symptoms, and it is difficult to solve the root causes or even cause side effects like disturbances in the gut microbiota. Increasing clinical studies and evidences have demonstrated that probiotics, prebiotics, and postbiotics can prevent and treat various diseases, but currently they can only be used as dietary supplements rather than medicines, which restricts the application of probiotics in the field of medicine. Here, this review analyzes the importance of gut microbiota in human health and the current problems of traditional medicines, and systematically summarizes the effectiveness and mechanisms of probiotics, prebiotics, and postbiotics in maintaining health and treating diseases based on animal models and clinical trials. And based on current research outcomes and development trends in this field, the challenges and prospects of their clinical application in maintaining health, alleviating and treating diseases are analyzed. It is hoped to promote the application of probiotics, prebiotics, and postbiotics in disease treatment and open up new frontiers in probiotic research.
Collapse
Affiliation(s)
- Jing Ji
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| | - Weilin Jin
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityThe First Clinical Medical College of Lanzhou UniversityLanzhouGansuChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Zuoyi Jiao
- Cuiying Biomedical Research CenterThe Second Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
6
|
Moak R, Boone N, Eidson N, Rohrer A, Engevik M, Williams K, Chetta K. Exploring the links between necrotizing enterocolitis and cow's milk protein allergy in preterm infants: a narrative review. Front Pediatr 2023; 11:1274146. [PMID: 38027265 PMCID: PMC10663262 DOI: 10.3389/fped.2023.1274146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
A broad range of allergic disorders and intolerance are associated with cow's milk protein in the infant diet. Allergy and intolerance to cow's milk proteins are commonly recognized in the healthy term infant, and the prevalence cow's milk protein intolerance (CMPI) varies widely but 5 challenge confirmed studies free from selection bias ranged from 1.9%-4.9%. These disorders are classified by the presence of IgE, non-IgE or T-cell-mediated signaling. Additionally, the severity of these adverse food reactions can range from mild gastrointestinal symptoms to severe sepsis-like episodes, as in the case of food protein-induced enterocolitis syndrome (FPIES). Food protein-induced intolerance in the healthy young infant lies in stark contrast to enterocolitis that typically occurs in the preterm neonate. Necrotizing enterocolitis (NEC) is a distinct progressive disease process, usually characterized by a high mortality rate, with a risk of death from 30% to 50%. While its exact etiology is unclear, its main triggers include formula (cow's milk protein), hypoxia, perfusion-related issues, and unregulated inflammation in the premature intestine. The distinction between NEC and cow's milk protein intolerance is difficult to discern in some cases. In the late preterm population, infants with colitis can have both NEC and cow's milk intolerance on the differential. In infants with multiple episodes of mild NEC, cow's milk protein intolerance may be the underlying diagnosis. In this review, we compare the pathophysiological characteristics, diagnosis and treatment of disorders of cow's milk protein intolerance with the entity of preterm NEC. This review highlights similarities in both entities and may inspire future cross-disciplinary research.
Collapse
Affiliation(s)
- Rosemary Moak
- Department of Internal Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Neal Boone
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Natalie Eidson
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Allison Rohrer
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Mindy Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Kelli Williams
- Department of Pediatrics, Division of Pediatric Pulmonology, Allergy and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Katherine Chetta
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Charleston, SC, United States
- C.P. Darby Children’s Research Institute, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, Charleston, SC, United States
| |
Collapse
|
7
|
Cela L, Brindisi G, Gravina A, Pastore F, Semeraro A, Bringheli I, Marchetti L, Morelli R, Cinicola B, Capponi M, Gori A, Pignataro E, Piccioni MG, Zicari AM, Anania C. Molecular Mechanism and Clinical Effects of Probiotics in the Management of Cow's Milk Protein Allergy. Int J Mol Sci 2023; 24:9781. [PMID: 37372929 DOI: 10.3390/ijms24129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cow's milk protein allergy (CMPA) is the most common food allergy (FA) in infancy, affecting approximately 2% of children under 4 years of age. According to recent studies, the increasing prevalence of FAs can be associated with changes in composition and function of gut microbiota or "dysbiosis". Gut microbiota regulation, mediated by probiotics, may modulate the systemic inflammatory and immune responses, influencing the development of allergies, with possible clinical benefits. This narrative review collects the actual evidence of probiotics' efficacy in the management of pediatric CMPA, with a specific focus on the molecular mechanisms of action. Most studies included in this review have shown a beneficial effect of probiotics in CMPA patients, especially in terms of achieving tolerance and improving symptoms.
Collapse
Affiliation(s)
- Ludovica Cela
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Gravina
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesca Pastore
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Semeraro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Ivana Bringheli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Lavinia Marchetti
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Rebecca Morelli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Bianca Cinicola
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Martina Capponi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Elia Pignataro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|