1
|
Sharma N, Das BK, Bhattacharjya BK, Chaudhari A, Behera BK, Kumar AP, Chakraborty HJ. Metagenomic insights into microbial community, functional annotation, and antibiotic resistance genes in Himalayan Brahmaputra River sediment, India. Front Microbiol 2024; 15:1426463. [PMID: 39633804 PMCID: PMC11614985 DOI: 10.3389/fmicb.2024.1426463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The Brahmaputra, a major transboundary river of the Himalayas flowing predominantly through Northeast India, particularly Assam, is increasingly endangered by contamination due to rapid urbanization and anthropogenic pressures. These environmental changes pose significant risks at the microbial level, affecting nutrient cycling and productivity, and thereby impacting river ecosystem health. The next-generation sequencing technology using a metagenomics approach has revolutionized our understanding of the microbiome and its critical role in various aquatic environments. Methods The present study aimed to investigate the structure of the bacterial community and its functional potentials within the sediments of the Brahmaputra River, India, using high-throughput shotgun metagenomics. Additionally, this study sought to explore the presence of antimicrobial resistance genes in the river's sediment. Results and discussion Shotgun metagenomics revealed a diverse bacterial community comprising 31 phyla, 52 classes, 291 families, 1,016 genera, and 3,630 species. Dominant phyla included Pseudomonadota (62.47-83.48%), Actinobacteria (11.10-24.89%), Bacteroidetes (0.97-3.82%), Firmicutes (0.54-3.94%), Cyanobacteria (0.14-1.70%), and Planctomycetes (0.30-0.78%). Functional profiling highlighted significant involvement in energy metabolism, amino acid and central carbon metabolism, stress response, and degradation pathways, emphasizing the microbial community's role in ecosystem functioning and resilience. Notably, 50 types of antibiotic resistance genes (ARGs) were detected, with resistance profiles spanning multidrug, aminoglycoside, β-lactam, fluoroquinolone, rifampicin, sulfonamide, and tetracycline classes. Network analysis underscored the intricate relationships among ARG subtypes, suggesting potential mechanisms of resistance propagation. Furthermore, plasmid-related genes and 185 virulence factor genes (VFGs) were identified, indicating additional layers of microbial adaptation and potential pathogenicity within the river sediments. This comprehensive microbial and functional profiling of the Brahmaputra's sediment metagenome provides crucial insights into microbial diversity, resistance potential, and ecological functions, offering a foundation for informed management and mitigation strategies to preserve river health and mitigate pollution impacts.
Collapse
Affiliation(s)
- Niti Sharma
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Guwahati, Assam, India
| | | | | | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Annam Pavan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | |
Collapse
|
2
|
Raghav N, Saraswat P, Kumar S, Chaurasia A, Ranjan R. Metagenomics analysis of water samples collected from the Yamuna River of Agra city, India. World J Microbiol Biotechnol 2024; 40:113. [PMID: 38418624 DOI: 10.1007/s11274-024-03919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Yamuna River water in Agra city of India is contaminated with toxic pollutants, including heavy metals that cause damage to the environment and human health. At present, the direct use of river water for drinking purposes and household activities lead to the direct exposure of society to the contaminants. In this study, Yamuna River water samples were collected from three different sites in Agra city during the monsoon, summer, and winter seasons. The physico-chemical parameters were estimated along with heavy metals. In physico-chemical parameter, the values found were mostly above the permissible limits. The results water samples contain high levels of cadmium, chromium, lead, and nickel above the desirable levels in most cases. The metagenomic analysis revealed that Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Planctobacteria were the most abundant phyla with a relative abundance of 61%, 9.34%, 5.23%, 4.64%, and 4.3%, respectively. The Comamonadaceae, the most abundant family consists of the genera involved in hydrogen oxidation, iron reduction, degraders of polycyclic aromatic hydrocarbons, and fermentation. The presence of Pseudomonas, Nitrosomonas sp., Thauera humireducens and Dechloromonas denitrificans (decomposition of sewage and organic matter) and Pseudomonas aeruginosa indicates the presence of heavy metal degrading bacteria in water sample. Functional prediction showed the presence of genes responsible for different metabolic pathways that could help developing new bioremediation strategies. The study concludes the status of water contamination, the presence of complex microbial community and suggests the futuristic use and their role in bioremediation.
Collapse
Affiliation(s)
- Nupur Raghav
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Pooja Saraswat
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Sunil Kumar
- Division of Agriculture Bioinformatics, Indian Agricultural Statistical Research Institute, Pusa, New Delhi, 110012, India
| | - Anurag Chaurasia
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, 221305, India.
| | - Rajiv Ranjan
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India.
| |
Collapse
|
3
|
Lin C, Huang FY, Zhou SYD, Li H, Zhang X, Su JQ. HiLi-chip: A high-throughput library construction chip for comprehensive profiling of environmental microbial communities. ENVIRONMENTAL RESEARCH 2022; 213:113650. [PMID: 35690091 DOI: 10.1016/j.envres.2022.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Investigating the contribution and associations of environmental microbes to ecological health and human well-being is in great demand with the goal of One Health proposed. To achieve the goal, there is an urgent need for accurate approaches to obtaining a large amount of high-resolution molecular information from various microbes. In this study, we developed a high-throughput library construction chip (HiLi-Chip) for profiling environmental microbial communities and evaluated its performance. The HiLi-Chip showed high conformity with the conventional Pacbio method in terms of α-diversity, community composition of abundant bacteria (>83%), as well as rare taxa (>84%) and human pathogens detection (>67%), indicating its advantages of accuracy, high-throughput, cost-efficiency, and broad practicability. It is suggested that the optimal strategy of the HiLi-Chip was a 2.4 μL PCR mixture per sample (∼2.4 ng DNA) with a 216-sample × 24-replicate format. We have successfully applied the HiLi-Chip to the Jiulongjiang River and identified 51 potential human bacterial pathogens with a total relative abundance of 0.22%. Additionally, under limited nutrients and similar upstream environments, bacteria tended to impose competitive pressures, resulting in a more connected network at the downstream river confluence (RC). Whereas narrow niche breadth of bacteria and upstream environmental heterogeneity probably promoted niche complementary and environment selection leading to fewer links at RC in the midsection of the river. Core bacteria might represent the entire bacterial community and enhance network stability through synergistic interactions with other core bacteria. Collectively, our results demonstrate that the HiLi-Chip is a robust tool for rapid comprehensive profiling of microbial communities in environmental samples and has significant implications for a profound understanding of environmental microbial interactions.
Collapse
Affiliation(s)
- Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
4
|
Parida PK, Behera BK, Dehury B, Rout AK, Sarkar DJ, Rai A, Das BK, Mohapatra T. Community structure and function of microbiomes in polluted stretches of river Yamuna in New Delhi, India, using shotgun metagenomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71311-71325. [PMID: 35596862 DOI: 10.1007/s11356-022-20766-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The large population residing in the northern region of India surrounding Delhi mostly depends on water of River Yamuna, a tributary of mighty Ganga for agriculture, drinking and various religious activities. However, continuous anthropogenic activities mostly due to pollution mediated by rapid urbanization and industrialization have profoundly affected river microflora and their function thus its health. In this study, potential of whole-genome metagenomics was exploited to unravel the novel consortia of microbiome and their functional potential in the polluted sediments of the river at Delhi. Analysis of high-quality metagenome data from Illumina NextSeq500 revealed substantial differences in composition of microbiota at different sites dominated by Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Chloroflexi phyla. The presence of highly dominant anaerobic bacteria like Dechloromonas aromatica (benzene reducing and denitrifying), Rhodopseudomonas palustris (organic matter reducing), Syntrophus aciditrophicus (fatty acid reducing) and Syntrophobacter fumaroxidans (sulphate reducing) in the polluted river Yamuna signifies the impact of unchecked pollution in declining health of the river ecosystem. A decline in abundance of phages was also noticed along the downstream river Yamuna. Mining of mycobiome reads uncovered plethora of fungal communities (i.e. Nakaseomyces, Aspergillus, Schizosaccharomyces and Lodderomyces) in the polluted stretches due to the availability of higher organic carbon and total nitrogen (%) could be decoded as promising bioindicators of river trophic status. Pathway analysis through KEGG revealed higher abundance of genes involved in energy metabolism (nitrogen and sulphur), methane metabolism, degradation of xenobiotics (Nitrotoluene, Benzoate and Atrazine), two-component system (atoB, cusA and silA) and membrane transport (ABC transporters). Catalase-peroxidase and 4-hydroxybenzoate 3-monooxygenase were the most enriched pollution degrading enzymes in the polluted study sites of river Yamuna. Overall, our results provide crucial insights into microbial dynamics and their function in response to high pollution and could be insightful to the ongoing remediation strategies to clean river Yamuna.
Collapse
Affiliation(s)
- Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India.
| | - Budheswar Dehury
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | | |
Collapse
|
5
|
Trade-offs of lipid remodeling in a marine predator-prey interaction in response to phosphorus limitation. Proc Natl Acad Sci U S A 2022; 119:e2203057119. [PMID: 36037375 PMCID: PMC9457565 DOI: 10.1073/pnas.2203057119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial growth is often limited by key nutrients like phosphorus (P) across the global ocean. A major response to P limitation is the replacement of membrane phospholipids with non-P lipids to reduce their cellular P quota. However, the biological “costs” of lipid remodeling are largely unknown. Here, we uncover a predator–prey interaction trade-off whereby a lipid-remodeled bacterial prey cell becomes more susceptible to digestion by a protozoan predator facilitating its rapid growth. Thus, we highlight a complex interplay between adaptation to the abiotic environment and consequences for biotic interactions (grazing), which may have important implications for the stability and structuring of microbial communities and the performance of the marine food web. Phosphorus (P) is a key nutrient limiting bacterial growth and primary production in the oceans. Unsurprisingly, marine microbes have evolved sophisticated strategies to adapt to P limitation, one of which involves the remodeling of membrane lipids by replacing phospholipids with non-P-containing surrogate lipids. This strategy is adopted by both cosmopolitan marine phytoplankton and heterotrophic bacteria and serves to reduce the cellular P quota. However, little, if anything, is known of the biological consequences of lipid remodeling. Here, using the marine bacterium Phaeobacter sp. MED193 and the ciliate Uronema marinum as a model, we sought to assess the effect of remodeling on bacteria–protist interactions. We discovered an important trade-off between either escape from ingestion or resistance to digestion. Thus, Phaeobacter grown under P-replete conditions was readily ingested by Uronema, but not easily digested, supporting only limited predator growth. In contrast, following membrane lipid remodeling in response to P depletion, Phaeobacter was less likely to be captured by Uronema, thanks to the reduced expression of mannosylated glycoconjugates. However, once ingested, membrane-remodeled cells were unable to prevent phagosome acidification, became more susceptible to digestion, and, as such, allowed rapid growth of the ciliate predator. This trade-off between adapting to a P-limited environment and susceptibility to protist grazing suggests the more efficient removal of low-P prey that potentially has important implications for the functioning of the marine microbial food web in terms of trophic energy transfer and nutrient export efficiency.
Collapse
|
6
|
Microbiomes of Hadal Fishes across Trench Habitats Contain Similar Taxa and Known Piezophiles. mSphere 2022; 7:e0003222. [PMID: 35306867 PMCID: PMC9044967 DOI: 10.1128/msphere.00032-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hadal snailfishes are the deepest-living fishes in the ocean, inhabiting trenches from depths of ∼6,000 to 8,000 m. While the microbial communities in trench environments have begun to be characterized, the microbes associated with hadal megafauna remain relatively unknown. Here, we describe the gut microbiomes of two hadal snailfishes, Pseudoliparis swirei (Mariana Trench) and Notoliparis kermadecensis (Kermadec Trench), using 16S rRNA gene amplicon sequencing. We contextualize these microbiomes with comparisons to the abyssal macrourid Coryphaenoides yaquinae and the continental shelf-dwelling snailfish Careproctus melanurus. The microbial communities of the hadal snailfishes were distinct from their shallower counterparts and were dominated by the same sequences related to the Mycoplasmataceae and Desulfovibrionaceae. These shared taxa indicate that symbiont lineages have remained similar to the ancestral symbiont since their geographic separation or that they are dispersed between geographically distant trenches and subsequently colonize specific hosts. The abyssal and hadal fishes contained sequences related to known, cultured piezophiles, microbes that grow optimally under high hydrostatic pressure, including Psychromonas, Moritella, and Shewanella. These taxa are adept at colonizing nutrient-rich environments present in the deep ocean, such as on particles and in the guts of hosts, and we hypothesize they could make a dietary contribution to deep-sea fishes by degrading chitin and producing fatty acids. We characterize the gut microbiota within some of the deepest fishes to provide new insight into the diversity and distribution of host-associated microbial taxa and the potential of these animals, and the microbes they harbor, for understanding adaptation to deep-sea habitats. IMPORTANCE Hadal trenches, characterized by high hydrostatic pressures and low temperatures, are one of the most extreme environments on our planet. By examining the microbiome of abyssal and hadal fishes, we provide insight into the diversity and distribution of host-associated life at great depth. Our findings show that there are similar microbial populations in fishes geographically separated by thousands of miles, reflecting strong selection for specific microbial lineages. Only a few psychropiezophilic taxa, which do not reflect the diversity of microbial life at great depth, have been successfully isolated in the laboratory. Our examination of deep-sea fish microbiomes shows that typical high-pressure culturing methodologies, which have largely remained unchanged since the pioneering work of Claude ZoBell in the 1950s, may simulate the chemical environment found in animal guts and helps explain why the same deep-sea genera are consistently isolated.
Collapse
|
7
|
Mechanisms Generating Dichotomies in the Life Strategies of Heterotrophic Marine Prokaryotes. DIVERSITY 2022. [DOI: 10.3390/d14030217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the mechanisms that generate and maintain diversity in marine prokaryotic communities is one of the main challenges for contemporary marine microbiology. We here review how observational, experimental, and theoretical evidence converge on the conclusion that the marine pelagic community of heterotrophic prokaryotes consists of organisms with two main types of life strategies. We illustrate this dichotomy by SAR11 and Vibrio spp. as typical representatives of the two strategies. A theory for life strategy dichotomy exists in classical r/K-selection. We here discuss an additional dichotomy introduced by what we term S/L-selection (for Small and Large, respectively). While r/K-selection focuses on the role of environmental disturbances, steady-state models suggest that high abundance at species level should be closely related to a low trade-off between competition and defense. We summarize literature indicating that the high availability of organic C is an essential environmental factor favoring Vibrio spp. and suggest that the essence of the generalized L-strategy is to reduce the competition-predator defense trade-off by using non-limiting organic C to increase size. The “streamlining” theory that has been suggested for the S-strategist SAR11 proposes the opposite: that low trade-off is achieved by a reduction in size. We show how this apparent contradiction disappears when the basic assumptions of diffusion-limited uptake are considered. We propose a classification scheme that combines S/L and r/K-selection using the two dimensions of organic C availability and environmental disturbance. As organic C in terrestrial runoff and size of the oligotrophic oceanic gyres are both changing, habitat size for both S- and L-strategists are affected by global change. A theory capturing the main aspects of prokaryote life strategies is therefore crucial for predicting responses of the marine microbial food web to climate change and other anthropogenic influences.
Collapse
|
8
|
Müller O, Seuthe L, Pree B, Bratbak G, Larsen A, Paulsen ML. How Microbial Food Web Interactions Shape the Arctic Ocean Bacterial Community Revealed by Size Fractionation Experiments. Microorganisms 2021; 9:2378. [PMID: 34835503 PMCID: PMC8617753 DOI: 10.3390/microorganisms9112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
In the Arctic, seasonal changes are substantial, and as a result, the marine bacterial community composition and functions differ greatly between the dark winter and light-intensive summer. While light availability is, overall, the external driver of the seasonal changes, several internal biological interactions structure the bacterial community during shorter timescales. These include specific phytoplankton-bacteria associations, viral infections and other top-down controls. Here, we uncover these microbial interactions and their effects on the bacterial community composition during a full annual cycle by manipulating the microbial food web using size fractionation. The most profound community changes were detected during the spring, with 'mutualistic phytoplankton'-Gammaproteobacteria interactions dominating in the pre-bloom phase and 'substrate-dependent phytoplankton'-Flavobacteria interactions during blooming conditions. Bacterivores had an overall limited effect on the bacterial community composition most of the year. However, in the late summer, grazing was the main factor shaping the community composition and transferring carbon to higher trophic levels. Identifying these small-scale interactions improves our understanding of the Arctic marine microbial food web and its dynamics.
Collapse
Affiliation(s)
- Oliver Müller
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway; (B.P.); (G.B.)
| | - Lena Seuthe
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, 9037 Tromsø, Norway;
| | - Bernadette Pree
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway; (B.P.); (G.B.)
| | - Gunnar Bratbak
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway; (B.P.); (G.B.)
| | - Aud Larsen
- Molecular Ecology Group, NORCE, 5008 Bergen, Norway;
| | - Maria Lund Paulsen
- Arctic Research Center, Department of Ecoscience, Aarhus University, 8600 Silkeborg, Denmark;
| |
Collapse
|
9
|
Sharma KV, Sarvalingam BK, Marigoudar SR. A review of mesocosm experiments on heavy metals in marine environment and related issues of emerging concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1304-1316. [PMID: 33079346 DOI: 10.1007/s11356-020-11121-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Mesocosms are real-world environmental science tools for bridging the gap between laboratory-scale experiments and actual habitat studies on ecosystem complexities. These experiments are increasingly being applied in understanding the complex impacts of heavy metals, ocean acidification, global warming, and oil spills. The insights of the present review indicate how metals and metal-bound activities impact on various aspects of ecological complexities like prey predator cues, growth, embryonic development, and reproduction. Plankton and benthos are used more often over fish and microbes owing to their smaller size, faster reproduction, amenability, and repeatability during mesocosm experiments. The results of ocean acidification reveal calcification of plankton, corals, alteration of pelagic structures, and plankton blooms. The subtle effect of oil spills is amplified on sediment microorganisms, primary producers, and crustaceans. An overview of the mesocosm designs over the years indicates that gradual changes have evolved in the type, size, design, composition, parameters, methodology employed, and the outputs obtained. Most of the pelagic and benthic mesocosm designs involve consideration of interactions within the water columns, between water and sediments, trophic levels, and nutrient rivalry. Mesocosm structures are built considering physical processes (tidal currents, turbulence, inner cycling of nutrients, thermal stratification, and mixing), biological complexities (population, community, and ecosystem) using appropriate filling containers, and sampling facilities that employ inert materials. The principle of design is easy transportation, mooring, deployment, and free floating structures besides addressing the unique ecosystem-based science problems. The evolution of the mesocosm tools helps in understanding further advancement of techniques and their applications in marine ecosystems.
Collapse
Affiliation(s)
- Krishna Venkatarama Sharma
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, India
| | - Barath Kumar Sarvalingam
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, India
| | | |
Collapse
|
10
|
Thingstad TF, Våge S. Host-virus-predator coexistence in a grey-box model with dynamic optimization of host fitness. THE ISME JOURNAL 2019; 13:3102-3111. [PMID: 31527663 PMCID: PMC6864060 DOI: 10.1038/s41396-019-0496-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 11/09/2022]
Abstract
Lytic viruses are believed to affect both flow patterns and host diversity in microbial food webs. Models resolving host and virus communities into subgroups can represent both aspects. However, when flow pattern is the prime interest, such models may seem unnecessary complex. This has led to proposals of black-box models using only total community sizes as state variables. This simplification creates a coexistence problem, however, since predator and virus communities then compete for the same, shared, prey = host community. Mathematically, this problem can be solved by introducing feedbacks allowing community-level properties to adapt. The different mathematical alternatives for such feedback represent different ecological assumptions and thus different hypotheses for how the balance between predators and viruses is controlled in nature. We here explore a model where the feedback works through an increase in host community resistance in response to high virus abundances, thereby reducing virus production. We use a dynamic "strategy" index S to describe the balance between defensive and competitive abilities in the host community, and assume the rate of change in S to be proportional to the local slope of the per capita fitness gradient for the host. We explore how such a "grey-box" model can allow stable coexistence of viruses and predators, and how equilibrium food web structure, virus-to-host ratio, and partitioning of host production varies; both as functions of host community traits, and as functions of external bottom-up and top-down drivers.
Collapse
Affiliation(s)
| | - Selina Våge
- Department of Biological Sciences, University of Bergen, 5020, Bergen, Norway
| |
Collapse
|
11
|
Samson R, Shah M, Yadav R, Sarode P, Rajput V, Dastager SG, Dharne MS, Khairnar K. Metagenomic insights to understand transient influence of Yamuna River on taxonomic and functional aspects of bacterial and archaeal communities of River Ganges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:288-299. [PMID: 31005831 DOI: 10.1016/j.scitotenv.2019.04.166] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
River confluences are interesting ecosystems to investigate for their microbial community structure and functional potentials. River Ganges is one of the most important and holy river of India with great mythological history and religious significance. The Yamuna River meets Ganges at the Prayagraj (formerly known as Allahabad), India to form a unique confluence. The influence of Yamuna River on taxonomic and functional aspects of microbiome at this confluence and its downstream, remains unexplored. To unveil this dearth, whole metagenome sequencing of the microbial (bacterial and archaeal) community from the sediment samples of December 2017 sampling expedition was executed using high throughput MinION technology. Results revealed differences in the relative abundance of bacterial and archaeal communities across the confluence. Grouped by the confluence, a higher abundance of Proteobacteria and lower abundance of Bacteroidetes and Firmicutes was observed for Yamuna River (G15Y) and at immediate downstream of confluence of Ganges (G15DS), as compared to the upstream, confluence, and farther downstream of confluence. A similar trend was observed for archaeal communities with a higher abundance of Euryarchaeota in G15Y and G15DS, indicating Yamuna River's influence. Functional gene(s) analysis revealed the influence of Yamuna River on xenobiotic degradation, resistance to toxic compounds, and antibiotic resistance interceded by the autochthonous microbes at the confluence and succeeding downstream locations. Overall, similar taxonomic and functional profiles of microbial communities before confluence (upstream of Ganges) and farther downstream of confluence, suggested a transient influence of Yamuna River. Our study is significant since it may be foundational basis to understand impact of Yamuna River and also rare event of mass bathing on the microbiome of River Ganges. Further investigation would be required to understand, the underlying cause behind the restoration of microbial profiles post-confluence farther zone, to unravel the rejuvenation aspects of this unique ecosystem.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Manan Shah
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Rakeshkumar Yadav
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Industrial Research (AcSIR), New Delhi, India
| | - Priyanka Sarode
- Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India
| | - Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Syed G Dastager
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Industrial Research (AcSIR), New Delhi, India
| | - Mahesh S Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Industrial Research (AcSIR), New Delhi, India.
| | - Krishna Khairnar
- Academy of Scientific and Industrial Research (AcSIR), New Delhi, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
12
|
Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, Allen EE, Nunnally CC, Drazen JC, Mayor DJ, Bartlett DH. Microbial Community Diversity Within Sediments from Two Geographically Separated Hadal Trenches. Front Microbiol 2019; 10:347. [PMID: 30930856 PMCID: PMC6428765 DOI: 10.3389/fmicb.2019.00347] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Hadal ocean sediments, found at sites deeper than 6,000 m water depth, are thought to contain microbial communities distinct from those at shallower depths due to high hydrostatic pressures and higher abundances of organic matter. These communities may also differ from one other as a result of geographical isolation. Here we compare microbial community composition in surficial sediments of two hadal environments—the Mariana and Kermadec trenches—to evaluate microbial biogeography at hadal depths. Sediment microbial consortia were distinct between trenches, with higher relative sequence abundances of taxa previously correlated with organic matter degradation present in the Kermadec Trench. In contrast, the Mariana Trench, and deeper sediments in both trenches, were enriched in taxa predicted to break down recalcitrant material and contained other uncharacterized lineages. At the 97% similarity level, sequence-abundant taxa were not trench-specific and were related to those found in other hadal and abyssal habitats, indicating potential connectivity between geographically isolated sediments. Despite the diversity of microorganisms identified using culture-independent techniques, most isolates obtained under in situ pressures were related to previously identified piezophiles. Members related to these same taxa also became dominant community members when native sediments were incubated under static, long-term, unamended high-pressure conditions. Our results support the hypothesis that there is connectivity between sediment microbial populations inhabiting the Mariana and Kermadec trenches while showing that both whole communities and specific microbial lineages vary between trench of collection and sediment horizon depth. This in situ biodiversity is largely missed when incubating samples within pressure vessels and highlights the need for revised protocols for high-pressure incubations.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eleanna Grammatopoulou
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom
| | - Michelle Pombrol
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Xiaoxiong Xu
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Oladayo Osuntokun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Jessica Blanton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Clifton C Nunnally
- Louisiana Universities Marine Consortium (LUMCON), Chauvin, LA, United States
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawai'i at Ma-noa, Honolulu, HI, United States
| | - Daniel J Mayor
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom.,National Oceanography Centre, University of Southampton Waterfront Campus European Way, Southampton, United Kingdom
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|