1
|
Xu N, Wang Z, Xu Z, Zhang X, Jin Z, Dong X, Lin D. Experimentally verified flexible molecular docking and dynamic simulation of aptamer with intracellular proteins based on direct DNA 3D structure prediction. Int J Biol Macromol 2025; 316:144318. [PMID: 40383336 DOI: 10.1016/j.ijbiomac.2025.144318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/19/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Despite the rising spotlight on biotargeting aptamers, their mechanism of regulating cellular functions remained elusive due to lack of systematic method to investigate their intracellular behavior. This study systematically established a complete workflow including DNA secondary and 3D structure prediction, flexibilization, docking, experimental validation, and molecular dynamic (MD) simulation. RNAfold was demonstrated to provide more accurate ssDNA secondary structure predictions and compatibility for flexible docking. Feasibility of a novel direct prediction tool of DNA 3D structure, 3dDNA, has first been proven with similar reliability and better data stability in flexible docking compared to indirect prediction by RNAComposer. Flexible docking by AutoDock Vina exhibited higher reliability, while rigid docking was less reliable. Docking results were influenced by secondary and 3D structures, but the proteins' inherent affinity to nucleic acids was the key determinant. Aptamer bound to proteins with non-specificity (KD > 100 nM) and affinities (Rmax) exponentially correlated to flexible docking scores, necessitating further MD validation and identification of binding sites. Via the established workflow, binding sites of stem cell-recruiting aptamer Apt-19s on its known target (ALPL) was identified, Sec24B was first screened as its potential intracellular targets, providing theoretical guidance and feasible methodology for future exploration of aptamer biotargeting mechanisms.
Collapse
Affiliation(s)
- Nuoyan Xu
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Zeying Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Zhenglin Xu
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xiaofan Zhang
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Zhiyi Jin
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xian Dong
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Dan Lin
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, PR China.
| |
Collapse
|
2
|
ZHENG L, YANG G, QU F. [Advances in exosome-targeting aptamer-screening techniques]. Se Pu 2025; 43:424-433. [PMID: 40331607 PMCID: PMC12059990 DOI: 10.3724/sp.j.1123.2024.10029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Indexed: 05/08/2025] Open
Abstract
Exosomes play crucial intercellular-communication roles and regulate various cellular physiological processes. They are considered potential biomarkers for the early diagnosis of cancers and other diseases. Therefore, detecting and isolating exosomes with specific functions has significant clinical implications. Moreover, the development of low-cost, highly sensitive recognition elements for identifying exosomes is essential for advancing early disease diagnosis and treatment. Nucleic acid aptamers are single-stranded DNA or RNA molecules capable of specifically binding to targets and are produced through the systematic evolution of ligands by exponential enrichment (SELEX) technique. Such aptamers are highly stable, chemically synthesizable, exhibit high affinities and specificities, and are applicable to a broad range of targets, which endow them with unique advantages. Currently, aptamers that target exosomes have been used in a variety of research fields, including cell imaging, drug delivery, and disease diagnosis and treatment. However, selecting aptamers that precisely identify specific exosomes is significantly challenging owing to the complex structures of exosome and their heterogeneity. Consequently, obtaining high-performance aptamers requires efficient screening techniques. This review first summarizes the functions and selection strategies of key targets for exosome-aptamer screening. Furthermore, it outlines the main methods and techniques currently used to screen exosome aptamers, which includes five screening techniques: magnetic bead-SELEX, microfluidic-SELEX, nitrocellulose-SELEX, cell-SELEX, and capillary electrophoresis-SELEX. The separation principles, advantages, limitations, and the latest applications of these techniques are discussed in detail. The review finally addresses current challenges associated with selecting exosome aptamers and provides insight into future research directions.
Collapse
Affiliation(s)
| | - Ge YANG
- Tel:(010)63125681,E-mail:(杨歌)
| | - Feng QU
- *Tel:(010)68918015,E-mail:(屈锋)
| |
Collapse
|
3
|
Zhang J, Wang D, Kwok C, Xu L, Famulok M. Aptamer-engaged nanotherapeutics against SARS-CoV-2. DISCOVER NANO 2025; 20:71. [PMID: 40289185 PMCID: PMC12034613 DOI: 10.1186/s11671-025-04245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
The COVID-19 pandemic, caused by the virus SARS-CoV-2 infection, has underscored the critical importance of rapid and accurate therapeutics. The neutralization of SARS-CoV-2 is paramount in controlling the spread and impact of COVID-19. In this context, the integration of aptamers and aptamer-related nanotherapeutics presents a valuable and scientifically significant approach. Despite the potential, current reviews in this area are often not comprehensive and specific enough to encapsulate the full scope of therapeutic principles, strategies, advancements, and challenges. This review aims to fill that gap by providing an in-depth examination of the role of aptamers and their related molecular medicine in COVID-19 therapeutics. We first introduce the unique properties, selection, and recognition mechanism of aptamers to bind with high affinity to various targets. Next, we delve into the therapeutic potential of aptamers, focusing on their ability to inhibit viral entry and replication, as well as modulate the host immune response. The integration of aptamers with nucleic acid nanomedicine is explored. Finally, we address the challenges and future perspectives of aptamer and nucleic acid nanomedicine in COVID-19 therapeutics, including issues of stability, delivery, and manufacturing scalability. We conclude by underscoring the importance of continued research and development in this field to meet the ongoing challenges posed by COVID-19 and potential future pandemics. Our review will be a valuable resource for researchers and clinicians interested in the latest developments at the intersection of molecular biology, nanotechnology, and infectious disease management.
Collapse
Affiliation(s)
- Jing Zhang
- Life Science and Chemistry College, Hunan University of Technology, Zhuzhou, 412007, China
| | - Dan Wang
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany.
| | - Chiu Kwok
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany
| | - Liujun Xu
- Department of Respiratory and Critical Care, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| | - Michalina Famulok
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany
| |
Collapse
|
4
|
Mauriz E. Trends and Challenges of SPR Aptasensors in Viral Diagnostics: A Systematic Review and Meta-Analysis. BIOSENSORS 2025; 15:245. [PMID: 40277558 PMCID: PMC12026110 DOI: 10.3390/bios15040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Surface plasmon resonance (SPR) aptasensors benefit from the SPR phenomenon in measuring aptamer interactions with specific targets. Integrating aptamers into SPR detection enables extensive applications in clinical analysis. Specifically, virus aptasensing platforms are highly desirable to face the ongoing challenges of virus outbreaks. This study systematically reviews the latest advances in SPR aptasensors for virus detection according to PRISMA guidelines. The literature search recovered 322 original articles from the Scopus (n = 152), Web of Science (n = 83), and PubMed (n = 87) databases. The selected articles (29) deal with the binding events between the aptamers immobilized on the sensor surface and their target molecule: virus proteins or intact viruses according to different SPR configurations. The methodological quality of each study was assessed using QUADAS-2, and a meta-analysis was conducted with the CochReview Manager (RevMan) Edition7.12.0 Data were analyzed, focusing on the types of viruses, the virus target, and the reference method. The pooled sensitivity was 1.89 (95%, CI 1.29, 2.78, I2 = 49%). The analysis of different types of plasmonic sensors showed the best diagnostic results with the least heterogeneity for SPR conventional configurations: 3.23 (95% CI [1.80, 5.79]; I2 = 0%, p = 0.65). These findings show that even though plasmonic biosensors effectively analyze viruses through aptamer approaches, there are still big challenges to using them regularly for diagnostics. Practical considerations for measuring label-free interactions revealed functional capabilities, technological boundaries, and future outlooks of SPR virus aptasensing.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; ; Tel.: +34-987-293617
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| |
Collapse
|
5
|
Lin MW, Lin CH, Chiang HH, Quintela IA, Wu VCH, Lin CS. Using Nano-Luciferase Binary (NanoBiT) Technology to Assess the Interaction Between Viral Spike Protein and Angiotensin-Converting Enzyme II by Aptamers. BIOTECH 2025; 14:20. [PMID: 40227272 PMCID: PMC11940275 DOI: 10.3390/biotech14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Nano-luciferase binary technology (NanoBiT)-based pseudoviral sensors are innovative tools for monitoring viral infection dynamics. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells via its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme II (hACE2) receptor. This interaction is crucial for viral entry and serves as a key target for therapeutic interventions against coronavirus disease 2019 (COVID-19). Aptamers, short single-stranded DNA (ssDNA) or RNA molecules, are highly specific, high-affinity biorecognition elements for detecting infective pathogens. Despite their potential, optimizing viral infection assays using traditional protein-protein interaction (PPI) methods often face challenges in optimizing viral infection assays. In this study, we selected and evaluated aptamers for their ability to interact with viral proteins, enabling the dynamic visualization of infection progression. The NanoBiT-based pseudoviral sensor demonstrated a rapid increase in luminescence within 3 h, offering a real-time measure of viral infection. A comparison of detection technologies, including green fluorescent protein (GFP), luciferase, and NanoBiT technologies for detecting PPI between the pseudoviral spike protein and hACE2, highlighted NanoBiT's superior sensitivity and performance, particularly in aptamer selection. This bioluminescent system provides a robust, sensitive, and early-stage quantitative approach to studying viral infection dynamics.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (M.-W.L.); (C.-H.L.); (H.-H.C.)
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (M.-W.L.); (C.-H.L.); (H.-H.C.)
| | - Hua-Hsin Chiang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (M.-W.L.); (C.-H.L.); (H.-H.C.)
| | - Irwin A. Quintela
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (M.-W.L.); (C.-H.L.); (H.-H.C.)
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
6
|
Cheng C, Sun M, Li J, Xue Y, Cai X, Liu J, Wang X, Xu S, Xie Y, Zhang J. Nucleic Acid Aptamers for Human Norovirus GII.4 and GII.17 Virus-Like Particles (VLPs) Exhibit Specific Binding and Inhibit VLPs from Entering Cells. Int J Nanomedicine 2025; 20:1789-1805. [PMID: 39958321 PMCID: PMC11829585 DOI: 10.2147/ijn.s495399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/25/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Human noroviruses (HuNoVs) are the main cause of non-bacterial acute gastroenteritis. Due to antigenic diversity, the discovery of ligands that can sensitively and specifically detect HuNoVs remains challenging. Limited by laboratory culture, no vaccines or drugs have been developed against HuNoVs. Here, we screened nucleic acid aptamers against the widespread HuNoV GII.4 and emerging HuNoV GII.17. Methods After ten rounds of sieving for HuNoV GII.4 and GII.17 virus-like particles (VLPs), eight ssDNA aptamers were generated and characterized for each genotype. Results Four of the eight aptamers generated for GII.4 VLP had dissociation constants (Kd) less than 100 nM, and all aptamers for GII.17 VLP had Kd less than 10 nM. All aptamers bound to their targets in VLP concentration-dependent manner. Two aptamers (AP4-2 and AP17-4) were selected for enzyme-linked aptamer sorbent assay (ELASA) and further analysis. Binding affinity was enhanced as the concentration of both aptamer and VLPs increased. The specificity of the aptamers was verified by ELASA and dot blotting. AP4-2 and AP17-4 were able to differentiate HuNoV from other diarrhea-causing pathogens or unrelated proteins (P < 0.0001). VLP/porcine gastric mucin (PGM) binding blockade assays revealed that AP4-2 and AP17-4 blocked the binding of HuNoV VLPs to PGM. VLP internalization inhibition assays showed that at a concentration of 0.5 µM, both AP4-2 and AP17-4 effectively inhibited attachment and internalization of HuNoV VLPs into 293T cell (P < 0.05). Cell viability assays confirmed that aptamers did not induce cellular toxicity. Conclusion AP4-2 and AP17-4 showed strong affinity and specificity for their target VLPs and represent promising candidates for HuNoV capture and detection. This is the first study to demonstrate that aptamers can effectively inhibit HuNoV VLPs from binding to or entering cells, thus providing a new concept for the treatment of HuNoVs.
Collapse
Affiliation(s)
- Chao Cheng
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Minjia Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
- Zhejiang CONBA Pharmaceutical Co., Ltd, Hangzhou, 310052, People’s Republic of China
| | - Jingjing Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Yitong Xue
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Xia Cai
- Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Jing Liu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Xiaolian Wang
- Department of Pathogeny Microbiology and Preventive Medicine, School of Medicine, Hexi University, Zhangye, 734000, People’s Republic of China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Youhua Xie
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Junqi Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
7
|
Zhao M, Lei L, Jiang Y, Tian Y, Huang Y, Yang M. Unveiling the Threat of Disease X: Preparing for the Next Global Pandemic. J Med Virol 2025; 97:e70227. [PMID: 39936837 DOI: 10.1002/jmv.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
The term "Disease X", first introduced by the World Health Organization (WHO) in 2018, symbolizes the threat of an unknown pathogen capable of causing a global pandemic. Classified as a "priority pathogens," Disease X stands alongside well-known threats like SARS, Ebola, and ZIKV due to its potential for widespread outbreaks. SARS-CoV-2 is considered the first "Disease X" to fulfill this prediction, demonstrating the devastating impact such pathogens can have. A future pathogen X could pose an even greater threat, with catastrophic consequences. This paper examines the potential origins of such pathogens, drawing lessons from outbreaks like SARS, MERS, and SARS-CoV-2. It also highlights strategic approaches to detect, prevent, and respond effectively to mitigate the risk of future pandemics.
Collapse
Affiliation(s)
- Mengyuan Zhao
- School of Life Science, Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Luping Lei
- Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Yinghan Jiang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Yuxin Tian
- School of Life Science, Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Zhuhai, Guangdong, China
| | - Minghui Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Huang Z, Du Z, Li J, Han D, He J, Yang Y, Wang D, Liang Y, Yang Y, Peng R, Tan W. Aptamer-Based Activatable Tyramide Signal Amplification for Low-Background Detection of SARS-CoV-2 Nucleocapsid Protein. Anal Chem 2025; 97:328-336. [PMID: 39699559 DOI: 10.1021/acs.analchem.4c04225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection posed a significant threat to public health and the global economy, in vitro diagnosis of the SARS-CoV-2 nucleocapsid protein proved to be an effective way for SARS-CoV-2 infection control in the past years. Tyramide signal amplification (TSA) has been extensively utilized in tissue imaging and pathological diagnosis owing to the powerful signal enhancement. However, the elevated "ALWAYS ON" fluorescence background limited the accuracy and sensitivity of the conventional TSA assay. To achieve an activated "TURN ON" signal, herein, a small molecule, termed dichlorodihydrofluorescein tyramide (T-DCFH), was synthesized for activatable TSA. Under the catalysis of horseradish peroxidase (HRP) with hydrogen peroxide (H2O2), this T-DCFH facilitates the "TURN ON" fluorescence signal. Additionally, as a recognition tool, DNA aptamer has been used for developing in vitro diagnostic approaches. Hence, based on HRP-labeled aptamers binding with SARS-CoV-2 nucleocapsid protein, we achieved aptamers-based activatable TSA detection with a higher signal-to-noise ratio than that of fluorescent dye (FITC)-labeled aptamers, while showing lower background than traditional fluorescein tyramide with "ALWAYS ON". The results demonstrated that the activated T-DCFH significantly enhances the fluorescence signal while diminishing the background noise. By employing multiple aptamers targeting, we offered a timely and accurate in vitro diagnostic approach for future emergent infectious diseases.
Collapse
Affiliation(s)
- Zhiyong Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ziyan Du
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Juan Li
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Da Han
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiaxuan He
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yunben Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Dan Wang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yu Liang
- Department of Urology Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi 337000, P. R. China
| | - Yunshan Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Zhang Y, Zhang S, Ning Z, Lin X, Duan N, Wang Z, Wu S. Development of an Automated Capture-SELEX Device for Efficient Screening of β-Conglycinin Aptamer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28148-28156. [PMID: 39630145 DOI: 10.1021/acs.jafc.4c10043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
β-Conglycinin is the main allergen present in soybeans, and it is causing wide concern due to its notable allergenicity, heat, and digestive enzyme resistance. Screening for aptamers that both recognize β-conglycinin and inhibit the allergic reactions that it triggers is necessary. Conventional aptamer screening is labor-intensive, requires skilled personnel, and has limited reproducibility. To address these limitations, an automated device was developed to enhance the efficiency of aptamer selection in Capture-SELEX. The device achieves highly integrated, reproducible, and accurate contamination control. Using this device, a high-affinity and specific aptamer, β-5, was selected with a Kd = 18.24 ± 2.42 nM for β-conglycinin, as confirmed by isothermal titration calorimetry and fluorescence polarization. Thermodynamic analysis revealed that enthalpy-driven binding and docking simulations clarified the recognition mechanism. Overall, this automated device enables high-efficiency aptamer generation for certain targets, with aptamer β-5 expected to play a vital role in the detection of β-conglycinin and the targeted inhibition of its allergic reaction.
Collapse
Affiliation(s)
- Yingming Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shikun Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyuan Ning
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Chinchilla-Cárdenas DJ, Cruz-Méndez JS, Petano-Duque JM, García RO, Castro LR, Lobo-Castañón MJ, Cancino-Escalante GO. Current developments of SELEX technologies and prospects in the aptamer selection with clinical applications. J Genet Eng Biotechnol 2024; 22:100400. [PMID: 39179327 PMCID: PMC11338109 DOI: 10.1016/j.jgeb.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Aptamers are single-stranded oligonucleotide sequences capable of binding to specific ligands with high affinity. In this manner, they are like antibodies but have advantages such as lower manufacturing costs, lower immunogenicity, fewer batch-to-batch differences, a longer shelf life, high tolerance to different molecular milieus, and a greater number of potential targets. Due to their special features, they have been used in drug delivery, biosensor technology, therapy, and diagnostics. The methodology that allowed its production was the "Systematic Evolution of Ligands by Exponential enrichment" (SELEX). Unfortunately, the traditional protocol is time-consuming and laborious. Therefore, numerous variants with considerable optimization steps have been developed, nonetheless, there are still challenges to achieving real applications in the clinical field. Among them, are control of in vivo activities, fast renal filtration, degradation by nucleases and toxicity testing. This review focuses on current technologies based on SELEX, the critical factors for successful aptamer selection, and its upcoming biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Danny Jair Chinchilla-Cárdenas
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Juan Sebastian Cruz-Méndez
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Julieth Michel Petano-Duque
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia; Group of Biosocial Studies of the Body-EBSC, Faculty of Dentistry, Universidad de Antioquia, La Candelaria, Medellín 050010, Antioquia, Colombia.
| | | | - Lyda R Castro
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia.
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain.
| | | |
Collapse
|
11
|
Peri Ibáñez ES, Mazzeo A, Silva C, Juncos MJ, Costa Navarro GS, Pallarés HM, Wolos VJ, Fiszman GL, Mundo SL, Caramelo JJ, Yanovsky MJ, Fingermann M, Castello AA, Gamarnik AV, Peinetti AS, Capdevila DA. Overcoming Limited Access to Virus Infection Rapid Testing: Development of a Lateral Flow Test for SARS-CoV-2 with Locally Available Resources. BIOSENSORS 2024; 14:416. [PMID: 39329791 PMCID: PMC11431090 DOI: 10.3390/bios14090416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
The COVID-19 pandemic highlighted testing inequities in developing countries. Lack of lateral flow test (LFT) manufacturing capacity was a major COVID-19 response bottleneck in low- and middle-income regions. Here we report the development of an open-access LFT for SARS-CoV-2 detection comparable to commercial tests that requires only locally available supplies. The main critical resource is a locally developed horse polyclonal antibody (pAb) whose sensitivity and selectivity are greatly enhanced by affinity purification. We demonstrate that these Abs can perform similarly to commercial monoclonal antibodies (mAbs), as well as mAbs and other pAbs developed against the same antigen. We report a workflow for test optimization using nasopharyngeal swabs collected for RT-qPCR, spiked with the inactivated virus to determine analytical performance characteristics as the limit of detection, among others. Our final prototype showed a performance similar to available tests (sensitivity of 83.3% compared to RT-qPCR, and 90.9% compared to commercial antigen tests). Finally, we discuss the possibility and the challenges of utilizing affinity-purified pAbs as an alternative for the local development of antigen tests in an outbreak context and as a tool to address inequalities in access to rapid tests.
Collapse
Affiliation(s)
- Estefanía S. Peri Ibáñez
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, B1876BXD Buenos Aires, Argentina (A.A.C.)
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Agostina Mazzeo
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Carolina Silva
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
- INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Juliana Juncos
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Guadalupe S. Costa Navarro
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Horacio M. Pallarés
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Virginia J. Wolos
- Universidad de Buenos Aires (UBA), Instituto de Oncología Ángel H. Roffo, Área Investigación, C1417DTB Ciudad Autónoma de Buenos Aires, Argentina; (V.J.W.); (G.L.F.)
| | - Gabriel L. Fiszman
- Universidad de Buenos Aires (UBA), Instituto de Oncología Ángel H. Roffo, Área Investigación, C1417DTB Ciudad Autónoma de Buenos Aires, Argentina; (V.J.W.); (G.L.F.)
| | - Silvia L. Mundo
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), C1427CWN Ciudad Autónoma de Buenos Aires, Argentina;
| | - Julio J. Caramelo
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Marcelo J. Yanovsky
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Matías Fingermann
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS “Dr. Carlos G. Malbrán”, C1282AFF Ciudad Autónoma de Buenos Aires, Argentina;
| | - Alejandro A. Castello
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, B1876BXD Buenos Aires, Argentina (A.A.C.)
- Centro de Medicina Traslacional, Hospital El Cruce Néstor C., Kirchner, B1888 Buenos Aires, Argentina
- Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, B1888 Buenos Aires, Argentina
| | - Andrea V. Gamarnik
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| | - Ana S. Peinetti
- INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Daiana A. Capdevila
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Fundación Instituto Leloir, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina; (A.M.); (C.S.); (M.J.J.); (G.S.C.N.); (H.M.P.); (J.J.C.); (M.J.Y.); (A.V.G.)
| |
Collapse
|
12
|
Liu M, Zhuang H, Zhang Y, Jia Y. A sandwich FRET biosensor for lysozyme detection based on peptide-functionalized gold nanoparticles and FAM-labeled aptamer. Talanta 2024; 276:126226. [PMID: 38754187 DOI: 10.1016/j.talanta.2024.126226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Lysozyme (LYZ) plays a crucial role in the body's immune defense system. Monitoring LYZ levels can provide valuable insights into the diagnosis and severity assessment of various diseases. Traditionally, antibody-based sandwich assays are employed for LYZ detection, but they are often time-consuming and operationally complicated. In this research, a novel sandwich FRET biosensor was developed, which enables rapid detection of LYZ based on peptide-functionalized gold nanoparticles (pAuNPs) and FAM-labeled aptamer (Apt-FAM). Initially, a mixture of Apt-FAM and pAuNPs resulted in partial quenching of the Apt-FAM fluorescence emission through an inner filter effect (IFE), with negligible energy transfer because of the electrostatic repulsion between the negatively charged pAuNPs and Apt-FAM. The introduction of LYZ into the mixture drove the specific binding of Apt-FAM and pAuNPs to LYZ, facilitating the formation of a pAuNPs-LYZ-aptamer sandwich structure. The formation of this complex drew the pAuNPs and Apt-FAM into close enough proximity to enable FRET to occur, which in turn effectively quenched the fluorescence emission of FAM. The decrease in FAM fluorescence intensity was correlated with the increasing concentration of LYZ. Thus, a sandwich FRET biosensor was successfully developed for LYZ detection with a linear detection range of 0-1.75 μM and a detection limit of 85 nM. Additionally, the biosensor allowed visual detection of LYZ in a 96-well microplate, with a rapid response time of just 15 s. This study introduces a innovative sandwich FRET biosensor that combines aptamer and peptide recognition elements, offering a fast and antibody-free method for protein detection.
Collapse
Affiliation(s)
- Meiqing Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China; State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, 999078, Macau, China.
| | - Hongyuan Zhuang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China; Department of Clinical Laboratory, Xiamen Children's Hospital (Children's Hospital of Fudan University Xiamen Branch), Xiamen, 361006, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, 999078, Macau, China; Faculty of Science and Technology - ECE, University of Macau, 999078, Macau, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau, China.
| |
Collapse
|
13
|
Shaukat A, Chrouda A, Sadaf S, Alhamlan F, Eissa S, Zourob M. Cell-SELEX for aptamer discovery and its utilization in constructing electrochemical biosensor for rapid and highly sensitive detection of Legionella pneumophila serogroup 1. Sci Rep 2024; 14:14132. [PMID: 38898115 PMCID: PMC11187191 DOI: 10.1038/s41598-024-65075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
This study introduces an innovative electrochemical aptasensor designed for the highly sensitive and rapid detection of Legionella pneumophila serogroup 1 (L. pneumophila SG1), a particularly virulent strain associated with Legionellosis. Employing a rigorous selection process utilizing cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX), we identified new high-affinity aptamers specifically tailored for L. pneumophila SG1. The selection process encompassed ten rounds of cell-SELEX cycles with live L. pneumophila, including multiple counter-selection steps against the closely related Legionella sub-species. The dissociation constant (Kd) of the highest affinity sequence to L. pneumophila SG1 was measured at 14.2 nM, representing a ten-fold increase in affinity in comparison with the previously reported aptamers. For the development of electrochemical aptasensor, a gold electrode was modified with the selected aptamer through the formation of self-assembled monolayers (SAMs). The newly developed aptasensor exhibited exceptional sensitivity, and specificity in detecting and differentiating various Legionella sp., with a detection limit of 5 colony forming units (CFU)/mL and an insignificant/negligible cross-reactivity with closely related sub-species. Furthermore, the aptasensor effectively detected L. pneumophila SG1 in spiked water samples, demonstrating an appreciable recovery percentage. This study shows the potential of our aptamer-based electrochemical biosensor as a promising approach for detecting L. pneumophila SG1 in diverse environments.
Collapse
Affiliation(s)
- Aysha Shaukat
- Department of Chemistry, Alfaisal University, 11533, Riyadh, Kingdom of Saudi Arabia
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Amani Chrouda
- Department of Chemistry, Alfaisal University, 11533, Riyadh, Kingdom of Saudi Arabia
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Fatimah Alhamlan
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, 11533, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|