1
|
Liu M, Liu Z, Qiao X, Chen C, Guo H, Gu H, Li J, Sun T. An Endogenous Proton-Powered Adaptive Nanomotor for Treating Muscle Atrophy. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1351. [PMID: 40141635 PMCID: PMC11943966 DOI: 10.3390/ma18061351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
Nanomotors driven by endogenous enzymes are favored in biology and pharmacy due to their spontaneous driving and efficient biocatalytic activity, and have potential applications in the treatment of clinical diseases that are highly dependent on targeted effects. For diseases such as muscle atrophy, using energy molecules such as ATP to improve cellular metabolism is a relatively efficient treatment method. However, traditional adenosine triphosphate (ATP) therapies for muscle atrophy face limitations due to instability under physiological conditions and poor targeting efficiency. To address these challenges, we developed an endogenous proton-gradient-driven ATP transport motor (ATM), a nanomotor integrating chloroplast-derived FoF1-ATPase with a biocompatible flask-shaped organic shell (FOS). The ATM is synthesized by vacuum-injecting phospholipid-embedded FoF1-ATPase nanothylakoids into ribose-based FOS, enabling autonomous propulsion in acidic microenvironments through proton-driven negative chemotaxis (directional movement away from regions of higher proton concentration). This nanomotor converts proton gradients into ATP synthesis, directly replenishing cellular energy deficits in atrophic tissues. In vitro studies demonstrated high biocompatibility (>90% cell viability at 150 μg/mL) and pH-responsive motility, achieving speeds up to 4.32 μm/s under physiological gradients (ΔpH = 3). In vivo experiments using dexamethasone-induced muscle atrophy mice revealed that ATM treatment accelerated weight recovery and restored normal muscle morphology, with treated mice exhibiting cell sizes comparable to healthy controls (30-40 μm vs. 15-25 μm in untreated). These results highlight the ATM's potential as a precision therapeutic platform for metabolic disorders, leveraging the natural enzyme functionality and synthetic material design to enhance efficacy while minimizing systemic toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Gu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (M.L.); (Z.L.); (H.G.)
| | - Junbo Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (M.L.); (Z.L.); (H.G.)
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (M.L.); (Z.L.); (H.G.)
| |
Collapse
|
2
|
Hernandez-Navarro A, Ros-Alsina A, Yurtseven M, Wright M, Kumru H. Non-invasive cerebral and spinal cord stimulation for motor and gait recovery in incomplete spinal cord injury: systematic review and meta-analysis. J Neuroeng Rehabil 2025; 22:53. [PMID: 40050875 PMCID: PMC11887137 DOI: 10.1186/s12984-025-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) leads to gait impairment and loss of motor function and can be traumatic or non-traumatic in nature. Recently there has been important progress in the field of non-invasive central nervous stimulation, which can target the brain or spinal cord. In this review we aim to compare the effect of non-invasive cerebral and spinal cord stimulation on gait recovery and motor strength of lower limbs in subjects with SCI. METHODS We conducted a search (from September 2022 until March 2024) using the PubMed, Cochrane, and PEDro databases, including all studies published since the year 2000. The protocol of the review followed PRISMA guidelines and only RCTs scoring above 5 on the PEDro scale were selected. RESULTS A total of 12 RCTs with 341 participants were included. When all studies were pooled together, non-invasive central nervous system stimulation had significant effects on Lower Extremity Motor Scale (LEMS) score and gait speed. However, data was less apparent when subgrouped by type and level of stimulation. Repetitive transcranial magnetic stimulation (rTMS) showed large effect on LEMS, however transcranial direct current stimulation (tDCS) displayed a small effect on motor strength and gait speed. No meta-analysis could be performed for non-invasive spinal cord stimulation due to a lack of studies. CONCLUSIONS When all non-invasive stimulation techniques were pooled together, significant effects on motor strength and gait function were observed. However, subgroup analyses based on stimulation types and levels revealed a significant reduction in these effects, particularly when categorized by stimulation type (rTMS and tDCS). Furthermore, a meta-analysis could not be conducted for non-invasive spinal cord stimulation due to a lack of studies (only one study each on tsDCS and tSCS). Therefore, more randomized controlled trials are needed to evaluate neuromodulation interventions in spinal cord injury, particularly at the spinal cord level. Registration This systematic review with meta-analysis was registered in PROSPERO under the ID 512864.
Collapse
Affiliation(s)
- Agustin Hernandez-Navarro
- Fundación Institut Guttmann, Hospital de Neurorehabilitació Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, Camí Can Ruti S/N, 08916, Badalona, Spain.
- Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| | - Aina Ros-Alsina
- Fundación Institut Guttmann, Hospital de Neurorehabilitació Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, Camí Can Ruti S/N, 08916, Badalona, Spain
| | - Muhammed Yurtseven
- Department of Physiotherapy, Vocational School of Health Services, Istanbul Gelisim University, Istanbul, 34310, Turkey
| | - Mark Wright
- Fundación Institut Guttmann, Hospital de Neurorehabilitació Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, Camí Can Ruti S/N, 08916, Badalona, Spain
- Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Hatice Kumru
- Fundación Institut Guttmann, Hospital de Neurorehabilitació Institut Guttmann, Institut Universitari de Neurorrehabilitació Adscrit a la UAB, Camí Can Ruti S/N, 08916, Badalona, Spain.
- Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
- Fundació Institut d'Investigació en Ciéncies de la Salut Germans Trias i Pujol, 08916, Badalona, Spain.
| |
Collapse
|
3
|
Palermo AE, Gorgon E, Vecchio A, Tedesco Triccas L, McCaughey E, Donovan-Hall M. Perspectives on Barriers to Use and Benefits of Functional Electrical Stimulation From Australians and New Zealanders With SCI and Clinicians and Researchers in the Field. Top Spinal Cord Inj Rehabil 2025; 31:100-112. [PMID: 40008162 PMCID: PMC11848137 DOI: 10.46292/sci24-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Objectives To document, through a survey, perceptions of functional electrical stimulation (FES) from people with spinal cord injury (SCI) and carers, clinicians, and researchers (CCR). Methods Online questionnaires were completed in Australia and New Zealand from December 1, 2021 to August 31, 2022. Subgroups included people with SCI who have used FES, people with SCI who have not used FES, CCRs who have used FES, and CCRs who have not used FES. Frequencies and percentages of subgroup data were calculated for all questions. Open-ended responses were analyzed with inductive content analysis. Results Ninety-nine responses (70 people with SCI, 29 CCR) were analyzed. Out of the 99 responses, 47 people with SCI and 27 CCRs had used or currently use FES. Muscle strength was the most frequently reported benefit by people with SCI and CCRs who use(d) FES. Lack of training was the most frequently reported barrier to FES by people with SCI (85% of question responders) and CCRs (94%) who had used FES. People with SCI (95%) who had not used FES reported access as a barrier. The leading priorities for future research include improved ease of use for people with SCI (60% people with SCI) and clinical guidelines (48% CCR). Qualitative findings supported the quantitative findings. Conclusion This survey identified access as a barrier to FES and echoed benefits (strength) and barriers (training) reported in previous research. Ameliorating the barriers and investigating the areas of future research identified in this study will ultimately improve FES uptake in SCI rehabilitation.
Collapse
Affiliation(s)
- Anne E. Palermo
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, Sydney, Australia
| | - Edward Gorgon
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, Sydney, Australia
- Department of Physical Therapy, University of the Philippines, Manila, Philippines
| | | | - Lisa Tedesco Triccas
- Department for Clinical and Movement Neurosciences, Queen Square Institute of Neurology, London, United Kingdom
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Euan McCaughey
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, Sydney, Australia
- Queen Elizabeth National Spinal Injuries Unit, Glasgow, Scotland
| | - Maggie Donovan-Hall
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
4
|
Ohga S, Hattori T, Shimo K, Maeda H, Matsubara T. Impact of electrical muscle stimulation-induced muscle contractions on endogenous pain modulatory system: a quantitative sensory testing evaluation. BMC Musculoskelet Disord 2024; 25:1077. [PMID: 39731029 DOI: 10.1186/s12891-024-08154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports. This study investigated the contribution of EMS-induced muscle contractions to systemic analgesia, independent of motor cortex activity. We aimed to explore the underlying mechanisms of EIH by analyzing the influence of skeletal muscle mass (SMM), skeletal muscle mass index (SMI), and conditioned pain modulation (CPM). METHODS In this crossover study, 27 healthy young adults participated in EMS and sham interventions, separated by a washout period of 2 to 3 days. SMM, SMI, and CPM were measured before the first intervention. Pressure pain thresholds (PPT) were evaluated before and after each intervention. EMS was applied to the non-dominant quadriceps at a frequency of 30 Hz, a pulse duration of 300 μs, and a duty cycle of 5 s on and 10 s off, without inducing joint movement, for 20 min. The sham intervention used the same settings, but the stimulation amplitude was insufficient to induce muscle contraction in the quadriceps. The average current intensity was 16.0 ± 3.2 mA and 11.3 ± 2.3 mA in the EMS and sham condition, respectively. RESULTS In the EMS condition, PPT significantly increased in the stimulated quadriceps but not in non-contracted sites. There were strong positive correlations between changes in PPT and both SMM and SMI, but not CPM. The sham condition showed no significant effects at any assessment sites. CONCLUSIONS These findings suggest that the analgesic effects of EMS-induced muscle contractions are primarily localized to the stimulated muscle tissues, rather than mediated by the central pain modulatory mechanisms. TRIAL REGISTRATION This study was enrolled in the UMIN-CTR Clinical Trial Registry (registration number: UMIN000051951; date of approval: August 19, 2023).
Collapse
Affiliation(s)
- Satoshi Ohga
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan.
| | - Takafumi Hattori
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan
| | - Kazuhiro Shimo
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan
- Faculty of Rehabilitation, Kobe Gakuin University Graduate School, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan
| | - Hajime Maeda
- Faculty of Rehabilitation, Kobe Gakuin University Graduate School, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan
| | - Takako Matsubara
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan
- Faculty of Rehabilitation, Kobe Gakuin University Graduate School, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan
| |
Collapse
|
5
|
Morooka Y, Kunisawa Y, Okubo Y, Takakura Y. Effects of Neuromuscular Electrical Stimulation for Quadriceps Muscle Thickness and Lower Extremity Motor Score in Individuals with Subacute Incomplete Cervical Spinal Cord Injury: A Randomized Controlled Trial. Phys Ther Res 2024; 27:136-143. [PMID: 39866385 PMCID: PMC11756566 DOI: 10.1298/ptr.e10291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/20/2024] [Indexed: 01/28/2025]
Abstract
OBJECTIVE In this study, we aimed to determine the effects of 2-week neuromuscular electrical stimulation (NMES) on quadriceps muscle atrophy and lower extremity motor score in individuals with subacute incomplete cervical spinal cord injury (SCI). METHODS This stratified randomized controlled trial, conducted in the advanced critical care center of a university hospital, comprised 49 individuals with American Spinal Injury Association (ASIA) impairment scale grade C and D incomplete cervical SCI. The participants were stratified based on the ASIA impairment scale grade and randomly assigned to the control (n = 25) or NMES (n = 24) group. The control group participants received only conventional rehabilitation; the NMES group participants received conventional rehabilitation plus NMES in the quadriceps muscles of both lower limbs. The primary endpoints were quadriceps muscle thickness and L3 ASIA lower extremity motor score (L3 motor score), measured at the study's initiation and after 2 weeks. RESULTS The quadriceps muscle thickness changes on the stronger and weaker sides were -14.2% ± 11.3% and -15.1% ± 13.8%, respectively, in the NMES group and -25.7% ± 16.8% and -26.0% ± 13.3%, respectively, in the control group, indicating significantly lesser reduction on both sides in the NMES group (p <0.05). The L3 motor scores on the stronger and weaker sides were 0.8 ± 1.2 and 1.3 ± 1.4 (NMES group) and 0.4 ± 0.8 and 0.4 ± 0.8 (control group), respectively, indicating significant improvement only on the weaker side (p <0.05). CONCLUSIONS For subacute incomplete cervical SCI, 2 weeks of NMES reduces quadriceps muscle atrophy and improves the L3 motor score values on the weaker side compared with standard treatment.
Collapse
Affiliation(s)
- Yusuke Morooka
- Department of Physical Therapy, Faculty of Health and Medical Care, Saitama Medical University, Japan
| | - Yosuke Kunisawa
- Department of Physical Therapy, Faculty of Health and Medical Care, Saitama Medical University, Japan
| | - Yuya Okubo
- Department of Rehabilitation, Saitama Medical Center, Japan
| | - Yasuyuki Takakura
- Department of Physical Therapy, Faculty of Health and Medical Care, Saitama Medical University, Japan
| |
Collapse
|
6
|
Benbuk A, Moniz-Garcia D, Gulick D, Quinones-Hinojosa A, Christen JB. A Miniaturized Wireless, Battery-free Implant for In Vivo Musculoskeletal Stimulation. THE ... MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS CONFERENCE PROCEEDINGS : MWSCAS. MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS 2024; 2024:533-537. [PMID: 39839201 PMCID: PMC11750154 DOI: 10.1109/mwscas60917.2024.10658794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
We developed a miniaturized (8 × 8 mm2) wireless and battery-free implant for musculoskeletal stimulation. The implant generates an monophasic voltage of up to 11.9 V in a benchtop test with an air link, and it can produce any desired stimulation protocol by responding to the reception of a 2.4 GHz wireless protocol from an external device. The in vivo test demonstrated that the implant can trigger a synchronized limb movement when targeting the gastrocnemius muscle in a rodent, with a measured limb deflection of 15 mm from resting position. The flexible substrate and ability to adjust stimulation parameters externally allow the implant to be used for a variety of applications in muscle therapy and cardiac pacing.
Collapse
Affiliation(s)
- Abed Benbuk
- Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, USA
| | - Diogo Moniz-Garcia
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Daniel Gulick
- Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Blain Christen
- Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Machado-Pereira NAMM, do Nascimento PS, de Freitas GR, Bobinski F, do Espírito Santo CC, Ilha J. Electrical Stimulation Prevents Muscular Atrophy and the Decrease of Interleukin-6 in Paralyzed Muscles after Spinal Cord Injury in Rats. Rev Bras Ortop 2024; 59:e526-e531. [PMID: 39239572 PMCID: PMC11374404 DOI: 10.1055/s-0044-1787767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/20/2024] [Indexed: 09/07/2024] Open
Abstract
Objective To analyze the muscle trophism and expression of interleukin-6 in the biceps brachii muscle of rats with incomplete cervical spinal cord injury treated with neuromuscular electrical stimulation (NMES). Methods Adult rats underwent C5-C7 spinal cord hemisection and a 5-week NMES protocol. Trophism of the biceps brachii was assessed using muscle weight/body weight ratio and histological analysis. Interleukin-6 expression from biceps brachii was measured using the enzyme-linked immunosorbent assay technique. Results Preservation of the biceps brachii muscle trophism was found in the NMES treated group, along with prevention of the reduction of interleukin-6 levels. Conclusion Spinal cord injury causes muscle atrophy and decreases interleukin-6 levels. These alterations are partially prevented by NMES. The results suggest a possible NMES action mechanism and underscore the clinical use of this therapeutic tool.
Collapse
Affiliation(s)
- Nicolas A M M Machado-Pereira
- Núcleo de Pesquisa em Lesão da Medula Espinal (NULEME), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brasil
| | - Patrícia S do Nascimento
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (CCS), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Gabriel R de Freitas
- Núcleo de Pesquisa em Lesão da Medula Espinal (NULEME), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brasil
| | - Franciane Bobinski
- Laboratório Experimental de Neurociências (LANEX), Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC, Brasil
| | | | - Jocemar Ilha
- Núcleo de Pesquisa em Lesão da Medula Espinal (NULEME), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brasil
| |
Collapse
|
8
|
Yan L, Chen C, Wang L, Hong H, Wu C, Huang J, Jiang J, Chen J, Xu G, Cui Z. Analysis of gene expression in microglial apoptotic cell clearance following spinal cord injury based on machine learning algorithms. Exp Ther Med 2024; 28:292. [PMID: 38827468 PMCID: PMC11140288 DOI: 10.3892/etm.2024.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/17/2024] [Indexed: 06/04/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological complication following spinal fracture, which has long posed a challenge for clinicians. Microglia play a dual role in the pathophysiological process after SCI, both beneficial and detrimental. The underlying mechanisms of microglial actions following SCI require further exploration. The present study combined three different machine learning algorithms, namely weighted gene co-expression network analysis, random forest analysis and least absolute shrinkage and selection operator analysis, to screen for differentially expressed genes in the GSE96055 microglia dataset after SCI. It then used protein-protein interaction networks and gene set enrichment analysis with single genes to investigate the key genes and signaling pathways involved in microglial function following SCI. The results indicated that microglia not only participate in neuroinflammation but also serve a significant role in the clearance mechanism of apoptotic cells following SCI. Notably, bioinformatics analysis and lipopolysaccharide + UNC569 (a MerTK-specific inhibitor) stimulation of BV2 cell experiments showed that the expression levels of Anxa2, Myo1e and Spp1 in microglia were significantly upregulated following SCI, thus potentially involved in regulating the clearance mechanism of apoptotic cells. The present study suggested that Anxa2, Myo1e and Spp1 may serve as potential targets for the future treatment of SCI and provided a theoretical basis for the development of new methods and drugs for treating SCI.
Collapse
Affiliation(s)
- Lei Yan
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chu Chen
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Lingling Wang
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Hongxiang Hong
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chunshuai Wu
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jiayi Huang
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jiawei Jiang
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jiajia Chen
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Guanhua Xu
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Zhiming Cui
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
9
|
Rappelt L, Held S, Micke F, Wiedenmann T, Deutsch JP, Kleinöder H, Donath L. Handcycling with concurrent lower body low-frequency electromyostimulation significantly increases acute oxygen uptake in elite wheelchair basketball players: an acute crossover trial. J Rehabil Med 2024; 56:jrm40028. [PMID: 38850087 PMCID: PMC11182031 DOI: 10.2340/jrm.v56.40028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
OBJECTIVE Wheelchair basketball (WCB) demands high-intensity training due to its intermittent nature. However, acute oxygen uptake (V˙O2) in handcycling is restricted. Combining handcycling with low-frequency electromyostimulation (LF-EMS) may enhance V˙O2 in elite WBC athletes. DESIGN Randomized crossover trail. SUBJECTS Twelve German national team WCB players (age: 25.6 [5.6] years, height: 1.75 [0.16] m, mass: 74.0 [21.7] kg, classification: 2.92 [1.26]). METHOD Participants underwent 2×5 min of handcycling (60 rpm, ¾ bodyweight resistance in watts) (HANDCYCLE) and 2×5 min of handcycling with concurrent LF-EMS (EMS_HANDCYCLE). LF-EMS (4Hz, 350µs, continuous stimulation) targeted gluteal, quadriceps, and calf muscles, adjusted to individual pain thresholds (buttocks: 69.5 [22.3] mA, thighs: 66.8 [20.0] mA, calves: 68.9 [31.5] mA). RESULTS Significant mode-dependent differences between HANDCYCLE and EMS_HANDCYCLE were found in V˙O2 (17.60 [3.57] vs 19.23 [4.37] ml min-1 kg-1, p = 0.001) and oxygen pulse (16.69 [4.51] vs 18.41 [5.17] ml, p = 0.002). ΔLactate was significantly lower in HANDCYCLE (0.04 [0.28] vs 0.31 [0.26] mmol l-1). Although perceived effort did not differ (p = 0.293), discomfort was rated lower in HANDCYCLE (1.44 [1.28] vs 3.94 [2.14], p = 0.002). CONCLUSION LF-EMS applied to the lower extremities increases oxygen demand during submaximal handcycling. Thus, longitudinal application of LF-EMS should be investigated as a potential training stimulus to improve aerobic capacity in wheelchair athletes.
Collapse
Affiliation(s)
- Ludwig Rappelt
- 1Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany; Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany.
| | - Steffen Held
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany; Department of Sport and Management, IST University of Applied Sciences, Düsseldorf, Germany
| | - Florian Micke
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany; Department of Sport and Management, IST University of Applied Sciences, Düsseldorf, Germany
| | - Tim Wiedenmann
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Jan-Philip Deutsch
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Heinz Kleinöder
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
10
|
Li X, Li H, Liu Y, Liang W, Zhang L, Zhou F, Zhang Z, Yuan X. The effect of electromyographic feedback functional electrical stimulation on the plantar pressure in stroke patients with foot drop. Front Neurosci 2024; 18:1377702. [PMID: 38629052 PMCID: PMC11018889 DOI: 10.3389/fnins.2024.1377702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose The purpose of this study was to observe, using Footscan analysis, the effect of electromyographic feedback functional electrical stimulation (FES) on the changes in the plantar pressure of drop foot patients. Methods This case-control study enrolled 34 stroke patients with foot drop. There were 17 cases received FES for 20 min per day, 5 days per week for 4 weeks (the FES group) and the other 17 cases only received basic rehabilitations (the control group). Before and after 4 weeks, the walking speed, spatiotemporal parameters and plantar pressure were measured. Results After 4 weeks treatments, Both the FES and control groups had increased walking speed and single stance phase percentage, decreased step length symmetry index (SI), double stance phase percentage and start time of the heel after 4 weeks (p < 0.05). The increase in walking speed and decrease in step length SI in the FES group were more significant than the control group after 4 weeks (p < 0.05). The FES group had an increased initial contact phase, decreased SI of the maximal force (Max F) and impulse in the medial heel after 4 weeks (p < 0.05). Conclusion The advantages of FES were: the improvement of gait speed, step length SI, and the enhancement of propulsion force were more significant. The initial contact phase was closer to the normal range, which implies that the control of ankle dorsiflexion was improved. The plantar dynamic parameters between the two sides of the foot were more balanced than the control group. FES is more effective than basic rehabilitations for stroke patients with foot drop based on current spatiotemporal parameters and plantar pressure results.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiqiang Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangnan Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Andreopoulou G, Busselli G, Street T, Bulley C, Safari R, van der Linden ML, Burridge J. Is functional electrical stimulation effective in improving walking in adults with lower limb impairment due to an upper motor neuron lesion? An umbrella review. Artif Organs 2024; 48:210-231. [PMID: 37259954 DOI: 10.1111/aor.14563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE To conduct an umbrella review of systematic reviews on functional electrical stimulation (FES) to improve walking in adults with an upper motor neuron lesion. METHODS Five electronic databases were searched, focusing on the effect of FES on walking. The methodological quality of reviews was evaluated using AMSTAR2 and certainty of evidence was established through the GRADE approach. RESULTS The methodological quality of the 24 eligible reviews (stroke, n = 16; spinal cord injury (SCI), n = 5; multiple sclerosis (MS); n = 2; mixed population, n = 1) ranged from critically low to high. Stroke reviews concluded that FES improved walking speed through an orthotic (immediate) effect and had a therapeutic benefit (i.e., over time) compared to usual care (low certainty evidence). There was low-to-moderate certainty evidence that FES was no better or worse than an Ankle Foot Orthosis regarding walking speed post 6 months. MS reviews concluded that FES had an orthotic but no therapeutic effect on walking. SCI reviews concluded that FES with or without treadmill training improved speed but combined with an orthosis was no better than orthosis alone. FES may improve quality of life and reduce falls in MS and stroke populations. CONCLUSION FES has orthotic and therapeutic benefits. Certainty of evidence was low-to-moderate, mostly due to high risk of bias, low sample sizes, and wide variation in outcome measures. Future trials must be of higher quality, use agreed outcome measures, including measures other than walking speed, and examine the effects of FES for adults with cerebral palsy, traumatic and acquired brain injury, and Parkinson's disease.
Collapse
Affiliation(s)
- Georgia Andreopoulou
- Centre for Health, Activity and Rehabilitation Research, Queen Margaret University, Edinburgh, UK
| | - Giulia Busselli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Tamsyn Street
- Clinical Sciences and Engineering, Salisbury NHS Foundation Trust and Bournemouth University, Salisbury, UK
| | - Cathy Bulley
- Centre for Health, Activity and Rehabilitation Research, Queen Margaret University, Edinburgh, UK
| | - Reza Safari
- College of Health, Psychology and Social Care, University of Derby, Derby, UK
| | | | - Jane Burridge
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
12
|
Spiering BA, Weakley J, Mujika I. Effects of Bed Rest on Physical Performance in Athletes: A Systematic and Narrative Review. Sports Med 2023; 53:2135-2146. [PMID: 37495758 PMCID: PMC10587175 DOI: 10.1007/s40279-023-01889-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Athletes can face scenarios in which they are confined to bed rest (e.g., due to injury or illness). Existing research in otherwise healthy individuals indicates that those entering bed rest with the greatest physical performance level might experience the greatest performance decrements, which indirectly suggests that athletes might be more susceptible to the detrimental consequences of bed rest than general populations. Therefore, a comprehensive understanding of the effects of bed rest might help guide the medical care of athletes during and following bed rest. OBJECTIVE This systematic and narrative review aimed to (1) establish the evidence for the effects of bed rest on physical performance in athletes; (2) discuss potential countermeasures to offset these negative consequences; and (3) identify the time-course of recovery following bed rest to guide return-to-sport rehabilitation. METHODS This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four databases were searched (SPORTDiscus, Web of Science, Scopus, and MEDLINE/PubMed) in October of 2022, and studies were included if they were peer-reviewed investigations, written in English, and investigated the effects of horizontal bed rest on changes in physical capacities and qualities in athletes (defined as Tier 3-5 participants). The reporting quality of the research was assessed using a modified version of the Downs & Black checklist. Furthermore, findings from studies that involved participants in Tiers 1-2 were presented and synthesized using a narrative approach. RESULTS Our systematic review of the literature using a rigorous criterion of 'athletes' revealed zero scientific publications. Nevertheless, as a by-product of our search, seven studies were identified that involved apparently healthy individuals who performed specific exercise training prior to bed rest. CONCLUSIONS Based on the limited evidence from studies involving non-athletes who were otherwise healthy prior to bed rest, we generally conclude that (1) bed rest rapidly (within 3 days) decreases upright endurance exercise performance, likely due to a rapid loss in plasma volume; whereas strength is reduced within 5 days, likely due to neural factors as well as muscle atrophy; (2) fluid/salt supplementation may be an effective countermeasure to protect against decrements in endurance performance during bed rest; while a broader array of potentially effective countermeasures exists, the efficacy of these countermeasures for previously exercise-trained individuals requires further study; and (3) athletes likely require at least 2-4 weeks of progressive rehabilitation following bed rest of ≤ 28 days, although the timeline of recovery might need to be extended depending on the underlying reason for bed rest (e.g., injury or illness). Despite these general conclusions from studies involving non-athletes, our primary conclusion is that substantial effort and research is still required to quantify the effects of bed rest on physical performance, identify effective countermeasures, and provide return-to-sport timelines in bona fide athletes. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION Registration ID: osf.io/d3aew; Date: October 24, 2022.
Collapse
Affiliation(s)
- Barry A Spiering
- Sports Research Laboratory, New Balance Athletics, Inc., Boston, MA, USA
| | - Jonathon Weakley
- School of Behavioural and Health Sciences, Australian Catholic University, McAuley at Banyo, Brisbane, QLD, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, QLD, Australia.
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds, UK.
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
13
|
Santana L, Fachin-Martins E, Borges DL, Tenório Cavalcante JG, Babault N, Neto FR, Quagliotti Durigan JL, Marqueti RDC. Neuromuscular disorders in women and men with spinal cord injury are associated with changes in muscle and tendon architecture. J Spinal Cord Med 2023; 46:742-752. [PMID: 35196216 PMCID: PMC10446789 DOI: 10.1080/10790268.2022.2035619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE The present study aimed to determine the association between neuromuscular function, motor function impairment, and muscle and tendon structures in individuals with spinal cord injury (SCI) compared to a control (non-disabled) population. DESIGN A cross-sectional study with a control group. SETTING Center of Adapted Sports Training and Special Physical Education. PARTICIPANTS Fifteen individuals with SCI and motor function impairments participated in the study. A paired non-disabled group was recruited for comparison. INTERVENTIONS Not applicable. OUTCOME MEASURES Muscle (biceps brachii, rectus femoris, vastus lateralis, vastus medialis, and tibialis anterior) and tendon (quadriceps and patellar tendons) structures were assessed by ultrasound imaging (thickness, pennation angle, fascicle length, and echogenicity). Neuromuscular electrophysiological disorders were also assessed using electrodiagnosis techniques (stimulus non-responsivity and chronaxie) in the same muscles. RESULTS Except for the biceps brachii muscle, muscle thickness, pennation angle, and fascicle length were lower (p < 0.01) while echogenicity and chronaxie were greater (p < 0.01) in SCI participants. The SCI participants had a higher prevalence of neuromuscular electrophysiological disorders for all muscles, except the biceps brachii. CONCLUSION Neuromuscular disorders occur in association with muscle and tendon maladaptation in individuals with chronic SCI. A higher prevalence of electrophysiological disorders suggests an acquired polyneuromyopathy for muscles with motor function impairment even though the muscle was innerved, in addition to widespread muscle atrophy.
Collapse
Affiliation(s)
- Larissa Santana
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Emerson Fachin-Martins
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
- Graduate Program in Health Sciences and Technologies, Universidade de Brasília, Distrito Federal, Brazil
| | - David Lobato Borges
- Graduate Program in Health Sciences and Technologies, Universidade de Brasília, Distrito Federal, Brazil
| | | | - Nicolas Babault
- Centre d'Expertise de la Performance G. Cometti, U1093-INSERM, CAPS, Faculté des Sciences du Sport, Université de Bourgogne-Franche-Comté Dijon, France
| | | | - João Luiz Quagliotti Durigan
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
- Graduate Program in Health Sciences and Technologies, Universidade de Brasília, Distrito Federal, Brazil
| | - Rita de Cássia Marqueti
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
- Graduate Program in Health Sciences and Technologies, Universidade de Brasília, Distrito Federal, Brazil
| |
Collapse
|
14
|
Cui Y, Cong F, Huang F, Zeng M, Yan R. Cortical activation of neuromuscular electrical stimulation synchronized mirror neuron rehabilitation strategies: an fNIRS study. Front Neurol 2023; 14:1232436. [PMID: 37602262 PMCID: PMC10437114 DOI: 10.3389/fneur.2023.1232436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background The mirror neuron system (MNS) plays a key role in the neural mechanism underlying motor learning and neural plasticity. Action observation (AO), action execution (AE), and a combination of both, known as action imitation (AI), are the most commonly used rehabilitation strategies based on MNS. It is possible to enhance the cortical activation area and amplitude by combining traditional neuromuscular electrical stimulation (NMES) with other top-down and active rehabilitation strategies based on the MNS theory. Objective This study aimed to explore the cortical activation patterns induced by NMES synchronized with rehabilitation strategies based on MNS, namely NMES+AO, NMES+AE, and NMES+AI. In addition, the study aimed to assess the feasibility of these three novel rehabilitative treatments in order to provide insights and evidence for the design, implementation, and application of brain-computer interfaces. Methods A total of 70 healthy adults were recruited from July 2022 to February 2023, and 66 of them were finally included in the analysis. The cortical activation patterns during NMES+AO, NMES+AE, and NMES+AI were detected using the functional Near-Infrared Spectroscopy (fNIRS) technique. The action to be observed, executed, or imitated was right wrist and hand extension, and two square-shaped NMES electrodes were placed on the right extensor digitorum communis. A block design was adopted to evaluate the activation intensity of the left MNS brain regions. Results General linear model results showed that compared with the control condition, the number of channels significantly activated (PFDR < 0.05) in the NMES+AO, NMES+AE, and NMES+AI conditions were 3, 9, and 9, respectively. Region of interest (ROI) analysis showed that 2 ROIs were significantly activated (PFDR < 0.05) in the NMES+AO condition, including BA6 and BA44; 5 ROIs were significantly activated in the NMES+AE condition, including BA6, BA40, BA44, BA45, and BA46; and 6 ROIs were significantly activated in the NMES+AI condition, including BA6, BA7, BA40, BA44, BA45, and BA46. Conclusion The MNS was activated during neuromuscular electrical stimulation combined with an AO, AE, and AI intervention. The synchronous application of NMES and mirror neuron rehabilitation strategies is feasible in clinical rehabilitation. The fNIRS signal patterns observed in this study could be used to develop brain-computer interface and neurofeedback therapy rehabilitation devices.
Collapse
Affiliation(s)
- Yao Cui
- Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fang Cong
- Department of Physical Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fubiao Huang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Ming Zeng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang, China
| | - Ruxiu Yan
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
15
|
Palladino L, Ruotolo I, Berardi A, Carlizza A, Galeoto G. Efficacy of aquatic therapy in people with spinal cord injury: a systematic review and meta-analysis. Spinal Cord 2023; 61:317-322. [PMID: 36966260 DOI: 10.1038/s41393-023-00892-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
STUDY DESIGN Systematic review and meta-analysis. Spinal cord injury (SCI) is a pathological condition that provokes the loss of one or more body functions due to an injury to the spinal cord as a result of trauma or disease. Hydrotherapy plays a key role in the rehabilitation of neurological patients due to the properties of water environments. OBJECTIVES The goal of this study was to evaluate the efficacy of hydrotherapy in patients who suffer from SCIs. METHODS We searched 5 different databases: CINAHL, PubMed, Scopus, Web of Science, and PEDro for studies to include. Only randomized controlled trials (RCTs) published in English were considered. To evaluate the risk of bias, Jadad and PEDro scales were used. RESULTS Eleven Randomized Controlled Trials were included, and 3 articles remained to be analyzed. According to the evaluation through Cochrane Risk of Bias tool, one study had a high level of quality. The remaining 2 studies achieved a score indicative of a low level of quality. A total of 71 individuals with SCI were included in the studies; age and level of injury varied in each study. The outcome measures used in the studies were: Functional Independence Measure (FIM), Ashworth scale, CardioTouch 3000 s in sitting position and Quark CPET. CONCLUSION The aquatic environment provides a rehabilitation tool able to facilitate movement, physical and cardiovascular exercise, resistance training, and body relaxation.
Collapse
Affiliation(s)
| | - Ilaria Ruotolo
- MS Center, S. Andrea Hospital, Sapienza University, Rome, Italy
| | - Anna Berardi
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | | | - Giovanni Galeoto
- Department of Human Neurosciences, Sapienza University, Rome, Italy.
| |
Collapse
|
16
|
Ibitoye MO, Hamzaid NA, Ahmed YK. Effectiveness of FES-supported leg exercise for promotion of paralysed lower limb muscle and bone health-a systematic review. BIOMED ENG-BIOMED TE 2023:bmt-2021-0195. [PMID: 36852605 DOI: 10.1515/bmt-2021-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Leg exercises through standing, cycling and walking with/without FES may be used to preserve lower limb muscle and bone health in persons with physical disability due to SCI. This study sought to examine the effectiveness of leg exercises on bone mineral density and muscle cross-sectional area based on their clinical efficacy in persons with SCI. Several literature databases were searched for potential eligible studies from the earliest return date to January 2022. The primary outcome targeted was the change in muscle mass/volume and bone mineral density as measured by CT, MRI and similar devices. Relevant studies indicated that persons with SCI that undertook FES- and frame-supported leg exercise exhibited better improvement in muscle and bone health preservation in comparison to those who were confined to frame-assisted leg exercise only. However, this observation is only valid for exercise initiated early (i.e., within 3 months after injury) and for ≥30 min/day for ≥ thrice a week and for up to 24 months or as long as desired and/or tolerable. Consequently, apart from the positive psychological effects on the users, leg exercise may reduce fracture rate and its effectiveness may be improved if augmented with FES.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur Malaysia
| | - Yusuf Kola Ahmed
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
17
|
Hohl K, Smith AC, Macaluso R, Giffhorn M, Prokup S, O’Dell DR, Kleinschmidt L, Elliott JM, Jayaraman A. Muscle adaptations in acute SCI following overground exoskeleton + FES training: A pilot study. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:963771. [PMID: 36311207 PMCID: PMC9608781 DOI: 10.3389/fresc.2022.963771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
Abstract
Objective To evaluate the combined effects of robotic exoskeleton and functional electrical stimulation (FES) training on muscle composition during over-ground gait training in persons with acute spinal cord injury (SCI). Design Randomized crossover pilot study. Setting Inpatient-rehabilitation Hospital. Participants Six individuals with acute SCI. Intervention Participants were randomized to either receive training with the Ekso® Bionics exoskeleton combined with FES in addition to standard-of-care or standard-of-care alone. Outcome measures The main outcome measures for the study were quantified using magnetic resonance imaging (MRI), specifically, lower extremity muscle volume and intramuscular adipose tissue (IMAT). Static balance and fall risk were assessed using the Berg Balance Scale. Results Significant improvements were observed in muscle volume in the exoskeleton intervention group when compared to only standard-of-care (p < 0.001). There was no significant difference between the groups in IMAT even though the intervention group saw a reduction in IMAT that trended towards statistical significance (p = 0.07). Static balance improved in both groups, with greater improvements seen in the intervention group. Conclusions Early intervention with robotic exoskeleton may contribute to improved muscle function measured using MRI in individuals with acute SCI.
Collapse
Affiliation(s)
- Kristen Hohl
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Andrew C. Smith
- Department of Physical Medicine and Rehabilitation, Physical Therapy Program, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Rebecca Macaluso
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Matthew Giffhorn
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Sara Prokup
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Denise R. O’Dell
- Department of Physical Therapy, University of Kentucky College of Health Sciences, Lexington, KY, United States
| | - Lina Kleinschmidt
- Department of Physical Therapy / Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jim M. Elliott
- Department of Physical Therapy / Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States,Northern Sydney Local Health District, The Kolling Institute and Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW, Australia
| | - Arun Jayaraman
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States,Department of Physical Therapy / Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States,Department of Physical Medicine / Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States,Correspondence: Arun Jayaraman
| |
Collapse
|
18
|
Yan L, Fu J, Dong X, Chen B, Hong H, Cui Z. Identification of hub genes in the subacute spinal cord injury in rats. BMC Neurosci 2022; 23:51. [PMID: 36030234 PMCID: PMC9419366 DOI: 10.1186/s12868-022-00737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background Spinal cord injury (SCI) is a common trauma in clinical practices. Subacute SCI is mainly characterized by neuronal apoptosis, axonal demyelination, Wallerian degeneration, axonal remodeling, and glial scar formation. It has been discovered in recent years that inflammatory responses are particularly important in subacute SCI. However, the mechanisms mediating inflammation are not completely clear. Methods The gene expression profiles of GSE20907, GSE45006, and GSE45550 were downloaded from the GEO database. The models of the three gene expression profiles were all for SCI to the thoracic segment of the rat. The differentially expressed genes (DEGs) and weighted correlation network analysis (WGCNA) were performed using R software, and functional enrichment analysis and protein–protein interaction (PPI) network were performed using Metascape. Module analysis was performed using Cytoscape. Finally, the relative mRNA expression level of central genes was verified by RT-PCR. Results A total of 206 candidate genes were identified, including 164 up-regulated genes and 42 down-regulated genes. The PPI network was evaluated, and the candidate genes enrichment results were mainly related to the production of tumor necrosis factors and innate immune regulatory response. Twelve core genes were identified, including 10 up-regulated genes and 2 down-regulated genes. Finally, seven hub genes with statistical significance in both the RT-PCR results and expression matrix were identified, namely Itgb1, Ptprc, Cd63, Lgals3, Vav1, Shc1, and Casp4. They are all related to the activation process of microglia. Conclusion In this study, we identified the hub genes and signaling pathways involved in subacute SCI using bioinformatics methods, which may provide a molecular basis for the future treatment of SCI.
Collapse
Affiliation(s)
- Lei Yan
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Jiawei Fu
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Xiong Dong
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Baishen Chen
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Hongxiang Hong
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Zhiming Cui
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Fang CY, Lien ASY, Tsai JL, Yang HC, Chan HL, Chen RS, Chang YJ. The Effect and Dose-Response of Functional Electrical Stimulation Cycling Training on Spasticity in Individuals With Spinal Cord Injury: A Systematic Review With Meta-Analysis. Front Physiol 2021; 12:756200. [PMID: 34867459 PMCID: PMC8640241 DOI: 10.3389/fphys.2021.756200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023] Open
Abstract
Background: To investigate the effect and dose-response of functional electrical stimulation cycling (FES-cycling) training on spasticity in the individuals with spinal cord injury (SCI). Method: Five electronic databases [PubMed, Scopus, Medline (Proquest), Embase, and Cochrane Central Register of Controlled Trials (CENTRAL)] were searched before September 2021. The human trials and studies of English language were only included. Two authors independently reviewed and extracted the searched studies. The primary outcome measure was spasticity assessed by Modified Ashworth Scale or Ashworth Scale for lower limbs. The secondary outcome measures were walking abilities, such as 6 Min Walk Test (6MWT), Timed Up and Go (TUG), and lower limbs muscle strength (LEMS). A subgroup analysis was performed to investigate the efficacious threshold number of training sessions. A meta-regression analysis was used to examine the linear relationship between the training sessions and the effect on spasticity. Results: A total of 764 studies were identified. After screening, 12 selected studies were used for the qualitative synthesis, in which eight of them were quantitatively analyzed. Eight studies included ninety-nine subjects in total with SCI (male: female = 83:16). The time since injury was from less than 4 weeks to 17 years. The age ranged from 20 to 67 years. American Spinal Injury Association (ASIA) impairment level of the number of participants was 59 for ASIA A, 11 for ASIA B, 18 for ASIA C, and 11 for ASIA D. There were 43 subjects with tetraplegia and 56 subjects with paraplegia. Spasticity decreased significantly (95% CI = - 1.538 to - 0.182, p = 0.013) in favor of FES-cycling training. The walking ability and LEMS also improved significantly in favor of FES-cycling training. The subgroup analysis showed that spasticity decreased significantly only in more than 20 training sessions (95% CI = - 1.749 to - 0.149, p = 0.020). The meta-regression analysis showed training sessions and spasticity were not significantly associated (coefficient = - 0.0025, SE = 0.0129, p = 0.849, R 2 analog = 0.37). Conclusion: Functional electrical stimulation-cycling training can improve spasticity, walking ability, and the strength of the lower limbs in the individuals with SCI. The number of training sessions is not linearly related to the decrease of spasticity. Twenty sessions of FES-cycling training are required to obtain the efficacy to decrease spasticity.
Collapse
Affiliation(s)
- Chia-Ying Fang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Angela Shin-Yu Lien
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Ling Tsai
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Chu Yang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Lung Chan
- Department of Electrical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ju Chang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
21
|
Kawai M, Imaizumi K, Ishikawa M, Shibata S, Shinozaki M, Shibata T, Hashimoto S, Kitagawa T, Ago K, Kajikawa K, Shibata R, Kamata Y, Ushiba J, Koga K, Furue H, Matsumoto M, Nakamura M, Nagoshi N, Okano H. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Cell Rep 2021; 37:110019. [PMID: 34818559 DOI: 10.1016/j.celrep.2021.110019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
In cell transplantation therapy for spinal cord injury (SCI), grafted human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) mainly differentiate into neurons, forming synapses in a process similar to neurodevelopment. In the developing nervous system, the activity of immature neurons has an important role in constructing and maintaining new synapses. Thus, we investigate how enhancing the activity of transplanted hiPSC-NS/PCs affects both the transplanted cells themselves and the host tissue. We find that chemogenetic stimulation of hiPSC-derived neural cells enhances cell activity and neuron-to-neuron interactions in vitro. In a rodent model of SCI, consecutive and selective chemogenetic stimulation of transplanted hiPSC-NS/PCs also enhances the expression of synapse-related genes and proteins in surrounding host tissues and prevents atrophy of the injured spinal cord, thereby improving locomotor function. These findings provide a strategy for enhancing activity within the graft to improve the efficacy of cell transplantation therapy for SCI.
Collapse
Affiliation(s)
- Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kentaro Ago
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Keita Kajikawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Reo Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Keisuke Koga
- Department of Neurophysiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
22
|
Atkins KD, Bickel CS. Effects of functional electrical stimulation on muscle health after spinal cord injury. Curr Opin Pharmacol 2021; 60:226-231. [PMID: 34464934 DOI: 10.1016/j.coph.2021.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury is a devastating condition interrupting voluntary movement and motor control. In response to unloading, skeletal muscle undergoes numerous adaptations, including rapid and profound atrophy, intramuscular fat accumulation, impaired muscular glucose metabolism and decreased force generation and muscle performance. Functional electrical stimulation (FES) involves electrically stimulating affected muscles to contract in a coordinated manner to create a functional movement or task. Effects of FES-cycling, rowing and resistance training on muscle health are described here. Briefly, FES-cycling and resistance training may slow muscle atrophy or facilitate muscle hypertrophy, and all modalities benefit muscle composition and performance to some extent. These interventions show promise as future rehabilitative tools after spinal cord injury.
Collapse
Affiliation(s)
- Kelly D Atkins
- Department of Physical Therapy, Samford University, Birmingham, AL, USA
| | - C Scott Bickel
- Department of Physical Therapy, Samford University, Birmingham, AL, USA.
| |
Collapse
|
23
|
Sun WM, Ma CL, Xu J, He JP. Reduction in post-spinal cord injury spasticity by combination of peripheral nerve grafting and acidic fibroblast growth factor infusion in monkeys. J Int Med Res 2021; 49:3000605211022294. [PMID: 34154433 PMCID: PMC8236803 DOI: 10.1177/03000605211022294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Spasticity is a frequent complication after spinal cord injury (SCI), but the existing therapies provide only limited relief and are associated with adverse reactions. Therefore, we aimed to develop a novel strategy to ameliorate the spasticity induced by SCI. METHODS This nonrandomized controlled study used a repeated measurement design. The study involved four monkeys, two of which served as controls and only underwent spinal cord hemisection surgery at the T8 spine level. The other two monkeys underwent transplantation of sural nerve segments into the injured sites and long-term infusion of acidic fibroblast growth factor (aFGF). All monkeys received postoperative exercise training and therapy. RESULTS The combined therapy substantially reduced the spasticity in leg muscle tone, patella tendon reflex, and fanning of toes. Although all monkeys showed spontaneous recovery of function over time, the recovery in the controls reached a plateau and started to decline after 11 weeks. CONCLUSIONS The combination of peripheral nerve grafting and aFGF infusion may serve as a complementary approach to reduce the signs of spasticity in patients with SCI.
Collapse
Affiliation(s)
- Wei-Ming Sun
- Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Chao-Lin Ma
- Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Science, Nanchang University, Nanchang, China
| | - Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Ping He
- Center for Neural Interface Design, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
24
|
Physiotherapy interventions for the treatment of spasticity in people with spinal cord injury: a systematic review. Spinal Cord 2021; 59:236-247. [PMID: 33564117 DOI: 10.1038/s41393-020-00610-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To determine the effectiveness of physiotherapy interventions for the treatment of spasticity in people with spinal cord injuries. SETTING Not applicable. METHODS A comprehensive search was undertaken to identify all randomised controlled trials of physiotherapy interventions that included an assessor-reported (objective) or participant-reported (subjective) measure of spasticity. Only trials that provided a physiotherapy intervention on more than one occasion were included. The susceptibility to bias of each trial was rated on the PEDro scale. Data were extracted to derive mean between-group differences (95% CI) for each trial. RESULTS Twenty-eight trials were identified but only 17 provided useable data. Seven trials compared a physiotherapy intervention to no intervention (or a sham intervention) and 10 trials compared one physiotherapy intervention to another physiotherapy intervention. The median (IQR) PEDro score of the 17 trials was 6/10 (6-8). The most commonly used assessor- and participant-reported measures of spasticity were the Ashworth scale and Spinal Cord Injury Spasticity Evaluation Tool, respectively. Only one trial demonstrated a treatment effect. This trial compared continuous passive motion of the ankle to no treatment on the Ashworth scale. The remaining 16 trials were either inconclusive or indicated that the treatment was ineffective for reducing spasticity. CONCLUSIONS There is no high-quality evidence to indicate that physiotherapy interventions decrease spasticity but this may reflect a lack of research on the topic. Future trials should focus on participant-reported measures of spasticity that distinguish between the immediate, short-term and long-term effects of any physiotherapy intervention.
Collapse
|
25
|
Niu SP, Zhang YJ, Han N, Yin XF, Zhang DY, Kou YH. Identification of four differentially expressed genes associated with acute and chronic spinal cord injury based on bioinformatics data. Neural Regen Res 2021; 16:865-870. [PMID: 33229721 PMCID: PMC8178775 DOI: 10.4103/1673-5374.297087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Complex pathological changes occur during the development of spinal cord injury (SCI), and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular targets and therapeutic strategies. This study was designed to explore differentially expressed genes (DEGs) associated with the acute and chronic stages of SCI using bioinformatics analysis. Gene expression profiles (GSE45006, GSE93249, and GSE45550) were downloaded from the Gene Expression Omnibus database. SCI-associated DEGs from rat samples were identified, and Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. In addition, a protein-protein interaction network was constructed. Approximately 66 DEGs were identified in GSE45550 between 3–14 days after SCI, whereas 2418 DEGs were identified in GSE45006 1–56 days after SCI. Moreover, 1263, 195, and 75 overlapping DEGs were identified between these two expression profiles, 3, 7/8, and 14 days after SCI, respectively. Additionally, 16 overlapping DEGs were obtained in GSE45006 1–14 days after SCI, including Pank1, Hn1, Tmem150c, Rgd1309676, Lpl, Mdh1, Nnt, Loc100912219, Large1, Baiap2, Slc24a2, Fundc2, Mrps14, Slc16a7, Obfc1, and Alpk3. Importantly, 3882 overlapping DEGs were identified in GSE93249 1–6 months after SCI, including 3316 protein-coding genes and 567 long non-coding RNA genes. A comparative analysis between GSE93249 and GSE45006 resulted in the enrichment of 1135 overlapping DEGs. The significant functions of these 1135 genes were correlated with the response to the immune effector process, the innate immune response, and cytokine production. Moreover, the biological processes and KEGG pathways of the overlapping DEGs were significantly enriched in immune system-related pathways, osteoclast differentiation, the nuclear factor-κB signaling pathway, and the chemokine signaling pathway. Finally, an analysis of the overlapping DEGs associated with both acute and chronic SCI, assessed using the expression profiles GSE93249 and GSE45006, identified four overlapping DEGs: Slc16a7, Alpk3, Lpl and Nnt. These findings may be useful for revealing the biological processes associated with SCI and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Su-Ping Niu
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Office of Academic Research, Peking University People's Hospital, Beijing, China
| | - Ya-Jun Zhang
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Trauma Medicine Center, Peking University People's Hospital, Beijing, China
| | - Na Han
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Office of Academic Research, Peking University People's Hospital, Beijing, China
| | - Xiao-Feng Yin
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Dian-Ying Zhang
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Yu-Hui Kou
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education; Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
26
|
Chen J, Jin Z, Yao J, Wang H, Li Y, Ouyang Z, Wang Y, Niu W. Influence of the intelligent standing mobile robot on lower extremity physiology of complete spinal cord injury patients. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
27
|
Hon AJ, Kraus P. Spasticity Management After Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00280-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Acute and chronic neuromuscular electrical stimulation and postural balance: a review. Eur J Appl Physiol 2020; 120:1475-1488. [DOI: 10.1007/s00421-020-04383-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/23/2020] [Indexed: 01/12/2023]
|
29
|
Pizetta GR, Maçaneiro CH, Lauffer RF, Miyamoto RK, Ferreira APB, Santos RAAD. EPIDEMIOLOGICAL ANALYSIS OF SPINAL CORD INJURY IN THE CITY OF JOINVILLE (SC). COLUNA/COLUMNA 2020. [DOI: 10.1590/s1808-185120201901223272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective This paper proposes a retrospective analysis of the spinal cord trauma at a regional hospital that is a Unified Health System (SUS) reference in Orthopedics and Traumatology, considering epidemiological data and comparing treatments and hospitalization costs. Methods This study is a retrospective, analytical-descriptive, exploratory documental analysis, using data from the medical records of patients treated for spinal cord trauma during 2016 at the São José Municipal Hospital (Joinville, SC). Results Twenty-three patients were included in the study, 20 of whom (87%) were male. As to etiology, traffic accidents accounted for 47.8% of the cases and gunshot wounds were in second place with 26.1% of the injuries. The correlation between the cost of hospitalization and the days of hospitalization was statistically significant (p = 0.013), as was the correlation between the cost of hospitalization and the number of procedures (p = 0.000). Conclusions Surgical treatment demands greater amounts of financial and human resources. The purpose of this study is to provide local epidemiological data to encourage discussion about other studies, as well as planning for resource allocation and public policy. Level of evidence II; Retrospective Study.
Collapse
|
30
|
Sahib S, Niu F, Sharma A, Feng L, Tian ZR, Muresanu DF, Nozari A, Sharma HS. Potentiation of spinal cord conduction and neuroprotection following nanodelivery of DL-3-n-butylphthalide in titanium implanted nanomaterial in a focal spinal cord injury induced functional outcome, blood-spinal cord barrier breakdown and edema formation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:153-188. [DOI: 10.1016/bs.irn.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|