1
|
Rani K, Chand Sahu R, Chaudhuri A, Kumar DN, Arora S, Kumar D, Agrawal AK. Exploring combinations of dihydroartemisinin for cancer therapy: A comprehensive review. Biochem Biophys Res Commun 2025; 765:151854. [PMID: 40262468 DOI: 10.1016/j.bbrc.2025.151854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Cancer remains a significant threat to human health due to its multifaceted causes and complex pathogenesis. While advancements in research have improved outcomes for many cancer patients, treatments for specific tumor types still face limitations. Dihydroartemisinin (DHA), an active metabolite of artemisinin and its derivatives, has proven to be an effective anti-malarial agent. Recently, its anticancer potential has garnered increasing interest as it acts through multiple molecular pathways, including anti-proliferation, induction of apoptosis, autophagy and endoplasmic reticulum (ER) stress, anti-metastasis, inhibition of angiogenesis, and modulation of immune function. This review aims to thoroughly explain and summarize the mechanisms of DHA against cancer and the latest progress in this field. Due to the insufficiency of monotherapy in effectively treating cancer, the use of chemotherapy in combination with alternative therapies has witnessed a notable increase in popularity. DHA has shown synergistic anti-tumor efficacy with a range of therapeutic drugs, but its co-delivery with chemotherapeutics has been limited by low solubility and bioavailability. Nanotechnology-assisted co-delivery of anti-tumor agents, utilizing advanced stimulus-triggered drug release systems in tumor cells, offers the potential to enhance selective delivery and increase antitumor efficacy. Additionally, this article provides suggestions for further research on the anticancer effects of DHA.
Collapse
Affiliation(s)
- Komal Rani
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| | - Rohan Chand Sahu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| | - Sanchit Arora
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India.
| |
Collapse
|
2
|
Li H, Chen J, Guo H, Yang H, Liu J, Yuan H, Zhang J, Wang J, Liu S. Integrated transcriptomic and proteomic profiling reveals the anti-inflammatory mechanism of dihydroartemisinin in the treatment of acute liver injury by targeting CYBA and CYBB. Biochem Biophys Res Commun 2025; 764:151821. [PMID: 40250321 DOI: 10.1016/j.bbrc.2025.151821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Acute liver injury (ALI) is a prevalent inflammatory disease with no currently available effective targeted therapies that characterized by high mortality and morbidity. Dihydroartemisinin (DHA), a derivative of the renowned antimalarial compound artemisinin, has garnered attention for its anti-inflammatory property. However, the precise anti-inflammatory mechanisms underlying its efficacy in treating ALI remain unclear. Notably, the excessive inflammatory cytokines secreted by macrophages represents a critical factor of liver damage. In our comprehensive study, transcriptome and proteomic analysis of M1 macrophages after DHA treatment was performed to unearth the potential anti-inflammatory targets for ALI treatment. Transcriptomics analysis indicated that DHA significantly mitigated inflammation, primarily by downregulating the expressions of CCL1, CCL2, CCL7, CCL13, and CXCL13. Concurrently, proteomics analysis identified six proteins, such as CYBA and CYBB, that were consistently downregulated in the DHA intervention groups compared to the M1 group. Intriguingly, a protein-protein interaction network analysis highlighted the close association of CYBA and CYBB with the aforementioned chemokine genes. Through meticulous screening, DHA curtailed the production of reactive oxygen species (ROS) by targeting CYBA and CYBB, subsequently suppressing the secretion of several chemokines and dampening the inflammatory response in M1 macrophages. More importantly, DHA not only reduced ROS and chemokine levels but also restored liver function by downregulating CYBA and CYBB to inhibit NF-κB pathway in ALI mice, demonstrating strong anti-inflammatory effects. In conclusion, our findings throw novel light into the underlying anti-inflammatory mechanism of DHA in ALI management, offering valuable insights for future clinical research and therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Honglian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huiyi Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Liu
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haoxing Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensuanse and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China; MOE Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Zhao Z, He J, Qiu S, Wang L, Huangfu S, Hu Y, Wu Q, Yang Y, Li X, Huang M, Liu S, Guan H, Chen Z, Zhang X, Zhang Y, Ding H, Zhao X, Xiao G, Pan Y, Liu T, Wu Y, Pan J. Targeting PLK1-CBX8-GPX4 axis overcomes BRAF/EGFR inhibitor resistance in BRAFV600E colorectal cancer via ferroptosis. Nat Commun 2025; 16:3605. [PMID: 40240371 PMCID: PMC12003730 DOI: 10.1038/s41467-025-58992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/09/2025] [Indexed: 04/18/2025] Open
Abstract
Metastatic BRAFV600E colorectal cancer (CRC) confers poor prognosis and represents a therapeutic bottleneck. To identify resistance mechanisms of the mitogen-activated protein kinase (MAPK) pathway in BRAFV600E CRC, we perform genome-wide CRISPR-Cas9 screening and discover that targeting glutathione peroxidase 4 (GPX4) overcomes resistance to BRAF inhibitor (BRAFi) combined with or without epidermal growth factor receptor inhibitor (EGFRi) in BRAFV600E CRC. Specifically, BRAFi ± EGFRi upregulates GPX4 expression, which antagonizes therapy-induced ferroptosis. Moreover, polo-like kinase 1 (PLK1) substrate activation promotes PLK1 translocation to the nucleus, activating chromobox protein homolog 8 (CBX8) phosphorylation at Ser265 to drives GPX4 expression. Targeting PLK1 enhances BRAFi ± EGFRi inhibition and triggers ferroptosis in vitro, vivo, organoid, and patient-derived xenograft model. Collectively, we demonstrate a PLK1-CBX8-GPX4 signaling axis that relays the ferroptosis mechanism of therapeutic resistance and propose a clinically actionable strategy to overcome BRAFi ± EGFRi resistance in BRAFV600E CRC.
Collapse
Affiliation(s)
- Zhan Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Jiashuai He
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Shenghui Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, 510632, P. R. China
| | - Shuchen Huangfu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Yangzhi Hu
- The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, P.R. China
| | - Qing Wu
- Department of Hepatic-biliary-pancreatic Surgery, The Second People's Hospital of Foshan, Foshan, Guangdong, 528000, P. R. China
| | - Yabing Yang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Xiaobo Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Shijin Liu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Hanyang Guan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Zuyang Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Xiangwei Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Yiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Xiaoxu Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Guandi Xiao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, P. R. China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Tongzheng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| | - Yanping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, P. R. China.
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
4
|
Sun N, Yan H, Liu X, Xu X, Zhao W, Zhang J, Wang M, Liu Y, Miao L. Polydatin Alleviates Cyclophosphamide-Induced Mouse Immunosuppression by Promoting Splenic Lymphocyte Proliferation and Thymic T Cell Development and Differentiation. Int J Mol Sci 2025; 26:2800. [PMID: 40141442 PMCID: PMC11943104 DOI: 10.3390/ijms26062800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Immunosuppression increases disease risk, and the natural compound polydatin (PD) has been reported to modulate immune-related disorders. In cyclophosphamide-induced immunosuppressed mice, PD was evaluated for its immunomodulatory effects. Immune organ indices were measured, while H&E staining and ELISA assessed spleen pathology and serum cytokine levels. The proliferation of splenic lymphocytes, both total and subpopulation, was determined using concanavalin A or lipopolysaccharide stimulation, with flow cytometry analyzing peripheral blood and splenic lymphocytes, thymic T cell subtypes, cell cycling, and bromodeoxyuridine incorporation. Western blotting was used to assess Ki67, PCNA expression, and MAPK activation. PD significantly alleviated cyclophosphamide-induced reductions in spleen and thymus indices, improved the organization of red and white pulp in the spleen, and restored TNF-α and IFN-γ levels. It reversed cyclophosphamide-induced cell cycle arrest, characterized by increased PCNA and decreased Ki67, and corrected the diminished numbers of B and T cells and the reduced CD4+/CD8+ ratio in the thymus. In vitro, PD directly promoted splenic lymphocyte proliferation and cell cycling via MAPK activation. Overall, our findings demonstrated that PD alleviated mouse immunosuppression by activating splenic lymphocyte proliferation and re-organizing thymic T cell development and differentiation.
Collapse
Affiliation(s)
- Na Sun
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Huimin Yan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xiuping Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xingdi Xu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Zhao
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Jing Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Meng Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Yuxuan Liu
- Key Laboratory of Immune Microenvironment and Disease, Immunology Department, Ministry of Education, Tianjin Medical University, Tianjin 301617, China;
| | - Lin Miao
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Zheng S, Xue T, Wang Q, Zhang P, Qi W, Xue C, Li X, Du H, Zhang P, Zao X, Ye Y. Chinese Medicine for the Treatment of Liver Cirrhosis: The Mechanism of Cellular Autophagy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:409-433. [PMID: 40070295 DOI: 10.1142/s0192415x25500168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Liver cirrhosis is a critical stage in the progression of various chronic liver diseases, often leading to severe complications such as ascites, hepatic encephalopathy, and a high mortality rate, and it thus poses a serious threat to patient life. The activation of hepatic stellate cells is a central driver of disease progression. Cellular autophagy, a lysosome-mediated degradation process, plays a key role in maintaining cellular function and dynamic homeostasis. Research has shown that autophagy is closely associated with proteins like LC3, Beclin-1, P62, and mTOR, and is regulated through signaling pathways such as PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, and AMPK/mTOR. Additionally, the relationship between autophagy and apoptosis, as well as between autophagy and exosomes, has been further demonstrated. While modern medicine has made progress in treating cirrhosis, it still faces significant limitations. By contrast, numerous studies have demonstrated the efficacy of traditional Chinese medicine in preventing and treating liver cirrhosis by regulating autophagy, with fewer adverse effects. Chinese herbal monomers and formulations can modulate various autophagy-related signaling pathways, including PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, and AMPK/mTOR, and influence key autophagy proteins such as LC3 and Beclin-1. This modulation inhibits hepatic stellate cell activation, reduces extracellular matrix deposition, and exerts anticirrhotic effects. Moreover, Chinese medicine appears to reduce adverse reactions in cirrhosis treatment and lower the risk of disease recurrence. This review explores the mechanisms of autophagy in the prevention and treatment of liver cirrhosis through Chinese medicine, offering new insights for the development of Chinese medicinal therapies for cirrhosis and their rational clinical application.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing 100102, P. R. China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050000, P. R. China
| | - Qiuyue Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing 100102, P. R. China
| | - Pingxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing 100102, P. R. China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Beijing University of Chinese Medicine, Beijing 100102, P. R. China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P. R. China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, P. R. China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| |
Collapse
|
6
|
Yin P, Jiang H, Ji X, Xia L, Su Z, Tian Y. Soluble TREM2 drives triple-negative breast cancer progression via activation of the AKT pathway. Int Immunopharmacol 2025; 145:113750. [PMID: 39672020 DOI: 10.1016/j.intimp.2024.113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays a key role in immune regulation, particularly within tumor-associated macrophages (TAMs). In triple-negative breast cancer (TNBC), TREM2+ TAMs have been shown to modulate the tumor microenvironment, but the role of its soluble form: soluble triggering receptor expressed on myeloid cells 2 (sTREM2), produced through proteolytic cleavage, remains unclear. In this study, we investigated the effects of sTREM2 on TNBC progression. In vitro, treatment of TNBC cells with recombinant sTREM2 or sTREM2-containing culture supernatant significantly enhanced cell proliferation, invasion, and migration. These effects were further confirmed by the use of TREM2-neutralizing antibodies, which abrogated sTREM2's tumor-promoting activities. In vivo, peri-tumoral injections of recombinant sTREM2 led to a notable acceleration of tumor growth in mouse models. Mechanistically, we found that the effects of sTREM2 were mediated through its binding to the TG2 protein in 4T1 cells, thereby activating the AKT signaling pathway. Collectively, our findings suggest that sTREM2 drives TNBC progression by enhancing critical tumor cell functions, positioning it as a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Peng Yin
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Haiqiang Jiang
- Department of Laboratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi 214499, China
| | - Xiaoyun Ji
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yu Tian
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Yin P, Su Z, Shu X, Dong Z, Tian Y. Role of TREM2 in immune and neurological diseases: Structure, function, and implications. Int Immunopharmacol 2024; 143:113286. [PMID: 39378652 DOI: 10.1016/j.intimp.2024.113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a transmembrane receptor initially linked to neurodegenerative diseases, has recently emerged as a key player in conditions such as obesity and cancer. This review explores the structure, function, and mechanisms of TREM2 across these diverse pathological contexts, with a particular focus on its critical roles in immune regulation and neuroprotection. TREM2 primarily modulates cellular activity by binding extracellular ligands, thereby activating downstream signaling pathways and exerting immunomodulatory effects. Additionally, the therapeutic potential of targeting TREM2 is discussed, emphasizing its promise as a future treatment strategy for various diseases.
Collapse
Affiliation(s)
- Peng Yin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaozheng Shu
- BioRegen Biomedical (Changzhou, Jiangsu) Co., Ltd, Changzhou, Jiangsu 213125, China
| | - Zhifeng Dong
- Department of Cardiovascular Medicine, Yancheng Third People's Hospital, 224000, China.
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Su Z, Li Q, Zhang Y, Liu T, Lv K, Feng A, Yang Y, Zhang Y, Wei Z, Sang X, Feng Y, Chen R, Jiang N, Chen Q. Ly6G + Neutrophils and Interleukin-17 Are Essential in Protection against Rodent Malaria Caused by Plasmodium berghei ANKA. RESEARCH (WASHINGTON, D.C.) 2024; 7:0559. [PMID: 39703777 PMCID: PMC11658117 DOI: 10.34133/research.0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Neutrophils are essential in combating invading pathogens such as Plasmodium parasites, but the participation of their subpopulations and mechanisms in resistance to parasite infection are not fully understood. Our study identified a marked increase in Ly6G+ neutrophils in response to P. berghei ANKA infection. Depletion of these cells rendered mice more susceptible to infection. Elevated interleukin-17 (IL-17) levels, which increased the Ly6G+ neutrophil population, were also found to contribute to this protective effect. IL-17 depletion led to reduced neutrophil numbers and increased susceptibility. Furthermore, dihydroartemisinin (DHA) treatment enhanced neutrophil-mediated immune responses through up-regulation of CD18 and CXCR4 factors. These findings revealed key mechanisms of neutrophil and IL-17 interactions in malaria protection and highlighted DHA's potential to promote neutrophil function in combating malaria.
Collapse
Affiliation(s)
- Ziwei Su
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Tong Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Kunying Lv
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Anni Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Yixin Yang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Yanxin Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Zhiming Wei
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| |
Collapse
|
9
|
Yuan H, Peng Z, Li H, Rao Y, Lu K, Yang C, Cheng C, Liu S. Oxymatrine Ameliorates Lupus Nephritis by Targeting the YY1-Mediated IL-6/STAT3 Axis. Int J Mol Sci 2024; 25:12260. [PMID: 39596325 PMCID: PMC11594375 DOI: 10.3390/ijms252212260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Lupus nephritis (LN) is a severe form of systemic lupus erythematosus (SLE), characterized by inflammation in the renal glomeruli and tubules. Previous research has demonstrated that dihydroartemisinin (DHA) can reduce inflammatory damage in LN mouse models. Oxymatrine, which has similar biological properties to DHA, may also provide therapeutic benefits. This study aims to investigate the effects of oxymatrine on LN using a murine model and examines its molecular mechanisms through an analysis of microarray datasets from LN patients. The analysis identified differentially expressed genes (DEGs) in renal tissues, regulated by the transcription factor Yin Yang 1 (YY1), which was found to be significantly upregulated in LN patient kidneys. The results indicate that oxymatrine targets the YY1/IL-6/STAT3 signaling pathway. In cell models simulating renal inflammation, oxymatrine reduced YY1 expression and inhibited the secretion of inflammatory factors (IFs), thereby diminishing inflammation. YY1 is crucial in modulating IFs' secretion and contributing to LN pathogenesis. Additionally, oxymatrine's interaction with YY1, leading to its downregulation, appears to be a key mechanism in alleviating LN symptoms. These findings support oxymatrine as a promising therapeutic agent for LN, offering new avenues for treating this autoimmune kidney disorder.
Collapse
Affiliation(s)
- Haoxing Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Zheng Peng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Honglian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Yuzhen Rao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Kunyu Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Chen Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
- Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Ministry of Education, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Guo Y, Tang K, Sit B, Gu J, Chen R, Shao X, Lin S, Huang Z, Nie Z, Lin J, Liu X, Wang W, Gao X, Liu T, Liu F, Luo HR, Waldor MK, Wang X. Control of lysogeny and antiphage defense by a prophage-encoded kinase-phosphatase module. Nat Commun 2024; 15:7244. [PMID: 39174532 PMCID: PMC11341870 DOI: 10.1038/s41467-024-51617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The filamentous 'Pf' bacteriophages of Pseudomonas aeruginosa play roles in biofilm formation and virulence, but mechanisms governing Pf prophage activation in biofilms are unclear. Here, we identify a prophage regulatory module, KKP (kinase-kinase-phosphatase), that controls virion production of co-resident Pf prophages and mediates host defense against diverse lytic phages. KKP consists of Ser/Thr kinases PfkA and PfkB, and phosphatase PfpC. The kinases have multiple host targets, one of which is MvaU, a host nucleoid-binding protein and known prophage-silencing factor. Characterization of KKP deletion and overexpression strains with transcriptional, protein-level and prophage-based approaches indicates that shifts in the balance between kinase and phosphatase activities regulate phage production by controlling MvaU phosphorylation. In addition, KKP acts as a tripartite toxin-antitoxin system that provides defense against some lytic phages. A conserved lytic phage replication protein inhibits the KKP phosphatase PfpC, stimulating toxic kinase activity and blocking lytic phage production. Thus, KKP represents a phosphorylation-based mechanism for prophage regulation and antiphage defense. The conservation of KKP gene clusters in >1000 diverse temperate prophages suggests that integrated control of temperate and lytic phage infection by KKP-like regulatory modules may play a widespread role in shaping host cell physiology.
Collapse
Grants
- R01 AI042347 NIAID NIH HHS
- This work was supported by the National Science Foundation of China (42188102, 92451302, 31625001, 91951203, 42376128 and 31970037), by the Science & Technology Fundamental Resources Investigation Program (2022FY100600), by the National Science Foundation of Guangdong Province (2024A1515011146), by the Guangdong Major Project of Basic and Applied Basic Research (2019B030302004), by the Guangdong Local Innovation Team Program (2019BT02Y262), by the Tianjin Municipal Science and Technology Commission Grant (21JCQNJC01550), and by the Haihe Laboratory of Cell Ecosystem Innovation Fund (HH22KYZX0019).
Collapse
Affiliation(s)
- Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Brandon Sit
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xinqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zixian Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolong Nie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Boston Children's Hospital, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Cao X, Wang Z, Jiao Y, Diao W, Geng Q, Zhao L, Wang Z, Wang X, Zhang M, Xu J, Wang B, Deng T, Xiao C. Dihydroartemisinin alleviates erosive bone destruction by modifying local Treg cells in inflamed joints: A novel role in the treatment of rheumatoid arthritis. Int Immunopharmacol 2024; 130:111795. [PMID: 38447418 DOI: 10.1016/j.intimp.2024.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Treg cell-based therapy has exhibited promising efficacy in combatting rheumatoid arthritis (RA). Dihydroartemisinin (DHA) exerts broad immunomodulatory effects across various diseases, with its recent spotlight on T-cell regulation in autoimmune conditions. The modulation of DHA on Treg cells and its therapeutic role in RA has yet to be fully elucidated. This study seeks to unveil the influence of DHA on Treg cells in RA and furnish innovative substantiation for the potential of DHA to ameliorate RA. To this end, we initially scrutinized the impact of DHA-modulated Treg cells on osteoclast (OC) formation in vitro using Treg cell-bone marrow-derived monocyte (BMM) coculture systems. Subsequently, employing the collagen-induced arthritis (CIA) rat model, we validated the efficacy of DHA and probed its influence on Treg cells in the spleen and popliteal lymph nodes (PLN). Finally, leveraging deep proteomic analysis with data-independent acquisition (DIA) and parallel accumulation-serial fragmentation (PASEF) technology, we found the alterations in the Treg cell proteome in PLN by proteomic analysis. Our findings indicate that DHA augmented suppressive Treg cells, thereby impeding OC formation in vitro. Consistently, DHA mitigated erosive joint destruction and osteoclastogenesis by replenishing splenic and joint-draining lymph node Treg cells in CIA rats. Notably, DHA induced alterations in the Treg cell proteome in PLN, manifesting distinct upregulation of alloantigen Col2a1 (Type II collagen alfa 1 chain) and CD8a (T-cell surface glycoprotein CD8 alpha chain) in Treg cells, signifying DHA's targeted modulation of Treg cells, rendering them more adept at sustaining immune tolerance and impeding bone erosion. These results unveil a novel facet of DHA in the treatment of RA.
Collapse
Affiliation(s)
- Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Zhaoran Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Yi Jiao
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Wenya Diao
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zihan Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Xing Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Jiahe Xu
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.
| | - Bailiang Wang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
12
|
Qu Y, Chen L, Ren X, Shari A, Yuan Y, Yu M, Xiao H, Li G. Milk proteomic analysis reveals differentially expressed proteins in high-yielding and low-yielding Guanzhong dairy goats at peak lactation. J DAIRY RES 2024; 91:31-37. [PMID: 38415394 DOI: 10.1017/s0022029924000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The aim of this experiment was to investigate the differential proteomic characteristics of milk from high- and low-yielding Guanzhong dairy goats during the peak lactation period under the same feeding conditions. Nine Guanzhong dairy goats with high yield (H: 3.5 ± 0.17 kg/d) and nine with low yield (L:1.2 ± 0.25 kg/d) were selected for milk proteomic analysis using tandem mass tag technology. A total of 78 differentially expressed proteins were identified. Compared with L, 50 proteins including HK3, HSPB1 and ANXA2 were significantly upregulated in H milk, while 28 proteins including LALBA and XDH were significantly downregulated. Bioinformatics analysis of the differentially expressed proteins showed that galactose metabolism, purine metabolism, glycolysis/gluconeogenesis, MAPK signaling pathway, regulation of actin cytoskeleton and other pathways were closely related to milk yield. HK3, HSPB1, ANXA2, LALBA and XDH were important candidate proteins associated with the milk production characteristics of Guanzhong dairy goats. Our data provide relevant biomarkers and a theoretical basis for improving milk production in Guanzhong dairy goats.
Collapse
Affiliation(s)
- Yingxin Qu
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lu Chen
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xinyang Ren
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Akang Shari
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxin Yuan
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Mengqi Yu
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Haoqi Xiao
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Guang Li
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
13
|
Zhang Y, Du L, Wang C, Jiang Z, Duan Q, Li Y, Xie Z, He Z, Sun Y, Huang L, Lu L, Wen C. Neddylation is a novel therapeutic target for lupus by regulating double negative T cell homeostasis. Signal Transduct Target Ther 2024; 9:18. [PMID: 38221551 PMCID: PMC10788348 DOI: 10.1038/s41392-023-01709-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/15/2023] [Accepted: 11/15/2023] [Indexed: 01/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE), a severe autoimmune disorder, is characterized by systemic inflammatory response, autoantibody accumulation and damage to organs. The dysregulation of double-negative (DN) T cells is considered as a crucial commander during SLE. Neddylation, a significant type of protein post-translational modification (PTM), has been well-proved to regulate T cell-mediated immune response. However, the function of neddylation in SLE is still unknown. Here, we reported that neddylation inactivation with MLN4924, a specific inhibitor of NEDD8-activating enzyme E1 (NAE1), or genetic abrogation of Ube2m in T cells decreased DN T cell accumulation and attenuated murine lupus development. Further investigations revealed that inactivation of neddylation blocked Bim ubiquitination degradation and maintained Bim level in DN T cells, contributing to the apoptosis of the accumulated DN T cells in lupus mice. Then double knockout (KO) lupus-prone mice (Ube2m-/-Bim-/-lpr) were generated and results showed that loss of Bim reduced Ube2m deficiency-induced apoptosis in DN T cells and reversed the alleviated lupus progression. Our findings identified that neddylation inactivation promoted Bim-mediated DN T cell apoptosis and attenuated lupus progression. Clinically, we also found that in SLE patients, the proportion of DN T cells was raised and their apoptosis was reduced. Moreover, compared to healthy groups, SLE patients exhibited decreased Bim levels and elevated Cullin1 neddylation levels. Meantime, the inhibition of neddylation induced Bim-dependent apoptosis of DN T cells isolated from SLE patients. Altogether, our findings provide the direct evidence about the function of neddylation during lupus, suggesting a promising therapeutic approach for this disease.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lijun Du
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chenxi Wang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhangsheng Jiang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingchi Duan
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yiping Li
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhijun Xie
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Center of Zhejiang University, Hangzhou, 310029, China
| | - Lin Huang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Chongqing International Institute for Immunology, Chongqing, 400038, China.
| | - Chengping Wen
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
14
|
Su J, Lin X, Li D, Yang C, Lv S, Chen X, Yang X, Pan B, Xu R, Ren L, Zhang Y, Xie Y, Chen Q, Xia C. Prevotella copri exhausts intrinsic indole-3-pyruvic acid in the host to promote breast cancer progression: inactivation of AMPK via UHRF1-mediated negative regulation. Gut Microbes 2024; 16:2347757. [PMID: 38773738 PMCID: PMC11123460 DOI: 10.1080/19490976.2024.2347757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Emerging evidence has revealed the novel role of gut microbiota in the development of cancer. The characteristics of function and composition in the gut microbiota of patients with breast cancer patients has been reported, however the detailed causation between gut microbiota and breast cancer remains uncertain. In the present study, 16S rRNA sequencing revealed that Prevotella, particularly the dominant species Prevotella copri, is significantly enriched and prevalent in gut microbiota of breast cancer patients. Prior-oral administration of P. copri could promote breast cancer growth in specific pathogen-free mice and germ-free mice, accompanied with sharp reduction of indole-3-pyruvic acid (IPyA). Mechanistically, the present of excessive P. copri consumed a large amount of tryptophan (Trp), thus hampering the physiological accumulation of IPyA in the host. Our results revealed that IPyA is an intrinsic anti-cancer reagent in the host at physiological level. Briefly, IPyA directly suppressed the transcription of UHRF1, following by the declined UHRF1 and PP2A C in nucleus, thus inhibiting the phosphorylation of AMPK, which is just opposite to the cancer promoting effect of P. copri. Therefore, the exhaustion of IPyA by excessive P. copri strengthens the UHRF1-mediated negative control to inactivated the energy-controlling AMPK signaling pathway to promote tumor growth, which was indicated by the alternation in pattern of protein expression and DNA methylation. Our findings, for the first time, highlighted P. copri as a risk factor for the progression of breast cancer.
Collapse
Affiliation(s)
- Jiyan Su
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Xiaojie Lin
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Dan Li
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, P. R. China
| | - Chunmin Yang
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Shumei Lv
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
| | - Xiaohong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, P. R. China
| | - Xiujuan Yang
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Botao Pan
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Rui Xu
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Liping Ren
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yanfang Zhang
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Yizhen Xie
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- R&D Department, Guangdong Yuewei Edible Fungi Technology Co. Ltd, Guangzhou, P. R. China
| | - Qianjun Chen
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Chenglai Xia
- Scientific Research Center, Foshan Maternity & Child Healthcare Hospital, Foshan, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
15
|
Guo Y, Cheng Y, Li H, Guan H, Xiao H, Li Y. The Potential of Artemisinins as Novel Treatment for Thyroid Eye Disease by Inhibiting Adipogenesis in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37326592 DOI: 10.1167/iovs.64.7.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Purpose Thyroid eye disease (TED) causes cosmetic defect and even threatens eyesight due to tissue remodeling in which orbital fibroblast (OF) plays a central role mainly by differentiating into adipocytes. Repurposing old drugs to novel applications is of particular interest. Here, we aimed to evaluate the effects of the antimalarials artemisinin (ARS) and the derivatives on the OFs isolated from patients with TED and their counterparts. Methods OFs isolated from patients with TED or their counterparts were cultured and passaged in proliferation medium (PM) and stimulated by differentiation medium (DM) for adipogenesis. OFs were treated with or without ARS, dihydroartemisinin (DHA), and artesunate (ART) at different concentrations, before being examined in vitro. CCK-8 were used to assess cellular viability. Cell proliferation was determined by EdU incorporation and flow cytometry. Lipid accumulation within the cells was evaluated by Oil Red O staining. Hyaluronan production was determined by ELISA. RNAseq, qPCR, and Western blot analysis were performed to illustrate the underlying mechanisms. Results ARSs dose-dependently interfered with lipid accumulation of TED-OFs, rather than non-TED-OFs. Meanwhile, the expression of key adipogenic markers, such as PLIN1, PPARG, FABP4, and CEBPA, was suppressed. During adipogenesis as being cultivated in DM, instead of PM, ARSs also inhibited cell cycle, hyaluronan production and the expression of hyaluronan synthase 2 (HAS2) in a concentration-dependent manner. Mechanically, the favorable effects were potentially mediated by the repression of IGF1R-PI3K-AKT signaling by dampening IGF1R expression. Conclusions Collectedly, our data evidenced that the conventional antimalarials ARSs were potentially therapeutic for TED.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Liu J, Xiang J, Jin C, Ye L, Wang L, Gao Y, Lv N, Zhang J, You F, Qiao H, Shi L. Medicinal plant-derived mtDNA via nanovesicles induces the cGAS-STING pathway to remold tumor-associated macrophages for tumor regression. J Nanobiotechnology 2023; 21:78. [PMID: 36879291 PMCID: PMC9990354 DOI: 10.1186/s12951-023-01835-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Plant-derived nanovesicles (PDNVs) have been proposed as a major mechanism for the inter-kingdom interaction and communication, but the effector components enclosed in the vesicles and the mechanisms involved are largely unknown. The plant Artemisia annua is known as an anti-malaria agent that also exhibits a wide range of biological activities including the immunoregulatory and anti-tumor properties with the mechanisms to be further addressed. Here, we isolated and purified the exosome-like particles from A. annua, which were characterized by nano-scaled and membrane-bound shape and hence termed artemisia-derived nanovesicles (ADNVs). Remarkably, the vesicles demonstrated to inhibit tumor growth and boost anti-tumor immunity in a mouse model of lung cancer, primarily through remolding the tumor microenvironment and reprogramming tumor-associated macrophages (TAMs). We identified plant-derived mitochondrial DNA (mtDNA), upon internalized into TAMs via the vesicles, as a major effector molecule to induce the cGAS-STING pathway driving the shift of pro-tumor macrophages to anti-tumor phenotype. Furthermore, our data showed that administration of ADNVs greatly improved the efficacy of PD-L1 inhibitor, a prototypic immune checkpoint inhibitor, in tumor-bearing mice. Together, the present study, for the first time, to our knowledge, unravels an inter-kingdom interaction wherein the medical plant-derived mtDNA, via the nanovesicles, induces the immunostimulatory signaling in mammalian immune cells for resetting anti-tumor immunity and promoting tumor eradication.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jiaxin Xiang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Lusha Ye
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Lei Wang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yanan Gao
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Nianyin Lv
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Junfeng Zhang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, 100191, China
| | - Hongzhi Qiao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China. .,Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
17
|
Nakanishi T, Izumi M, Suzuki R, Yamaguchi K, Sugamoto K, Erickson L, Kawahara S. In vitro characterization of anti-inflammatory activities of 3 RS, 7 R, 11 R-phytanic acid. J DAIRY RES 2023; 90:1-8. [PMID: 36815363 DOI: 10.1017/s0022029923000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The aim of the research described here was to investigate the in vitro immunomodulatory effects of 3RS, 7R, 11R-phytanic acid (3RS-PHY) from the perspective of efficacy against autoimmune diseases. 3RS-PHY is a milk component with strong agonist activity at the peroxisome proliferator activated receptor (PPAR). As PPAR is a therapeutic target for several human diseases, 3RS-PHY intake may have possible health benefits. Recently, we chemically synthesized a preparation of 3RS-PHY and demonstrated that 3RS-PHY inhibited T-cell production of interferon (IFN)-γ. However, the overall immunomodulatory effects were not evaluated. In this study, mouse splenocytes, purified T-cells and B-cells were stimulated by mitogens and incubated with 3RS-PHY, followed by evaluation of cytokine and antibody production. A macrophage-like cell line J774.1 was also incubated with 3RS-PHY to evaluate nitric oxide production. 3RS-PHY decreased mRNA levels not only of IFN-γ but also of interleukin (IL)-2, IL-10 and IL-17A in splenocytes and similar effects were confirmed at the protein level. In addition, 3RS-PHY had a direct action on T-cells with preferential inhibitory effects on Th1 and Th17 cytokines such as IFN-γ and IL-17A. Furthermore, 3RS-PHY suppressed antibody secretion by B-cells and nitric oxide production by J774.1 almost completely, indicating that 3RS-PHY is a bioactive fatty acid with anti-inflammatory properties. These findings encourage further investigations, including in vivo experiments, to evaluate whether 3RS-PHY actually shows the potential to prevent autoimmune diseases, and provide basic information to produce milk and dairy products with an increased 3RS-PHY concentration.
Collapse
Affiliation(s)
- Tomonori Nakanishi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mikihisa Izumi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryoji Suzuki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kohta Yamaguchi
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Kazuhiro Sugamoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Laurie Erickson
- Department of Biology, Harold Washington City College of Chicago, Chicago, IL, USA
- Department of Health Sciences, Blitstein Institute of Hebrew Theological College, Chicago, IL, USA
| | - Satoshi Kawahara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
18
|
Zeng ZW, Chen D, Chen L, He B, Li Y. A comprehensive overview of Artemisinin and its derivatives as anticancer agents. Eur J Med Chem 2023; 247:115000. [PMID: 36538859 DOI: 10.1016/j.ejmech.2022.115000] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Artemisinin is the crucial ingredient of artemisia annua, a traditional Chinese medicine used for the therapy of malaria in China for hundreds of years. In recent years, the anticancer properties of artemisinin and its derivatives have also been reported. This review has summarized the research and development of artemisinin and its derivatives as anticancer agents, which included both natural and synthetic monomers as well as their dimers. In addition, it highlights the antitumor effects of artemisinin and its derivatives after site-modification or after transformation to a nano-delivery system. Moreover, we have further explored their potential mechanisms of action and also discussed the clinical trials of ARTs used to treat cancer, which will facilitate in further development of novel anticancer drugs based on the scaffold of artemisinin.
Collapse
Affiliation(s)
- Zi-Wei Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Di Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
19
|
Li Q, Jiang N, Zhang Y, Liu Y, Su Z, Yuan Q, Sang X, Chen R, Feng Y, Chen Q. Dihydroartemisinin imposes positive and negative regulation on Treg and plasma cells via direct interaction and activation of c-Fos. Commun Biol 2023; 6:52. [PMID: 36646927 PMCID: PMC9842609 DOI: 10.1038/s42003-023-04454-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Dihydroartemisinin (DHA), a potent antimalarial drug, also exhibits distinct property in modulation on Treg and B cells, which has been recognized for decades, but the underlying mechanisms remain understood. Herein we revealed that DHA could promote Treg proliferation, meanwhile, suppress B cell expansion in germinal centers, and consequently decrease the number of circulating plasma cells and the content of serum immunoglobulins. Further, DHA-activated Treg significantly mitigated lipopolysaccharide-induced and malaria-associated inflammation. All these scenarios were attributed to the upregulation of c-Fos expression by DHA and enhancement of its interaction with target genes in both Treg and circulating plasma cells with bilateral cell fates. In Treg, the c-Fos-DHA complex upregulated cell proliferation-associated genes and promoted cell expansion; whereas in plasma cells, it upregulated the apoptosis-related genes resulting in decreased circulating plasma cells. Thus, the bilateral immunoregulatory mechanism of DHA was elucidated and its application in the treatment of autoimmune diseases is further justified.
Collapse
Affiliation(s)
- Qilong Li
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| | - Ning Jiang
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| | - Yiwei Zhang
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| | - Yize Liu
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| | - Ziwei Su
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| | - Quan Yuan
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| | - Xiaoyu Sang
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| | - Ran Chen
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| | - Ying Feng
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| | - Qijun Chen
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866 China ,grid.506261.60000 0001 0706 7839Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866 China
| |
Collapse
|
20
|
Qi Y, Duan G, Wei D, Zhao C, Ma Y. The Bile Acid Membrane Receptor TGR5 in Cancer: Friend or Foe? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165292. [PMID: 36014536 PMCID: PMC9416356 DOI: 10.3390/molecules27165292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
The G-protein-coupled bile acid receptor, Gpbar1 or TGR5, is characterized as a membrane receptor specifically activated by bile acids. A series of evidence shows that TGR5 induces protein kinase B (AKT), nuclear factor kappa-B (NF-κB), extracellular regulated protein kinases (ERK1/2), signal transducer and activator of transcription 3 (STAT3), cyclic adenosine monophosphate (cAMP), Ras homolog family member A (RhoA), exchange protein activated by cAMP (Epac), and transient receptor potential ankyrin subtype 1 protein (TRPA1) signaling pathways, thereby regulating proliferation, inflammation, adhesion, migration, insulin release, muscle relaxation, and cancer development. TGR5 is widely distributed in the brain, lung, heart, liver, spleen, pancreas, kidney, stomach, jejunum, ileum, colon, brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal muscle. Several recent studies have demonstrated that TGR5 exerts inconsistent effects in different cancer cells upon activating via TGR5 agonists, such as INT-777, ursodeoxycholic acid (UDCA), and taurolithocholic acid (TLCA). In this review, we discuss both the ‘friend’ and ‘foe’ features of TGR5 by summarizing its tumor-suppressing and oncogenic functions and mechanisms.
Collapse
Affiliation(s)
- Youchao Qi
- Department of Veterinary Medicine, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Tibetan Medicine Research Center, Tibetan Medicine College, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Guozhen Duan
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Correspondence: (G.D.); (Y.M.)
| | - Dengbang Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Chengzhou Zhao
- Tibetan Medicine Research Center, Tibetan Medicine College, Qinghai University, Xining 810016, China
| | - Yonggui Ma
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Correspondence: (G.D.); (Y.M.)
| |
Collapse
|