1
|
Baede VO, Gupta A, Knight GM, Schouls LM, Laing K, Tavakol M, Barray A, de Vlas SJ, de Vos AS, Hendrickx APA, Khan M, Kretzschmar ME, van Wamel WJB, Lina G, Vandenesch F, Vos MC, Witney AA, Rasigade JP, Lindsay JA. Markers of epidemiological success of methicillin-resistant Staphylococcus aureus isolates in European populations. Clin Microbiol Infect 2023; 29:1166-1173. [PMID: 37207981 PMCID: PMC10775016 DOI: 10.1016/j.cmi.2023.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVES Methicillin-resistant Staphylococcus aureus (MRSA) infections impose a considerable burden on health systems, yet there is remarkable variation in the global incidence and epidemiology of MRSA. The MACOTRA consortium aimed to identify bacterial markers of epidemic success of MRSA isolates in Europe using a representative MRSA collection originating from France, the Netherlands and the United Kingdom. METHODS Operational definitions of success were defined in consortium meetings to compose a balanced strain collection of successful and sporadic MRSA isolates. Isolates were subjected to antimicrobial susceptibility testing and whole-genome sequencing; genes were identified and phylogenetic trees constructed. Markers of epidemiological success were identified using genome-based time-scaled haplotypic density analysis and linear regression. Antimicrobial usage data from ESAC-Net was compared with national MRSA incidence data. RESULTS Heterogeneity of MRSA isolate collections across countries hampered the use of a unified operational definition of success; therefore, country-specific approaches were used to establish the MACOTRA strain collection. Phenotypic antimicrobial resistance varied within related MRSA populations and across countries. In time-scaled haplotypic density analysis, fluoroquinolone, macrolide and mupirocin resistance were associated with MRSA success, whereas gentamicin, rifampicin and trimethoprim resistance were associated with sporadicity. Usage of antimicrobials across 29 European countries varied substantially, and β-lactam, fluoroquinolone, macrolide and aminoglycoside use correlated with MRSA incidence. DISCUSSION Our results are the strongest yet to associate MRSA antibiotic resistance profiles and antibiotic usage with the incidence of infection and successful clonal spread, which varied by country. Harmonized isolate collection, typing, resistance profiling and alignment with antimicrobial usage over time will aid comparisons and further support country-specific interventions to reduce MRSA burden.
Collapse
Affiliation(s)
- Valérie O Baede
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arya Gupta
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Gwenan M Knight
- AMR Centre, Centre for Mathematical Modelling of Infectious Diseases, Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Leo M Schouls
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ken Laing
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Mehri Tavakol
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anaïs Barray
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France; Centre National de Référence des Staphylocoques, Institut des Agent Infectieux, Hôpital de La Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anneke S de Vos
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Madeeha Khan
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Mirjam E Kretzschmar
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Willem J B van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gérard Lina
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France; Centre National de Référence des Staphylocoques, Institut des Agent Infectieux, Hôpital de La Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Francois Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France; Centre National de Référence des Staphylocoques, Institut des Agent Infectieux, Hôpital de La Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Adam A Witney
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Jean-Philippe Rasigade
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France; Centre National de Référence des Staphylocoques, Institut des Agent Infectieux, Hôpital de La Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jodi A Lindsay
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom.
| |
Collapse
|
2
|
Staphylococcus aureus Genomic Analysis and Outcomes in Patients with Bone and Joint Infections: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043234. [PMID: 36834650 PMCID: PMC9967247 DOI: 10.3390/ijms24043234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Many studies have been published assessing the association between the presence of S. aureus genes and outcomes in patients with bone and joint infections (BJI), but it is not known if they have had similar findings. A systematic literature review was performed. All available data on studies in Pubmed between January 2000 to October 2022 reporting the genetic characteristics of S. aureus and the outcomes of BJIs were analyzed. BJI included prosthetic joint infection (PJI), osteomyelitis (OM), diabetic foot infection (DFI), and septic arthritis. Because of the heterogeneity of studies and outcomes, no meta-analysis was performed. With the search strategy, 34 articles were included: 15 articles on children and 19 articles on adults. In children, most BJI studied were OM (n = 13) and septic arthritis (n = 9). Panton Valentine leucocidin (PVL) genes were associated with higher biological inflammatory markers at presentation (n = 4 studies), more febrile days (n = 3), and more complicated/severe infection (n = 4). Other genes were reported anecdotally associated with poor outcomes. In adults, six studies reported outcomes in patients with PJI, 2 with DFI, 3 with OM, and 3 with various BJI. Several genes were associated with a variety of poor outcomes in adults, but studies found contradictory results. Whereas PVL genes were associated with poor outcomes in children, no specific genes were reported similarly in adults. Additional studies with homogenous BJI and larger sample sizes are needed.
Collapse
|
3
|
Phylodynamic signatures in the emergence of community-associated MRSA. Proc Natl Acad Sci U S A 2022; 119:e2204993119. [PMID: 36322765 PMCID: PMC9659408 DOI: 10.1073/pnas.2204993119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Community-associated, methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) lineages have emerged in many geographically distinct regions around the world during the past 30 y. Here, we apply consistent phylodynamic methods across multiple community-associated MRSA lineages to describe and contrast their patterns of emergence and dissemination. We generated whole-genome sequencing data for the Australian sequence type (ST) ST93-MRSA-IV from remote communities in Far North Queensland and Papua New Guinea, and the Bengal Bay ST772-MRSA-V clone from metropolitan communities in Pakistan. Increases in the effective reproduction number (R<sub>e</sub>) and sustained transmission (R<sub>e</sub> > 1) coincided with spread of progenitor methicillin-susceptible <i>S. aureus</i> (MSSA) in remote northern Australian populations, dissemination of the ST93-MRSA-IV genotype into population centers on the Australian East Coast, and subsequent importation into the highlands of Papua New Guinea and Far North Queensland. Applying the same phylodynamic methods to existing lineage datasets, we identified common signatures of epidemic growth in the emergence and epidemiological trajectory of community-associated <i>S. aureus</i> lineages from America, Asia, Australasia, and Europe. Surges in R<sub>e</sub> were observed at the divergence of antibiotic-resistant strains, coinciding with their establishment in regional population centers. Epidemic growth was also observed among drug-resistant MSSA clades in Africa and northern Australia. Our data suggest that the emergence of community-associated MRSA in the late 20th century was driven by a combination of antibiotic-resistant genotypes and host epidemiology, leading to abrupt changes in lineage-wide transmission dynamics and sustained transmission in regional population centers.
Collapse
|
4
|
Molecular Diagnosis, Antimicrobial Resistance Profiles and Disease Patterns of Gram-Positive Pathogens Recovered from Clinical Infections in Major Ha’il Hospitals. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nosocomial resistance in staphylococci and enterococci is challenging. The aim of this work was to conduct a multipoint study using molecular detections, antimicrobial resistances profiles, patient demographics and disease patterns for objective assessments of Staphilococcus aureus and other Gram-positive pathogens recovered from clinical infections in the Ha’il region. We have surveyed 188 non-duplicate Gram-positives against 22 antimicrobials for molecular-differentiation, resistance, patient demographics, and disease patterns from January–April 2021. According to definitions for acquired resistance, Staphylococcus aureus was the most frequent with multidrug resistant (65.4%), where MRSA was 60% (n = 72 out of 121). In age-identified patients, 43% were seniors ≥50 years, 38% 21–49 years, and 19% 0–20 years. In gender-identified patients, 63% were males, and 37% were females. While 25% of specimens were from the ICU, the majority (60%) of specimens were from surgical infection in other wards. Staphylococcus epidermidis was the second (15.4%) species of infection identified with 81% from bloodstream infections at the ICU and other wards. The majority of S. epidermidis patients (69%) were seniors ≥50 years, while other age groups 0–20 and 21–49 each had 14% isolates. Although S. epidermidis was multidrug-resistant, it was susceptible to many drugs. Enterococcus faecalis (13%) ranked third with two major infections; bloodstream (64%) and urinary-tract infections (36%) in mainly seniors (86%). Its isolates were fully resistant to oxacillin, penicillin, cefoxitin, and cefotaxime but nearly 100% susceptible to seven others. Other Gram-positive bacteria (6%) were susceptible to many antibiotics. The use of combinations of objective criteria is a well thought out approach in infection control. While the low-frequency of Gram-positives is an impressive achievement, future large-scale investigations should include all private hospitals, clinics and other cities over a longer sampling time to gain more insights. Although geriatric susceptibility can be justified by age and comorbidities, the staphylococcal infections in young adults and children is a global concern and warrants more vertical studies.
Collapse
|
5
|
Wirth T, Wong V, Vandenesch F, Rasigade JP. Applied phyloepidemiology: Detecting drivers of pathogen transmission from genomic signatures using density measures. Evol Appl 2020; 13:1513-1525. [PMID: 32684973 PMCID: PMC7359849 DOI: 10.1111/eva.12991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the driving forces of an epidemic is key to inform intervention strategies against it. Correlating measures of the epidemic success of a pathogen with ancillary parameters such as its drug resistance profile provides a flexible tool to identify such driving forces. The recently described time‐scaled haplotypic density (THD) method facilitates the inference of a pathogen's epidemic success from genetic data. Contrary to demogenetic approaches that define success in an aggregated fashion, the THD computes an independent index of success for each isolate in a collection. Modeling this index using multivariate regression, thus, allows us to control for various sources of bias and to identify independent predictors of success. We illustrate the use of THD to address key questions regarding three exemplary epidemics of multidrug‐resistant (MDR) bacterial lineages, namely Mycobacterium tuberculosis Beijing, Salmonella Typhi H58, and Staphylococcus aureus ST8 (including ST8‐USA300 MRSA), based on previously published, international genetic datasets. In each case, THD analysis allowed to identify the impact, or lack thereof, of various factors on the epidemic success, independent of confounding by population structure and geographic distribution. Our results suggest that rifampicin resistance drives the MDR Beijing epidemic and that fluoroquinolone resistance drives the S. aureus ST8/USA300 epidemic, in line with previous evidence of a lack of resistance‐associated fitness cost in these pathogens. Conversely, fluoroquinolone resistance measurably hampered the success of S. Typhi H58 and non‐H58. These findings illustrate how THD can help leverage the massive genomic datasets generated by molecular epidemiology studies to address new questions. THD implementation for the R platform is available at https://github.com/rasigadelab/thd.
Collapse
Affiliation(s)
- Thierry Wirth
- Institut de Systématique, Evolution, Biodiversité UMR-CNRS 7205 Muséum National d'Histoire Naturelle Université Pierre et Marie Curie Université des Antilles Ecole Pratique des Hautes Etudes Sorbonne Universités Paris France.,EPHE PSL University Paris France
| | - Vanessa Wong
- Cambridge Institute for Medical Research Welcome Trust Center Cambridge UK
| | - François Vandenesch
- CIRI INSERM U1111 CNRS UMR5308 ENS Lyon University of Lyon Lyon France.,Institut des Agents Infectieux Hospices Civils de Lyon Lyon France
| | - Jean-Philippe Rasigade
- CIRI INSERM U1111 CNRS UMR5308 ENS Lyon University of Lyon Lyon France.,Institut des Agents Infectieux Hospices Civils de Lyon Lyon France
| |
Collapse
|
6
|
Steinig EJ, Duchene S, Robinson DA, Monecke S, Yokoyama M, Laabei M, Slickers P, Andersson P, Williamson D, Kearns A, Goering RV, Dickson E, Ehricht R, Ip M, O'Sullivan MVN, Coombs GW, Petersen A, Brennan G, Shore AC, Coleman DC, Pantosti A, de Lencastre H, Westh H, Kobayashi N, Heffernan H, Strommenger B, Layer F, Weber S, Aamot HV, Skakni L, Peacock SJ, Sarovich D, Harris S, Parkhill J, Massey RC, Holden MTG, Bentley SD, Tong SYC. Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent. mBio 2019; 10:e01105-19. [PMID: 31772058 PMCID: PMC6879714 DOI: 10.1128/mbio.01105-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023] Open
Abstract
The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.IMPORTANCE The Bengal Bay clone (ST772) is a community-associated and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we showed that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally, resulting in small-scale community and health care outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug resistance of health care-associated S. aureus lineages. This study demonstrates the importance of whole-genome sequencing for the surveillance of highly antibiotic-resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world.
Collapse
Affiliation(s)
- Eike J Steinig
- Menzies School of Health Research, Darwin, Australia
- Australian Institute of Tropical Health and Medicine, Townsville, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Technical University of Dresden, Dresden, Germany
| | - Maho Yokoyama
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Peter Slickers
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | | | - Deborah Williamson
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Angela Kearns
- Public Health England, National Infection Service, London, United Kingdom
| | | | - Elizabeth Dickson
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- Technical University of Dresden, Dresden, Germany
| | - Margaret Ip
- The Chinese University of Hong Kong, Hong Kong
| | - Matthew V N O'Sullivan
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia, and New Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Geoffrey W Coombs
- School of Veterinary and Laboratory Sciences, Murdoch University, Murdoch, Australia
| | | | - Grainne Brennan
- National MRSA Reference Laboratory, St. James's Hospital, Dublin, Ireland
| | - Anna C Shore
- Microbiology Research Unit, School of Dental Science, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - David C Coleman
- Microbiology Research Unit, School of Dental Science, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | - Herminia de Lencastre
- Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
- The Rockefeller University, New York, New York, USA
| | - Henrik Westh
- University of Copenhagen, Copenhagen, Denmark
- Hvidovre University Hospital, Hvidovre, Denmark
| | | | - Helen Heffernan
- Institute of Environmental Science and Research, Wellington, New Zealand
| | | | | | - Stefan Weber
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | | | - Leila Skakni
- King Fahd Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Sharon J Peacock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Derek Sarovich
- Menzies School of Health Research, Darwin, Australia
- Sunshine Coast University, Sippy Downs, Australia
| | - Simon Harris
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mathew T G Holden
- Wellcome Sanger Institute, Cambridge, United Kingdom
- University of St. Andrews, St. Andrews, United Kingdom
| | | | - Steven Y C Tong
- Menzies School of Health Research, Darwin, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital, and Doherty Department, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| |
Collapse
|
7
|
Bes TM, Martins RR, Perdigão L, Mongelos D, Moreno L, Moreno A, Oliveira GSD, Costa SF, Levin AS. Prevalence of methicillin-resistant Staphylococcus aureus colonization in individuals from the community in the city of Sao Paulo, Brazil. Rev Inst Med Trop Sao Paulo 2018; 60:e58. [PMID: 30365641 PMCID: PMC6199126 DOI: 10.1590/s1678-9946201860058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/13/2018] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus (SA) is a commensal habitant of nasal cavities and skin. Colonization by community-acquired methicillin-resistant SA (CA-MRSA) is associated with infections in patients who have not been recently hospitalized. The aim of this study is to determine the prevalence of MRSA colonization in an outpatient population, currently unknown in Brazil. Three-hundred patients or caregivers from two teaching hospitals were included. A questionnaire was applied and nasal swabs were obtained from patients. Swabs were inoculated in brain heart infusion (BHI) with 2.5% NaCl and seeded in mannitol. Suspicious colonies were subjected to MALDI-TOF MS Microflex™ identification. Antimicrobial susceptibility test for oxacillin was performed for SA-positive samples by microdilution. Polymerase chain-reactions for detection of mecA and coA genes were performed for resistant samples. Data about MRSA carriers were compared with non-carriers. There were 127 S. aureus isolates, confirmed by MALDI-TOF. Only seven (2.3%) were MRSA and positive for mecA and coA genes. Factors associated with MRSA carriage were African ethnicity, skin diseases or antibiotic use. The majority of them were from Dermatology clinics. Prevalence of MRSA colonization in individuals from the community was low in our study (2.3%). This finding raises the hypothesis of inter-household transmission of SA, although we did not find any association between MRSA-colonization and the shared use of personal objects. Given the low prevalence of MRSA carriers observed, empirical antimicrobial coverage for MRSA in community-acquired infections should be not necessary.
Collapse
Affiliation(s)
- Taniela Marli Bes
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Roberta Ruedas Martins
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Lauro Perdigão
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Grupo De Controle de Infecções Hospitalares, São Paulo, São Paulo, Brazil
| | - Diego Mongelos
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Luisa Moreno
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, São Paulo, São Paulo, Brazil
| | - Andrea Moreno
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, São Paulo, São Paulo, Brazil
| | - Gerson Salvador de Oliveira
- Universidade de São Paulo, Faculdade de Medicina, Hospital Universitário, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Medicina Física e de Reabilitação, São Paulo, São Paulo, Brazil
| | - Silvia Figueiredo Costa
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Anna Sara Levin
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Grupo De Controle de Infecções Hospitalares, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Challagundla L, Reyes J, Rafiqullah I, Sordelli DO, Echaniz-Aviles G, Velazquez-Meza ME, Castillo-Ramírez S, Fittipaldi N, Feldgarden M, Chapman SB, Calderwood MS, Carvajal LP, Rincon S, Hanson B, Planet PJ, Arias CA, Diaz L, Robinson DA. Phylogenomic Classification and the Evolution of Clonal Complex 5 Methicillin-Resistant Staphylococcus aureus in the Western Hemisphere. Front Microbiol 2018; 9:1901. [PMID: 30186248 PMCID: PMC6113392 DOI: 10.3389/fmicb.2018.01901] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Clonal complex 5 methicillin-resistant Staphylococcus aureus (CC5-MRSA) includes multiple prevalent clones that cause hospital-associated infections in the Western Hemisphere. Here, we present a phylogenomic study of these MRSA to reveal their phylogeny, spatial and temporal population structure, and the evolution of selected traits. We studied 598 genome sequences, including 409 newly generated sequences, from 11 countries in Central, North, and South America, and references from Asia and Europe. An early-branching CC5-Basal clade is well-dispersed geographically, is methicillin-susceptible and MRSA predominantly of ST5-IV such as the USA800 clone, and includes separate subclades for avian and porcine strains. In the early 1970s and early 1960s, respectively, two clades appeared that subsequently underwent major expansions in the Western Hemisphere: a CC5-I clade in South America and a CC5-II clade largely in Central and North America. The CC5-I clade includes the ST5-I Chilean/Cordobes clone, and the ST228-I South German clone as an early offshoot, but is distinct from other ST5-I clones from Europe that nest within CC5-Basal. The CC5-II clade includes divergent strains of the ST5-II USA100 clone, various other clones, and most known vancomycin-resistant strains of S. aureus, but is distinct from ST5-II strain N315 from Japan that nests within CC5-Basal. The recombination rate of CC5 was much lower than has been reported for other S. aureus genetic backgrounds, which indicates that recurrence of vancomycin resistance in CC5 is not likely due to an enhanced promiscuity. An increased number of antibiotic resistances and decreased number of toxins with distance from the CC5 tree root were observed. Of note, the expansions of the CC5-I and CC5-II clades in the Western Hemisphere were preceded by convergent gains of resistance to fluoroquinolone, macrolide, and lincosamide antibiotics, and convergent losses of the staphylococcal enterotoxin p (sep) gene from the immune evasion gene cluster of phage ϕSa3. Unique losses of surface proteins were also noted for these two clades. In summary, our study has determined the relationships of different clades and clones of CC5 and has revealed genomic changes for increased antibiotic resistance and decreased virulence associated with the expansions of these MRSA in the Western Hemisphere.
Collapse
Affiliation(s)
- Lavanya Challagundla
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Iftekhar Rafiqullah
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Daniel O. Sordelli
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Ciencias y Tecnicas, Buenos Aires, Argentina
| | | | | | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Michael Feldgarden
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, United States
| | | | - Michael S. Calderwood
- Section of Infectious Disease and International Health, Dartmouth–Hitchcock Medical Center, Lebanon, NH, United States
| | - Lina P. Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Blake Hanson
- Division of Infectious Diseases and Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, United States
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Paul J. Planet
- Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cesar A. Arias
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
- Division of Infectious Diseases and Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, United States
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - D. Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|