1
|
Muratore D, Gilbert NE, LeCleir GR, Wilhelm SW, Weitz JS. Diel partitioning in microbial phosphorus acquisition in the Sargasso Sea. Proc Natl Acad Sci U S A 2025; 122:e2410268122. [PMID: 40085655 PMCID: PMC11929403 DOI: 10.1073/pnas.2410268122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/08/2025] [Indexed: 03/16/2025] Open
Abstract
The daily cycle of photosynthetic primary production at the base of marine food webs is often limited by the availability of scarce nutrients. Microbial competition for these scarce resources can be alleviated insofar as the intensity of nutrient uptake and assimilation activities are distributed heterogeneously across organisms over periodic input cycles. Recent analysis of community transcriptional dynamics in the nitrogen-limited subtropical North Pacific gyre revealed evidence of temporal partitioning of nitrogen uptake and assimilation between eukaryotic phytoplankton, cyanobacteria, and heterotrophic bacteria over day-night cycles. Here, we present results from a Lagrangian metatranscriptomic time series survey in the Sargasso Sea and demonstrate temporally partitioned phosphorus uptake in this phosphorus-limited environment. In the Sargasso, heterotrophic bacteria, eukaryotic phytoplankton, and cyanobacteria express genes for phosphorus assimilation during the morning, day, and dusk, respectively. These results support the generality of temporal niche partitioning as an emergent mechanism that can structure uptake of limiting nutrients and facilitate coexistence of diverse microbes in open ocean ecosystems.
Collapse
Affiliation(s)
- Daniel Muratore
- Santa Fe Institute, Santa Fe, NM87501-8943
- Department of Microbiology, The University of Tennessee, Knoxville, TN37996-0845
| | - Naomi E. Gilbert
- School of Biology, Georgia Institute of Technology, Atlanta, GA30230-0001
- Lawrence Livermore National Laboratory, Livermore, CA94550-9698
| | - Gary R. LeCleir
- School of Biology, Georgia Institute of Technology, Atlanta, GA30230-0001
| | - Steven W. Wilhelm
- School of Biology, Georgia Institute of Technology, Atlanta, GA30230-0001
| | - Joshua S. Weitz
- Department of Microbiology, The University of Tennessee, Knoxville, TN37996-0845
- Department of Biology, University of Maryland, College Park, MD20742-4415
- Department of Physics, University of Maryland, College Park, MD20742-4415
- University of Maryland Institute for Health Computing, North Bethesda, MD20852-4920
| |
Collapse
|
2
|
Abresch H, Bell T, Miller SR. Diurnal transcriptional variation is reduced in a nitrogen-fixing diatom endosymbiont. THE ISME JOURNAL 2024; 18:wrae064. [PMID: 38637300 PMCID: PMC11131595 DOI: 10.1093/ismejo/wrae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/29/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Many organisms have formed symbiotic relationships with nitrogen (N)-fixing bacteria to overcome N limitation. Diatoms in the family Rhopalodiaceae host unicellular, N-fixing cyanobacterial endosymbionts called spheroid bodies (SBs). Although this relationship is relatively young, SBs share many key features with older endosymbionts, including coordinated cell division and genome reduction. Unlike free-living relatives that fix N exclusively at night, SBs fix N largely during the day; however, how SB metabolism is regulated and coordinated with the host is not yet understood. We compared four SB genomes, including those from two new host species (Rhopalodia gibba and Epithemia adnata), to build a genome-wide phylogeny which provides a better understanding of SB evolutionary origins. Contrary to models of endosymbiotic genome reduction, the SB chromosome is unusually stable for an endosymbiont genome, likely due to the early loss of all mobile elements. Transcriptomic data for the R. gibba SB and host organelles addressed whether and how the allocation of transcriptional resources depends on light and nitrogen availability. Although allocation to the SB was high under all conditions, relative expression of chloroplast photosynthesis genes increased in the absence of nitrate, but this pattern was suppressed by nitrate addition. SB expression of catabolism genes was generally greater during daytime rather than at night, although the magnitude of diurnal changes in expression was modest compared to free-living Cyanobacteria. We conclude that SB daytime catabolism likely supports N-fixation by linking the process to host photosynthetic carbon fixation.
Collapse
Affiliation(s)
- Heidi Abresch
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Tisza Bell
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Scott R Miller
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
3
|
Gao M, Armin G, Inomura K. Low-Ammonium Environment Increases the Nutrient Exchange between Diatom-Diazotroph Association Cells and Facilitates Photosynthesis and N 2 Fixation-a Mechanistic Modeling Analysis. Cells 2022; 11:2911. [PMID: 36139486 PMCID: PMC9497195 DOI: 10.3390/cells11182911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Diatom-diazotroph associations (DDAs) are one of the most important symbiotic dinitrogen (N2) fixing groups in the oligotrophic ocean. Despite their capability to fix N2, ammonium (NH4+) remains a key nitrogen (N) source for DDAs, and the effect of NH4+ on their metabolism remains elusive. Here, we developed a coarse-grained, cellular model of the DDA with NH4+ uptake and quantified how the level of extracellular NH4+ influences metabolism and nutrient exchange within the symbiosis. The model shows that, under a fixed growth rate, an increased NH4+ concentration may lower the required level of N2 fixation and photosynthesis, and decrease carbon (C) and N exchange. A low-NH4+ environment leads to more C and N in nutrient exchange and more fixed N2 to support a higher growth rate. With higher growth rates, nutrient exchange and metabolism increased. Our study shows a strong effect of NH4+ on metabolic processes within DDAs, and thus highlights the importance of in situ measurement of NH4+ concentrations.
Collapse
Affiliation(s)
- Meng Gao
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | | | | |
Collapse
|
4
|
Chen M, Teng W, Zhao L, Han B, Song L, Shu W. Phylogenomics uncovers evolutionary trajectory of nitrogen fixation in Cyanobacteria. Mol Biol Evol 2022; 39:6659242. [PMID: 35946347 PMCID: PMC9435057 DOI: 10.1093/molbev/msac171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biological nitrogen fixation (BNF) by cyanobacteria is of significant importance for the Earth’s biogeochemical nitrogen cycle but is restricted to a few genera that do not form monophyletic group. To explore the evolutionary trajectory of BNF and investigate the driving forces of its evolution, we analyze 650 cyanobacterial genomes and compile the database of diazotrophic cyanobacteria based on the presence of nitrogen fixation gene clusters (NFGCs). We report that 266 of 650 examined genomes are NFGC-carrying members, and these potentially diazotrophic cyanobacteria are unevenly distributed across the phylogeny of Cyanobacteria, that multiple independent losses shaped the scattered distribution. Among the diazotrophic cyanobacteria, two types of NFGC exist, with one being ancestral and abundant, which have descended from diazotrophic ancestors, and the other being anaerobe-like and sparse, possibly being acquired from anaerobic microbes through horizontal gene transfer. Interestingly, we illustrate that the origin of BNF in Cyanobacteria coincide with two major evolutionary events. One is the origin of multicellularity of cyanobacteria, and the other is concurrent genetic innovations with massive gene gains and expansions, implicating their key roles in triggering the evolutionary transition from nondiazotrophic to diazotrophic cyanobacteria. Additionally, we reveal that genes involved in accelerating respiratory electron transport (coxABC), anoxygenic photosynthetic electron transport (sqr), as well as anaerobic metabolisms (pfor, hemN, nrdG, adhE) are enriched in diazotrophic cyanobacteria, representing adaptive genetic signatures that underpin the diazotrophic lifestyle. Collectively, our study suggests that multicellularity, together with concurrent genetic adaptations contribute to the evolution of diazotrophic cyanobacteria.
Collapse
Affiliation(s)
- Mengyun Chen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Wenkai Teng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liang Zhao
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Boping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China
| | - Lirong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, Hubei 430072, PR China
| | - Wensheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
5
|
Overlooked and widespread pennate diatom-diazotroph symbioses in the sea. Nat Commun 2022; 13:799. [PMID: 35145076 PMCID: PMC8831587 DOI: 10.1038/s41467-022-28065-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 01/06/2022] [Indexed: 01/21/2023] Open
Abstract
Persistent nitrogen depletion in sunlit open ocean waters provides a favorable ecological niche for nitrogen-fixing (diazotrophic) cyanobacteria, some of which associate symbiotically with eukaryotic algae. All known marine examples of these symbioses have involved either centric diatom or haptophyte hosts. We report here the discovery and characterization of two distinct marine pennate diatom-diazotroph symbioses, which until now had only been observed in freshwater environments. Rhopalodiaceae diatoms Epithemia pelagica sp. nov. and Epithemia catenata sp. nov. were isolated repeatedly from the subtropical North Pacific Ocean, and analysis of sequence libraries reveals a global distribution. These symbioses likely escaped attention because the endosymbionts lack fluorescent photopigments, have nifH gene sequences similar to those of free-living unicellular cyanobacteria, and are lost in nitrogen-replete medium. Marine Rhopalodiaceae-diazotroph symbioses are a previously overlooked but widespread source of bioavailable nitrogen in marine habitats and provide new, easily cultured model organisms for the study of organelle evolution.
Collapse
|
6
|
Foster RA, Tienken D, Littmann S, Whitehouse MJ, Kuypers MMM, White AE. The rate and fate of N 2 and C fixation by marine diatom-diazotroph symbioses. THE ISME JOURNAL 2022; 16:477-487. [PMID: 34429522 PMCID: PMC8776783 DOI: 10.1038/s41396-021-01086-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
N2 fixation constitutes an important new nitrogen source in the open sea. One group of filamentous N2 fixing cyanobacteria (Richelia intracellularis, hereafter Richelia) form symbiosis with a few genera of diatoms. High rates of N2 fixation and carbon (C) fixation have been measured in the presence of diatom-Richelia symbioses. However, it is unknown how partners coordinate C fixation and how the symbiont sustains high rates of N2 fixation. Here, both the N2 and C fixation in wild diatom-Richelia populations are reported. Inhibitor experiments designed to inhibit host photosynthesis, resulted in lower estimated growth and depressed C and N2 fixation, suggesting that despite the symbionts ability to fix their own C, they must still rely on their respective hosts for C. Single cell analysis indicated that up to 22% of assimilated C in the symbiont is derived from the host, whereas 78-91% of the host N is supplied from their symbionts. A size-dependent relationship is identified where larger cells have higher N2 and C fixation, and only N2 fixation was light dependent. Using the single cell measures, the N-rich phycosphere surrounding these symbioses was estimated and contributes directly and rapidly to the surface ocean rather than the mesopelagic, even at high estimated sinking velocities (<10 m d-1). Several eco-physiological parameters necessary for incorporating symbiotic N2 fixing populations into larger basin scale biogeochemical models (i.e., N and C cycles) are provided.
Collapse
Affiliation(s)
- Rachel A Foster
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA.
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - Daniela Tienken
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Angelicque E White
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
7
|
Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nat Ecol Evol 2022; 6:218-229. [DOI: 10.1038/s41559-021-01606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
|
8
|
Wang K, Mou X. Coordinated Diel Gene Expression of Cyanobacteria and Their Microbiome. Microorganisms 2021; 9:microorganisms9081670. [PMID: 34442749 PMCID: PMC8398468 DOI: 10.3390/microorganisms9081670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Diel rhythms have been well recognized in cyanobacterial metabolisms. However, whether this programmed activity of cyanobacteria could elicit coordinated diel gene expressions in microorganisms (microbiome) that co-occur with cyanobacteria and how such responses in turn impact cyanobacterial metabolism are unknown. To address these questions, a microcosm experiment was set up using Lake Erie water to compare the metatranscriptomic variations of Microcystis cells alone, the microbiome alone, and these two together (whole water) over two day-night cycles. A total of 1205 Microcystis genes and 4779 microbiome genes exhibited significant diel expression patterns in the whole-water microcosm. However, when Microcystis and the microbiome were separated, only 515 Microcystis genes showed diel expression patterns. A significant structural change was not observed for the microbiome communities between the whole-water and microbiome microcosms. Correlation analyses further showed that diel expressions of carbon, nitrogen, phosphorous, and micronutrient (iron and vitamin B12) metabolizing genes were significantly coordinated between Microcystis and the microbiome in the whole-water microcosm. Our results suggest that diel fluxes of organic carbon and vitamin B12 (cobalamin) in Microcystis could cause the diel expression of microbiome genes. Meanwhile, the microbiome communities may support the growth of Microcystis by supplying them with recycled nutrients, but compete with Microcystis for iron.
Collapse
|
9
|
Harke MJ, Frischkorn KR, Hennon GMM, Haley ST, Barone B, Karl DM, Dyhrman ST. Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environ Microbiol 2021; 23:4807-4822. [PMID: 34309154 DOI: 10.1111/1462-2920.15677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle-associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle-associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Gloucester Marine Genomics Institute, Gloucester, MA, USA
| | - Kyle R Frischkorn
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK, USA
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Benedetto Barone
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
11
|
Pyle AE, Johnson AM, Villareal TA. Isolation, growth, and nitrogen fixation rates of the Hemiaulus-Richelia (diatom-cyanobacterium) symbiosis in culture. PeerJ 2020; 8:e10115. [PMID: 33083143 PMCID: PMC7548074 DOI: 10.7717/peerj.10115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixers (diazotrophs) are often an important nitrogen source to phytoplankton nutrient budgets in N-limited marine environments. Diazotrophic symbioses between cyanobacteria and diatoms can dominate nitrogen-fixation regionally, particularly in major river plumes and in open ocean mesoscale blooms. This study reports the successful isolation and growth in monocultures of multiple strains of a diatom-cyanobacteria symbiosis from the Gulf of Mexico using a modified artificial seawater medium. We document the influence of light and nutrients on nitrogen fixation and growth rates of the host diatom Hemiaulus hauckii Grunow together with its diazotrophic endosymbiont Richelia intracellularis Schmidt, as well as less complete results on the Hemiaulus membranaceus-R. intracellularis symbiosis. The symbioses rates reported here are for the joint diatom-cyanobacteria unit. Symbiont diazotrophy was sufficient to support both the host diatom and cyanobacteria symbionts, and the entire symbiosis replicated and grew without added nitrogen. Maximum growth rates of multiple strains of H. hauckii symbioses in N-free medium with N2 as the sole N source were 0.74-0.93 div d-1. Growth rates followed light saturation kinetics in H. hauckii symbioses with a growth compensation light intensity (EC) of 7-16 µmol m-2s-1and saturation light level (EK) of 84-110 µmol m-2s-1. Nitrogen fixation rates by the symbiont while within the host followed a diel pattern where rates increased from near-zero in the scotophase to a maximum 4-6 h into the photophase. At the onset of the scotophase, nitrogen-fixation rates declined over several hours to near-zero values. Nitrogen fixation also exhibited light saturation kinetics. Maximum N2 fixation rates (84 fmol N2 heterocyst-1h-1) in low light adapted cultures (50 µmol m-2s-1) were approximately 40-50% of rates (144-154 fmol N2 heterocyst-1h-1) in high light (150 and 200 µmol m-2s-1) adapted cultures. Maximum laboratory N2 fixation rates were ~6 to 8-fold higher than literature-derived field rates of the H. hauckii symbiosis. In contrast to published results on the Rhizosolenia-Richelia symbiosis, the H. hauckii symbiosis did not use nitrate when added, although ammonium was consumed by the H. hauckii symbiosis. Symbiont-free host cell cultures could not be established; however, a symbiont-free H. hauckii strain was isolated directly from the field and grown on a nitrate-based medium that would not support DDA growth. Our observations together with literature reports raise the possibility that the asymbiotic H. hauckii are lines distinct from an obligately symbiotic H. hauckii line. While brief descriptions of successful culture isolation have been published, this report provides the first detailed description of the approaches, handling, and methodologies used for successful culture of this marine symbiosis. These techniques should permit a more widespread laboratory availability of these important marine symbioses.
Collapse
Affiliation(s)
- Amy E Pyle
- Department of Marine Science and Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| | | | - Tracy A Villareal
- Department of Marine Science and Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| |
Collapse
|
12
|
Combined pigment and metatranscriptomic analysis reveals highly synchronized diel patterns of phenotypic light response across domains in the open oligotrophic ocean. ISME JOURNAL 2020; 15:520-533. [PMID: 33033374 DOI: 10.1038/s41396-020-00793-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023]
Abstract
Sunlight is the most important environmental control on diel fluctuations in phytoplankton activity, and understanding diel microbial processes is essential to the study of oceanic biogeochemical cycles. Yet, little is known about the in situ temporal dynamics of phytoplankton metabolic activities and their coordination across different populations. We investigated diel orchestration of phytoplankton activity in photosynthesis, photoacclimation, and photoprotection by analyzing pigment and quinone distributions in combination with metatranscriptomes in surface waters of the North Pacific Subtropical Gyre (NPSG). We found diel cycles in pigment abundances resulting from the balance of their synthesis and consumption. These dynamics suggest that night represents a metabolic recovery phase, refilling cellular pigment stores, while photosystems are remodeled towards photoprotection during daytime. Transcript levels of genes involved in photosynthesis and pigment metabolism had synchronized diel expression patterns among all taxa, reflecting the driving force light imparts upon photosynthetic organisms in the ocean, while other environmental factors drive niche differentiation. For instance, observed decoupling of diel oscillations in transcripts and related pigments indicates that pigment abundances are modulated by environmental factors extending beyond gene expression/regulation reinforcing the need to combine metatranscriptomics with proteomics and metabolomics to fully understand the timing of these critical processes in situ.
Collapse
|
13
|
Abstract
Nitrogen fixation, the reduction of atmospheric dinitrogen gas (N2) to ammonia, is critical for biological productivity but is difficult to study in the vast expanse of the global ocean. Decades of field studies and the infusion of molecular biological, genomic, isotopic, and geochemical modeling approaches have led to new paradigms and questions. The discovery of previously unknown N2-fixing (diazotrophic) microorganisms and unusual physiological adaptations, combined with diagnostic distributions of nutrients and their isotopes as well as measured and modeled biogeographic patterns, have revolutionized our understanding of marine N2 fixation and its role in the global nitrogen cycle. Anthropogenic upper-ocean warming, increased dissolved carbon dioxide, and acidification will affect the distribution and relative importance of specific subgroups of N2 fixers in the sea; these changes have implications for foodwebs and biogeochemical cycles.
Collapse
Affiliation(s)
- Jonathan P. Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95003, USA
| | - Douglas G. Capone
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Foster RA, Zehr JP. Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations. Annu Rev Microbiol 2020; 73:435-456. [PMID: 31500535 DOI: 10.1146/annurev-micro-090817-062650] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyanobacteria are common in symbiotic relationships with diverse multicellular organisms (animals, plants, fungi) in terrestrial environments and with single-celled heterotrophic, mixotrophic, and autotrophic protists in aquatic environments. In the sunlit zones of aquatic environments, diverse cyanobacterial symbioses exist with autotrophic taxa in phytoplankton, including dinoflagellates, diatoms, and haptophytes (prymnesiophytes). Phototrophic unicellular cyanobacteria related to Synechococcus and Prochlorococcus are associated with a number of groups. N2-fixing cyanobacteria are symbiotic with diatoms and haptophytes. Extensive genome reduction is involved in the N2-fixing endosymbionts, most dramatically in the unicellular cyanobacteria associated with haptophytes, which have lost most of the photosynthetic apparatus, the ability to fix C, and the tricarboxylic acid cycle. The mechanisms involved in N2-fixing symbioses may involve more interactions beyond simple exchange of fixed C for N. N2-fixing cyanobacterial symbioses are widespread in the oceans, even more widely distributed than the best-known free-living N2-fixing cyanobacteria, suggesting they may be equally or more important in the global ocean biogeochemical cycle of N.Despite their ubiquitous nature and significance in biogeochemical cycles, cyanobacterium-phytoplankton symbioses remain understudied and poorly understood.
Collapse
Affiliation(s)
- Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden;
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
15
|
Nieves-Morión M, Flores E, Foster RA. Predicting substrate exchange in marine diatom-heterocystous cyanobacteria symbioses. Environ Microbiol 2020; 22:2027-2052. [PMID: 32281201 DOI: 10.1111/1462-2920.15013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/27/2022]
Abstract
In the open ocean, some phytoplankton establish symbiosis with cyanobacteria. Some partnerships involve diatoms as hosts and heterocystous cyanobacteria as symbionts. Heterocysts are specialized cells for nitrogen fixation, and a function of the symbiotic cyanobacteria is to provide the host with nitrogen. However, both partners are photosynthetic and capable of carbon fixation, and the possible metabolites exchanged and mechanisms of transfer are poorly understood. The symbiont cellular location varies from internal to partial to fully external, and this is reflected in the symbiont genome size and content. In order to identify the membrane transporters potentially involved in metabolite exchange, we compare the draft genomes of three differently located symbionts with known transporters mainly from model free-living heterocystous cyanobacteria. The types and numbers of transporters are directly related to the symbiont cellular location: restricted in the endosymbionts and wider in the external symbiont. Three proposed models of metabolite exchange are suggested which take into account the type of transporters in the symbionts and the influence of their cellular location on the available nutrient pools. These models provide a basis for several hypotheses that given the importance of these symbioses in global N and C budgets, warrant future testing.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
16
|
Inomura K, Follett CL, Masuda T, Eichner M, Prášil O, Deutsch C. Carbon Transfer from the Host Diatom Enables Fast Growth and High Rate of N 2 Fixation by Symbiotic Heterocystous Cyanobacteria. PLANTS (BASEL, SWITZERLAND) 2020; 9:E192. [PMID: 32033207 PMCID: PMC7076409 DOI: 10.3390/plants9020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 12/25/2022]
Abstract
Diatom-diazotroph associations (DDAs) are symbioses where trichome-forming cyanobacteria support the host diatom with fixed nitrogen through dinitrogen (N2) fixation. It is inferred that the growth of the trichomes is also supported by the host, but the support mechanism has not been fully quantified. Here, we develop a coarse-grained, cellular model of the symbiosis between Hemiaulus and Richelia (one of the major DDAs), which shows that carbon (C) transfer from the diatom enables a faster growth and N2 fixation rate by the trichomes. The model predicts that the rate of N2 fixation is 5.5 times that of the hypothetical case without nitrogen (N) transfer to the host diatom. The model estimates that 25% of fixed C from the host diatom is transferred to the symbiotic trichomes to support the high rate of N2 fixation. In turn, 82% of N fixed by the trichomes ends up in the host. Modeled C fixation from the vegetative cells in the trichomes supports only one-third of their total C needs. Even if we ignore the C cost for N2 fixation and for N transfer to the host, the total C cost of the trichomes is higher than the C supply by their own photosynthesis. Having more trichomes in a single host diatom decreases the demand for N2 fixation per trichome and thus decreases their cost of C. However, even with five trichomes, which is about the highest observed for Hemiaulus and Richelia symbiosis, the model still predicts a significant C transfer from the diatom host. These results help quantitatively explain the observed high rates of growth and N2 fixation in symbiotic trichomes relative to other aquatic diazotrophs.
Collapse
Affiliation(s)
- Keisuke Inomura
- School of Oceanography, University of Washington, 1492 NE Boat St., Seattle, WA 98105, USA;
| | - Christopher L. Follett
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, 379 81b Třeboň, Czech Republic; (T.M.); (M.E.); (O.P.)
| | - Meri Eichner
- Institute of Microbiology, The Czech Academy of Sciences, 379 81b Třeboň, Czech Republic; (T.M.); (M.E.); (O.P.)
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, 379 81b Třeboň, Czech Republic; (T.M.); (M.E.); (O.P.)
| | - Curtis Deutsch
- School of Oceanography, University of Washington, 1492 NE Boat St., Seattle, WA 98105, USA;
| |
Collapse
|
17
|
Hernández Limón MD, Hennon GMM, Harke MJ, Frischkorn KR, Haley ST, Dyhrman ST. Transcriptional patterns of
Emiliania huxleyi
in the North Pacific Subtropical Gyre reveal the daily rhythms of its metabolic potential. Environ Microbiol 2019; 22:381-396. [DOI: 10.1111/1462-2920.14855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/04/2023]
Affiliation(s)
- María D. Hernández Limón
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Gwenn M. M. Hennon
- University of Alaska Fairbanks College of Fisheries and Ocean Sciences Fairbanks AK USA
| | - Matthew J. Harke
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Kyle R. Frischkorn
- Department of Earth and Environmental Science Columbia University New York NY USA
| | - Sheean T. Haley
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Sonya T. Dyhrman
- Department of Earth and Environmental Science Columbia University New York NY USA
| |
Collapse
|
18
|
Wilson ST, Hawco NJ, Armbrust EV, Barone B, Björkman KM, Boysen AK, Burgos M, Burrell TJ, Casey JR, DeLong EF, Dugenne M, Dutkiewicz S, Dyhrman ST, Ferrón S, Follows MJ, Foreman RK, Funkey CP, Harke MJ, Henke BA, Hill CN, Hynes AM, Ingalls AE, Jahn O, Kelly RL, Knapp AN, Letelier RM, Ribalet F, Shimabukuro EM, Tabata RKS, Turk-Kubo KA, White AE, Zehr JP, John S, Karl DM. Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean. Science 2019; 365:1040-1044. [DOI: 10.1126/science.aax4767] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/17/2019] [Indexed: 11/02/2022]
Affiliation(s)
- Samuel T. Wilson
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Nicholas J. Hawco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Benedetto Barone
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Karin M. Björkman
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Angela K. Boysen
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Macarena Burgos
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Timothy J. Burrell
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - John R. Casey
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward F. DeLong
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Mathilde Dugenne
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sonya T. Dyhrman
- Department of Earth and Environmental Sciences, Columbia University, Palisades, NY 10964, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| | - Sara Ferrón
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Michael J. Follows
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rhea K. Foreman
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Carolina P. Funkey
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Matthew J. Harke
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| | - Britt A. Henke
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Christopher N. Hill
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Annette M. Hynes
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Anitra E. Ingalls
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Oliver Jahn
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rachel L. Kelly
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Angela N. Knapp
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - Ricardo M. Letelier
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Francois Ribalet
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Eric M. Shimabukuro
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Ryan K. S. Tabata
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Kendra A. Turk-Kubo
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Angelicque E. White
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Seth John
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - David M. Karl
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai‘i at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
19
|
The Transcriptional Cycle Is Suited to Daytime N 2 Fixation in the Unicellular Cyanobacterium " Candidatus Atelocyanobacterium thalassa" (UCYN-A). mBio 2019; 10:mBio.02495-18. [PMID: 30602582 PMCID: PMC6315102 DOI: 10.1128/mbio.02495-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiotic N2-fixing cyanobacterium UCYN-A, which is closely related to Braarudosphaera bigelowii, and its eukaryotic algal host have been shown to be globally distributed and important in open-ocean N2 fixation. These unique cyanobacteria have reduced metabolic capabilities, even lacking genes for oxygenic photosynthesis and carbon fixation. Cyanobacteria generally use energy from photosynthesis for nitrogen fixation but require mechanisms for avoiding inactivation of the oxygen-sensitive nitrogenase enzyme by ambient oxygen (O2) or the O2 evolved through photosynthesis. This study showed that symbiosis between the N2-fixing cyanobacterium UCYN-A and its eukaryotic algal host has led to adaptation of its daily gene expression pattern in order to enable daytime aerobic N2 fixation, which is likely more energetically efficient than fixing N2 at night, as found in other unicellular marine cyanobacteria. Symbiosis between a marine alga and a N2-fixing cyanobacterium (Cyanobacterium UCYN-A) is geographically widespread in the oceans and is important in the marine N cycle. UCYN-A is uncultivated and is an unusual unicellular cyanobacterium because it lacks many metabolic functions, including oxygenic photosynthesis and carbon fixation, which are typical in cyanobacteria. It is now presumed to be an obligate symbiont of haptophytes closely related to Braarudosphaera bigelowii. N2-fixing cyanobacteria use different strategies to avoid inhibition of N2 fixation by the oxygen evolved in photosynthesis. Most unicellular cyanobacteria temporally separate the two incompatible activities by fixing N2 only at night, but, surprisingly, UCYN-A appears to fix N2 during the day. The goal of this study was to determine how the unicellular UCYN-A strain coordinates N2 fixation and general metabolism compared to other marine cyanobacteria. We found that UCYN-A has distinct daily cycles of many genes despite the fact that it lacks two of the three circadian clock genes found in most cyanobacteria. We also found that the transcription patterns in UCYN-A are more similar to those in marine cyanobacteria that are capable of aerobic N2 fixation in the light, such as Trichodesmium and heterocyst-forming cyanobacteria, than to those in Crocosphaera or Cyanothece species, which are more closely related to unicellular marine cyanobacteria evolutionarily. Our findings suggest that the symbiotic interaction has resulted in a shift of transcriptional regulation to coordinate UCYN-A metabolism with that of the phototrophic eukaryotic host, thus allowing efficient coupling of N2 fixation (by the cyanobacterium) to the energy obtained from photosynthesis (by the eukaryotic unicellular alga) in the light.
Collapse
|