1
|
Lu Z, Xiao P, Liu S, Huang C, Li W, Mao Y, Xu Y, Tian Y. Osteoimmunology: Crosstalk Between T Cells and Osteoclasts in Osteoporosis. Clin Rev Allergy Immunol 2025; 68:41. [PMID: 40208457 DOI: 10.1007/s12016-025-09046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Osteoporosis, a common metabolic condition that affects the bones, increases the risk of fractures, thereby diminishing one's quality of life and, in severe cases, can even result in life-threatening conditions. Osteoporosis is becoming increasingly prevalent worldwide as the population ages. Previous research on osteoporosis has focused on skeletal cellular components such as osteoblasts and osteoclasts. The emerging field of "osteoimmunology" has recently been introduced through new research. The concept highlights the critical impact of bone-immune system interactions on osteoporosis progression. The pathogenesis of osteoporosis is significantly influenced by T cells, particularly cytotoxic and helper T cells, which modulate osteoclast differentiation and activity. A crucial aspect of understanding osteoporosis is how T lymphocytes interact with osteoclasts. However, the precise mechanisms underlying T cell-osteoclast crosstalk remain poorly understood. This review systematically examines T cell and osteoclast involvement in osteoimmunology, with a particular focus on their involvement in osteoporosis. It seeks to elucidate the immune mechanisms driving the progression of osteoporosis and identify key molecules involved in T cell-osteoclast interactions. This aims to discover novel molecular targets and intervention strategies to improve early diagnosis and management of osteoporosis. Furthermore, this article will explore the potential of intervening in T cell-osteoclast interactions using conventional therapies, traditional Chinese medicine, immunomodulatory agents, and nanomaterial-based treatments, providing new perspectives for future osteoporosis management.
Collapse
Affiliation(s)
- Zeyao Lu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijia Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chongjun Huang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weishang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanheng Mao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Jin Z, Zhou X, Fang Z. DelaySSA: stochastic simulation of biochemical systems and gene regulatory networks with or without time delays. PLoS Comput Biol 2025; 21:e1012919. [PMID: 40198732 PMCID: PMC11977973 DOI: 10.1371/journal.pcbi.1012919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
Stochastic Simulation Algorithm (SSA) is crucial for modeling biochemical reactions and gene regulatory networks. Traditional SSA is characterized by Markovian property and cannot naturally model systems with time delays. Several algorithms have already been designed to handle delayed reactions, yet few easy-to-use implementations exist. To address these challenges, we have developed DelaySSA, an R package that implements currently available algorithms for SSA with or without delays. Meanwhile, we also provided Matlab and Python versions to support wider applications. We demonstrated its accuracy and validity by simulating two classical models: the Bursty model and Refractory model. We then tested its capability to simulate the RNA Velocity model, where it successfully reproduced both the up- and down-regulation stages in the phase portrait. Finally, we extended its application to simulate a gene regulatory network of lung cancer adeno-to-squamous transition (AST) and qualitatively analyzed its bistability behavior by approximating the Waddington's landscape. Modeling the therapeutic intervention of a SOX2 degrader as a delayed degradation reaction, AST is effectively blocked and reprogrammed back to the adenocarcinoma state, providing a useful clue for targeting drug-resistant AST in the future. Taken together, DelaySSA is a powerful and easy-to-use software suite, facilitating accurate modeling of various kinds of biological systems and broadening the scope of stochastic simulations in systems biology.
Collapse
Affiliation(s)
- Ziyan Jin
- Department of Colorectal Surgery and Oncology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyuan Fang
- Department of Colorectal Surgery and Oncology of the Second Affiliated Hospital, and Centre of Biomedical Systems and Informatics of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
- Biomedical and Health Translational Research Center of Zhejiang Province, Haining, China
| |
Collapse
|
3
|
Ma J, Wang J, Sun R, Hu Z, Wang Z, Xue J, Wu S, Hu W, Wang J, Yang L, Cai Q, Yang J, Chen J, Liu X. Adeno-Associated Virus-Mediated Dickkopf-1 Gene Transduction Reduces Silica-Induced Oxidative Stress and Silicosis in Mouse Lung. Antioxid Redox Signal 2025; 42:529-546. [PMID: 39531217 DOI: 10.1089/ars.2024.0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aims: Silicosis is a lung disease caused by inhalation of silica particles. Both silica-induced oxidative stress and aberrant activation of the Wnt/β-catenin signaling pathway are potential targets in the treatment of pulmonary fibrosis. Dickkopf-1 (Dkk1), an inhibitor of the Wnt/β-catenin signaling pathway, plays regulatory roles in cell fate determination and immune responses. Our previous study demonstrated that adenoviral vector-mediated Dkk1 gene transfer alleviated the silica-induced mouse silicosis. However, the mechanism of therapeutic action of Dkk1 in silicosis is yet completely understood; together with the drawbacks of adenoviral vectors in gene therapy, we investigated the therapeutic effect and mechanisms of Dkk1 by employing an adeno-associated virus (AAV) vector in a silicosis mouse model. Results: The AAV vector could efficiently transduce the Dkk1 gene in silicotic lung during both the early and the late phases of disease, resulting in an alleviation of silicotic lesions, improvement of pulmonary compliance, and radiological findings. Mechanistic studies further demonstrated that the transduction of Dkk1 inhibited the silica-activated Wnt/β-catenin signaling and reduced the silica-induced reactive oxygen species-producing enzyme NADPH oxidase 4, oxidative stress regulator nuclear factor erythroid 2-related factor 2, and signaling molecules binding immunoglobulin protein and C/EBP homologous protein. In addition, shRNA-mediated downregulation of Dkk1 exacerbated the progression of silicosis in mice, whereas the treatment of ROS scavenger n-acetylcysteine showed a comparable mitigation of silicosis that was seen in the AAV-Dkk1 treatment. Innovation and Conclusion: This study provides an insight into the mechanism by which Dkk1 inhibits the silica-induced Wnt signaling and oxidative stress to mitigate the pathogenesis of lung silicosis and evidence of the potential of AAV-mediated Dkk1 gene transfer as an alternative approach in silicosis treatment. Antioxid. Redox Signal. 42, 529-546.
Collapse
Affiliation(s)
- Jia Ma
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Jiaqi Wang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheqing Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Zhaojun Wang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
| | - Jing Xue
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Wenfeng Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
- The Laboratory Centre, Ningxia Institute of Clinical Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Liyuan Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Qian Cai
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Jiali Yang
- The Laboratory Centre, Ningxia Institute of Clinical Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Juan Chen
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, China
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Mével-Aliset M, Radu AG, Allard J, Blanchet S, Montellier E, Hainaut P, Rossignol R, Torch S, Orsi GA, Thibert C. Transcriptional regulation by LKB1 in lung adenocarcinomas: Exploring oxidative stress, neuroglial and amino acid signatures. Biochem Biophys Res Commun 2025; 755:151571. [PMID: 40043609 DOI: 10.1016/j.bbrc.2025.151571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent cancer types worldwide and has one of the poorest survival rates. Understanding its developpment is crucial for improving diagnosis, prognosis, and treatment. A key factor in LUAD is the frequent loss-of-function mutations in LKB1/STK11, a kinase that regulates metabolism. These mutations are linked to increased metastasis and worse clinical outcomes. In this study, we analyzed gene expression data from LUAD patients to explore how LKB1 mutations affect cancer behavior. We found that LKB1 mutations in KRAS-driven LUAD lead to widespread gene downregulation. By integrating avalaible protein interaction data, mass spectrometry analysis of LKB1 nuclear partners, and co-immunoprecipitations experiments, we identified BRG1, a chromatin activator and subunit of the BAF complex, as a nuclear partner of LKB1. Further analysis suggested that LKB1 mutations may impair BRG1 activity, disrupting chromatin regulation and gene expression. Notably, LUAD patients with mutated LKB1 showed gene expression patterns indicative of oxidative stress, defective neuronal-glial and neuroinflammation programs, and altered amino acid homeostasis. These changes resemble the roles LKB1 plays in neural crest stem cells, suggesting that LKB1 may reduce tumor aggressiveness in LUAD by maintaining a developmental gene expression program.
Collapse
Affiliation(s)
- Marie Mével-Aliset
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Anca G Radu
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jordan Allard
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Sandrine Blanchet
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Emilie Montellier
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Pierre Hainaut
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Rodrigue Rossignol
- INSERM U1211, Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France; CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Sakina Torch
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Guillermo A Orsi
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics of Regeneration and Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Chantal Thibert
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
5
|
Guo ZY, Wu X, Zhang SJ, Yang JH, Miao H, Zhao YY. Poria cocos: traditional uses, triterpenoid components and their renoprotective pharmacology. Acta Pharmacol Sin 2025; 46:836-851. [PMID: 39482471 PMCID: PMC11950336 DOI: 10.1038/s41401-024-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024]
Abstract
Poria cocos and its surface layer of Poria cocos (Schw.) Wolf (Polyporaceae), are used in traditional Chinese medicine for its diuretic and renoprotective effects. Phytochemical studies have shown that lanostane and 3,4-seco-lanostane tetracyclic triterpenoids are the main components of P. cocos and its surface layer. Accumulating evidence shows that triterpenoid components in P. cocos and its surface layer contribute to their renoprotective effect. The surface layer of P. cocos showed a stronger diuretic effect than P. cocos. The ethanol extract of the surface layer and its components improved acute kidney injury, acute kidney injury-to-chronic kidney disease transition and chronic kidney disease such as diabetic kidney disease, nephrotic syndrome and tubulointerstitial nephropathy, and protected against renal fibrosis. It has been elucidated that P. cocos and its surface layer exert a diuretic effect and improve kidney diseases through a variety of molecular mechanisms such as aberrant pathways TGF-β1/Smad, Wnt/β-catenin, IκB/NF-κB and Keap1/Nrf2 signaling as well as the activation of renin-angiotensin system, matrix metalloproteinases, aryl hydrocarbon receptor and endogenous metabolites. These studies further confirm the renoprotective effect of P. cocos and its surface layer and provide a beneficial basis to its clinical use in traditional medicine.
Collapse
Affiliation(s)
- Zhi-Yuan Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shui-Juan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian-Hua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Clinical Drug Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Li X, Zhao S, Zhai M, Ma Y, Jiang B, Jiang Y, Chen T. Extractable organic matter from PM 2.5 inhibits cardiomyocyte differentiation via AHR-mediated m 6A RNA methylation. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137110. [PMID: 39778483 DOI: 10.1016/j.jhazmat.2025.137110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
An ever-increasing body of research has established a link between maternal PM2.5 exposure and congenital heart diseases in the offspring, but the underlying mechanisms remain elusive. We recently reported that activation of the aryl hydrocarbon receptor (AHR) by PM2.5 causes aberrant m6A RNA methylation, leading to cardiac malformations in zebrafish embryos. We hypothesized that PM2.5 can disrupt heart development by inducing m6A methylation changes through AHR in mammals. In this study, we observed that extractable organic matters (EOM) from PM2.5 significantly impaired cardiomyocyte differentiation in embryonic rat cardiomyoblasts H9c2. Importantly, EOM exposure reduced global m6A methylation levels, which was reversed by AHR inhibition. Moreover, AHR, activated by EOM directly promoted the transcription of the demethylase, FTO, leading to global m6A hypomethylation. Specifically, AHR-induced FTO overexpression decreased the m6A methylation levels of Nox4 mRNA, resulting in NOX4 overexpression and subsequent oxidative stress in EOM samples. We then demonstrated that oxidative stress contributes to the inhibition of cardiomyocyte differentiation by EOM through suppression of Wnt/β-catenin signaling. In summary, our findings indicate that AHR activation by PM2.5 directly enhances the expression of the demethylase, FTO, which increases NOX4 expression by reducing its m6A methylation. The oxidative stress caused by NOX4 overexpression inhibits Wnt/β-catenin signaling, thereby compromising cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Xiaoxiao Li
- The First Affiliated Hospital, MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shoushuang Zhao
- The First Affiliated Hospital, MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mengya Zhai
- The First Affiliated Hospital, MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuqin Ma
- Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - Bin Jiang
- The First Affiliated Hospital, MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yan Jiang
- The First Affiliated Hospital, MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- The First Affiliated Hospital, MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-Communicable Diseases, China.
| |
Collapse
|
7
|
Zhou F, Guo H, Xia Y, Le X, Tan DSW, Ramalingam SS, Zhou C. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer. Nat Rev Clin Oncol 2025; 22:95-116. [PMID: 39614090 DOI: 10.1038/s41571-024-00971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
The discovery of the association between EGFR mutations and the efficacy of EGFR tyrosine-kinase inhibitors (TKIs) has revolutionized the treatment paradigm for patients with non-small-cell lung cancer (NSCLC). Currently, third-generation EGFR TKIs, which are often characterized by potent central nervous system penetrance, are the standard-of-care first-line treatment for advanced-stage EGFR-mutant NSCLC. Rational combinations of third-generation EGFR TKIs with anti-angiogenic drugs, chemotherapy, the EGFR-MET bispecific antibody amivantamab or local tumour ablation are being investigated as strategies to delay drug resistance and increase clinical benefit. Furthermore, EGFR TKIs are being evaluated in patients with early stage or locally advanced EGFR-mutant NSCLC, with the ambitious aim of achieving cancer cure. Despite the inevitable challenge of acquired resistance, emerging treatments such as new TKIs, antibody-drug conjugates, new immunotherapeutic approaches and targeted protein degraders have shown considerable promise in patients with progression of EGFR-mutant NSCLC on or after treatment with EGFR TKIs. In this Review, we describe the current first-line treatment options for EGFR-mutant NSCLC, provide an overview of the mechanisms of acquired resistance to third-generation EGFR TKIs and explore novel promising treatment strategies. We also highlight potential avenues for future research that are aimed at improving the survival outcomes of patients with this disease.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Han M, Liang J, Wang K, Si Q, Zhu C, Zhao Y, Khan NAK, Abdullah ALB, Shau-Hwai AT, Li YM, Zhou Z, Jiang C, Liao J, Tay YJ, Qin W, Jiang Q. Integrin A5B1-mediated endocytosis of polystyrene nanoplastics: Implications for human lung disease and therapeutic targets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176017. [PMID: 39236815 DOI: 10.1016/j.scitotenv.2024.176017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The extensive use of plastic products has exacerbated micro/nanoplastic (MPs/NPs) pollution in the atmosphere, increasing the incidence of respiratory diseases and lung cancer. This study investigates the uptake and cytotoxicity mechanisms of polystyrene (PS) NPs in human lung epithelial cells. Transcriptional analysis revealed significant changes in cell adhesion pathways following PS-NPs exposure. Integrin α5β1-mediated endocytosis was identified as a key promoter of PS-NPs entry into lung epithelial cells. Overexpression of integrin α5β1 enhanced PS-NPs internalization, exacerbating mitochondrial Ca2+ dysfunction and depolarization, which induced reactive oxygen species (ROS) production. Mitochondrial dysfunction triggered by PS-NPs led to oxidative damage, inflammation, DNA damage, and necrosis, contributing to lung diseases. This study elucidates the molecular mechanism by which integrin α5β1 facilitates PS-NPs internalization and enhances its cytotoxicity, offering new insights into potential therapeutic targets for microplastic-induced lung diseases.
Collapse
Affiliation(s)
- Mingming Han
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Ji Liang
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Kai Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qin Si
- Jiangsu Maritime Institute, 309 Gezhi Road, Nanjing, Jiangsu 211100, China
| | - Chenxi Zhu
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yunlong Zhao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | | | | | | | - Yi Ming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, China
| | - Zihan Zhou
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Chunqi Jiang
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Jiayuan Liao
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yi Juin Tay
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210017, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
9
|
Zhang X, Xiao K, Wen Y, Wu F, Gao G, Chen L, Zhou C. Multi-omics with dynamic network biomarker algorithm prefigures organ-specific metastasis of lung adenocarcinoma. Nat Commun 2024; 15:9855. [PMID: 39543109 PMCID: PMC11564768 DOI: 10.1038/s41467-024-53849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Efficacious strategies for early detection of lung cancer metastasis are of significance for improving the survival of lung cancer patients. Here we show the marker genes and serum secretome foreshadowing the lung cancer site-specific metastasis through dynamic network biomarker (DNB) algorithm, utilizing two clinical cohorts of four major types of lung cancer distant metastases, with single-cell RNA sequencing (scRNA-seq) of primary lesions and liquid chromatography-mass spectrometry data of sera. Also, we locate the intermediate status of cancer cells, along with its gene signatures, in each metastatic state trajectory that cancer cells at this stage still have no specific organotropism. Furthermore, an integrated neural network model based on the filtered scRNA-seq data is successfully constructed and validated to predict the metastatic state trajectory of cancer cells. Overall, our study provides an insight to locate the pre-metastasis status of lung cancer and primarily examines its clinical application value, contributing to the early detection of lung cancer metastasis in a more feasible and efficacious way.
Collapse
Affiliation(s)
- Xiaoshen Zhang
- School of Medicine, Tongji University, 200092, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
- Department of Respiratory Medicine, Shanghai Sixth People's hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Kai Xiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201100, Shanghai, China
| | - Yaokai Wen
- School of Medicine, Tongji University, 200092, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201100, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 310024, Hangzhou, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
10
|
La'ah AS, Tsai P, Yarmishyn AA, Ching L, Chen C, Chien Y, Chen JC, Tsai M, Chen Y, Ma C, Hsu P, Luo Y, Chen Y, Chiou G, Lu K, Lin W, Chou Y, Wang M, Chiou S. Neutrophils Recruited by NKX2-1 Suppression via Activation of CXCLs/CXCR2 Axis Promote Lung Adenocarcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400370. [PMID: 39113226 PMCID: PMC11481344 DOI: 10.1002/advs.202400370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/14/2024] [Indexed: 10/17/2024]
Abstract
NK2 Homeobox 1 (NKX2-1) is a well-characterized pathological marker that delineates lung adenocarcinoma (LUAD) progression. The advancement of LUAD is influenced by the immune tumor microenvironment through paracrine signaling. However, the involvement of NKX2-1 in modeling the tumor immune microenvironment is still unclear. Here, the downregulation of NKX2-1 is observed in high-grade LUAD. Meanwhile, single-cell RNA sequencing and Visium in situ capturing profiling revealed the recruitment and infiltration of neutrophils in orthotopic syngeneic tumors exhibiting strong cell-cell communication through the activation of CXCLs/CXCR2 signaling. The depletion of NKX2-1 triggered the expression and secretion of CXCL1, CXCL2, CXCL3, and CXCL5 in LUAD cells. Chemokine secretion is analyzed by chemokine array and validated by qRT-PCR. ATAC-seq revealed the restrictive regulation of NKX2-1 on the promoters of CXCL1, CXCL2, and CXCL5 genes. This phenomenon led to increased tumor growth, and conversely, tumor growth decreased when inhibited by the CXCR2 antagonist SB225002. This study unveils how NKX2-1 modulates the infiltration of tumor-promoting neutrophils by inhibiting CXCLs/CXCR2-dependent mechanisms. Hence, targeting CXCR2 in NKX2-1-low tumors is a potential antitumor therapy that may improve LUAD patient outcomes.
Collapse
Affiliation(s)
- Anita S La'ah
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei115Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Ping‐Hsing Tsai
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
| | | | - Lo‐Jei Ching
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
| | - Chih‐Ying Chen
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Yueh Chien
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
| | - Jerry Chieh‐Yu Chen
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei115Taiwan
| | - Ming‐Long Tsai
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Yi‐Chen Chen
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Chun Ma
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
| | - Po‐Kuei Hsu
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- Department of SurgeryTaipei Veterans General HospitalTaipei112Taiwan
| | - Yung‐Hung Luo
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- Department of Chest MedicineTaipei Veterans General HospitalTaipei112Taiwan
| | - Yuh‐Min Chen
- Institute of Clinical MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- Department of Chest MedicineTaipei Veterans General HospitalTaipei112Taiwan
- Taipei Cancer CenterTaipei Medical UniversityTaipei110Taiwan
| | - Guang‐Yuh Chiou
- Department of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinChu300093Taiwan
| | - Kai‐Hsi Lu
- Department of Medical Research and EducationCheng‐Hsin General HospitalTaipei112Taiwan
| | - Wen‐Chang Lin
- Institute of Biomedical SciencesAcademia SinicaTaipei115Taiwan
| | - Yu‐Ting Chou
- Institute of BiotechnologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Mong‐Lien Wang
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei115Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- Institute of Food Safety and Health Risk AssessmentSchool of Pharmaceutical SciencesNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
| | - Shih‐Hwa Chiou
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipei115Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112Taiwan
- Institute of PharmacologySchool of MedicineNational Yang Ming Chiao Tung UniversityTaipei112Taiwan
- Genomic Research CenterAcademia SinicaTaipei115Taiwan
| |
Collapse
|
11
|
Tong X, Zhang N, Xue Y, Ji H. Comments on 'Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer'. J Mol Cell Biol 2024; 16:mjae013. [PMID: 38553961 PMCID: PMC11347649 DOI: 10.1093/jmcb/mjae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 08/28/2024] Open
Affiliation(s)
- Xinyuan Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ningxia Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yun Xue
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hongbin Ji
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200120, China
| |
Collapse
|
12
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
13
|
Xue Y, Chen Y, Sun S, Tong X, Chen Y, Tang S, Wang X, Bi S, Qiu Y, Zhao Q, Qin Z, Xu Q, Ai Y, Chen L, Zhang B, Liu Z, Ji M, Lang M, Chen L, Xu G, Hu L, Ye D, Ji H. TET2-STAT3-CXCL5 nexus promotes neutrophil lipid transfer to fuel lung adeno-to-squamous transition. J Exp Med 2024; 221:e20240111. [PMID: 38805014 PMCID: PMC11129275 DOI: 10.1084/jem.20240111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024] Open
Abstract
Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.
Collapse
Affiliation(s)
- Yun Xue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Sijia Sun
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xinyuan Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yujia Chen
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shijie Tang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xue Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Simin Bi
- Department of Physics, State Key Laboratory of Surface Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai, China
| | - Yuqin Qiu
- Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiqi Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Zhen Qin
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Qin Xu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingjie Ai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Chen
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Beizhen Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijie Liu
- Department of Physics, State Key Laboratory of Surface Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai, China
| | - Minbiao Ji
- Department of Physics, State Key Laboratory of Surface Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai, China
| | - Meidong Lang
- Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai, China
| | - Liang Hu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Dan Ye
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hongbin Ji
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
14
|
Tong X, Patel AS, Kim E, Li H, Chen Y, Li S, Liu S, Dilly J, Kapner KS, Zhang N, Xue Y, Hover L, Mukhopadhyay S, Sherman F, Myndzar K, Sahu P, Gao Y, Li F, Li F, Fang Z, Jin Y, Gao J, Shi M, Sinha S, Chen L, Chen Y, Kheoh T, Yang W, Yanai I, Moreira AL, Velcheti V, Neel BG, Hu L, Christensen JG, Olson P, Gao D, Zhang MQ, Aguirre AJ, Wong KK, Ji H. Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer. Cancer Cell 2024; 42:413-428.e7. [PMID: 38402609 DOI: 10.1016/j.ccell.2024.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.
Collapse
Affiliation(s)
- Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ayushi S Patel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eejung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongjun Li
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yueqing Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and biomedical sciences program, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin S Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ningxia Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Laura Hover
- Monoceros Biosystems, LLC, San Diego, CA 92129, USA
| | - Suman Mukhopadhyay
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Fiona Sherman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Khrystyna Myndzar
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fuming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juntao Gao
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing 100084, China
| | - Minglei Shi
- Institute of Medical Innovation, Peking University Third Hospital, Beijing 100191, China
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Thian Kheoh
- Mirati Therapeutics, San Diego, CA 92121, USA
| | | | - Itai Yanai
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Institute of Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Andre L Moreira
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Peter Olson
- Mirati Therapeutics, San Diego, CA 92121, USA
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080, USA.
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China.
| |
Collapse
|
15
|
Qin Z, Yue M, Tang S, Wu F, Sun H, Li Y, Zhang Y, Izumi H, Huang H, Wang W, Xue Y, Tong X, Mori S, Taki T, Goto K, Jin Y, Li F, Li FM, Gao Y, Fang Z, Fang Y, Hu L, Yan X, Xu G, Chen H, Kobayashi SS, Ventura A, Wong KK, Zhu X, Chen L, Ren S, Chen LN, Ji H. EML4-ALK fusions drive lung adeno-to-squamous transition through JAK-STAT activation. J Exp Med 2024; 221:e20232028. [PMID: 38284990 PMCID: PMC10824105 DOI: 10.1084/jem.20232028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
Human lung adenosquamous cell carcinoma (LUAS), containing both adenomatous and squamous pathologies, exhibits strong cancer plasticity. We find that ALK rearrangement is detectable in 5.1-7.5% of human LUAS, and transgenic expression of EML4-ALK drives lung adenocarcinoma (LUAD) formation initially and squamous transition at late stage. We identify club cells as the main cell-of-origin for squamous transition. Through recapitulating lineage transition in organoid system, we identify JAK-STAT signaling, activated by EML4-ALK phase separation, significantly promotes squamous transition. Integrative study with scRNA-seq and immunostaining identify a plastic cell subpopulation in ALK-rearranged human LUAD showing squamous biomarker expression. Moreover, those relapsed ALK-rearranged LUAD show notable upregulation of squamous biomarkers. Consistently, mouse squamous tumors or LUAD with squamous signature display certain resistance to ALK inhibitor, which can be overcome by combined JAK1/2 inhibitor treatment. This study uncovers strong plasticity of ALK-rearranged tumors in orchestrating phenotypic transition and drug resistance and proposes a potentially effective therapeutic strategy.
Collapse
Affiliation(s)
- Zhen Qin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongchang Zhang
- Department of Medical Oncology, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hsinyi Huang
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shunta Mori
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Taki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fei Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fu-Ming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhaoyuan Fang
- University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Susumu S. Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Liang Chen
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luo-Nan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
16
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
17
|
Akagi K, Koizumi K, Kadowaki M, Kitajima I, Saito S. New Possibilities for Evaluating the Development of Age-Related Pathologies Using the Dynamical Network Biomarkers Theory. Cells 2023; 12:2297. [PMID: 37759519 PMCID: PMC10528308 DOI: 10.3390/cells12182297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is the slowest process in a living organism. During this process, mortality rate increases exponentially due to the accumulation of damage at the cellular level. Cellular senescence is a well-established hallmark of aging, as well as a promising target for preventing aging and age-related diseases. However, mapping the senescent cells in tissues is extremely challenging, as their low abundance, lack of specific markers, and variability arise from heterogeneity. Hence, methodologies for identifying or predicting the development of senescent cells are necessary for achieving healthy aging. A new wave of bioinformatic methodologies based on mathematics/physics theories have been proposed to be applied to aging biology, which is altering the way we approach our understand of aging. Here, we discuss the dynamical network biomarkers (DNB) theory, which allows for the prediction of state transition in complex systems such as living organisms, as well as usage of Raman spectroscopy that offers a non-invasive and label-free imaging, and provide a perspective on potential applications for the study of aging.
Collapse
Affiliation(s)
- Kazutaka Akagi
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Keiichi Koizumi
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Makoto Kadowaki
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Isao Kitajima
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Shigeru Saito
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
18
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|