1
|
Risely A. Feather mites selectively feed on specific bacteria and fungi on feathers with potential benefits to hosts. J Anim Ecol 2025; 94:482-484. [PMID: 40001319 DOI: 10.1111/1365-2656.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
Invited Research Highlight: Matthews, A. E., Trevelline, B. K., Wijeratne, A. J., & Boves, T. J. (2024). Picky eaters: Selective microbial diet of avian ectosymbionts. Journal of Animal Ecology. Trophic interactions such as herbivory and predation are crucial regulators of ecological communities, yet few examples exist for these processes within host-associated microbiomes. In a recent study, Matthews et al. (2024) looked for evidence of selective microbial predation of bacteria and fungi by microscopic mites on the feathers of wild Prothonotary warblers (Protonotaria citrea). The authors quantified the bacterial and fungal diet of commensal feather mites and compared this with the composition of microbial communities living directly on the feather. They found that, despite a large variety of microbes to choose from, mites strongly preferred to eat a small number of bacterial and fungal genera. Some of these selectively enriched taxa are known keratin-degraders, suggesting that mites may protect feathers by selectively consuming harmful microbes. This study presents a rare example of a trophic interaction within the microscopic ecosystem of the feather that may act as an important force shaping microbial communities in ways that benefit the host, providing an overlooked mechanism by which symbioses between birds and mites could evolve.
Collapse
Affiliation(s)
- Alice Risely
- Department of Science, Engineering and the Environment, University of Salford, Manchester, UK
| |
Collapse
|
2
|
Walling LK, Gamache MH, González-Pech RA, Harwood VJ, Ibrahim-Hashim A, Jung JH, Lewis DB, Margres MJ, McMinds R, Rasheed K, Reis F, van Riemsdijk I, Santiago-Alarcon D, Sarmiento C, Whelan CJ, Zalamea PC, Parkinson JE, Richards CL. Incorporating microbiome analyses can enhance conservation of threatened species and ecosystem functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178826. [PMID: 40054249 DOI: 10.1016/j.scitotenv.2025.178826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 03/17/2025]
Abstract
Conservation genomics is a rapidly growing subdiscipline of conservation biology that uses genome-wide information to inform management of biodiversity at all levels. Such efforts typically focus on species or systems of conservation interest, but rarely consider associated microbes. At least three major approaches have been used to study how microorganisms broadly contribute to conservation areas: (1) diversity surveys map out microbial species distribution patterns in a variety of hosts, natural environments or regions; (2) functional surveys associate microbial communities with factors of interest, such as host health, symbiotic interactions, environmental characteristics, ecosystem processes, and biological invasions; and (3) manipulative experiments examine the response of changes to microbial communities or determine the functional roles of specific microbes within hosts or communities by adding, removing, or genetically modifying microbes. In practice, multiple approaches are often applied simultaneously. The results from all three conservation genomics approaches can be used to help design practical interventions and improve management actions, some of which we highlight below. However, experimental manipulations allow for more robust causal inferences and should be the ultimate goal of future work. Here we discuss how further integration of microbial research of a host's microbiome and of free living microbes into conservation biology will be an essential advancement for conservation of charismatic organisms and ecosystem functions in light of ongoing global environmental change.
Collapse
Affiliation(s)
| | - Matthew H Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Raúl A González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Arig Ibrahim-Hashim
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Faculty of Education and Arts, Sohar University, Sohar, Oman
| | - Jun Hee Jung
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany
| | - David B Lewis
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Ryan McMinds
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Center for Global Health and Interdisciplinary Research (GHIDR), University of South Florida, Tampa, FL, USA; Northwest Indian Fisheries Commission
| | - Kiran Rasheed
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Frank Reis
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany
| | - Isolde van Riemsdijk
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany; Biodiversity and Evolution, Lund University, Lund, Sweden
| | | | - Carolina Sarmiento
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Christopher J Whelan
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Paul-Camilo Zalamea
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | | | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
de la Sovera V, Bovio-Winkler P, Zinola G, Etchebehere C. Microbial community evolution in a lab-scale reactor operated to obtain biomass for biochemical methane potential assays. Appl Microbiol Biotechnol 2024; 108:519. [PMID: 39549075 PMCID: PMC11568993 DOI: 10.1007/s00253-024-13305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/11/2024] [Accepted: 09/05/2024] [Indexed: 11/18/2024]
Abstract
Biochemical methane potential (BMP) test is an important tool to evaluate the methane production biodegradability and toxicity of different wastes or wastewaters. This is a key parameter for assessing design and feasibility issues in the full-scale implementation of anaerobic digestion processes. A standardized and storable inoculum is the key to obtain reproducible results. In Uruguay, a local enterprise dedicated to design and install anaerobic digesters operated a lab-scale bioreactor as a source of biomass for BMP tests, using a protocol previously described. This reactor was controlled and fed with a mixture of varied organic compounds (lipids, cellulolytic wastes, proteins). Biomass was reintroduced into the reactor after BMP assays to maintain a constant volume and biomass concentration. The aim of this work was to evaluate how the microbial community evolved during this operation and the effect of storing biomass in the refrigerator. The composition of the microbial communities was analyzed by 16S rRNA amplicon sequencing using primers for Bacteria and Archaea. The methanogenic activity was determined, and the methanogens were quantified by mcrA qPCR. One sample was stored for a 5-month period in the refrigerator (4 °C); the activity and the microbial community composition were analyzed before and after storage. Results showed that applying the reported methodology, a reliable methanogenic sludge with an acceptable SMA was obtained even though the reactor suffered biomass alterations along the evaluated period. Refrigerating the acclimatized biomass for 5 months did not affect its activity nor its microbial composition according to the 16S rRNA gene sequence analysis, even though changes in the mcrA abundance were observed. KEY POINTS: • The applied methodology was successful to obtain biomass suitable to perform BMP assays. • The microbial community was resilient to external biomass addition. • Biomass storage at 4 °C for 5 months did not alter the methanogenic activity.
Collapse
Affiliation(s)
- Victoria de la Sovera
- Microbial Ecology Laboratory, Biological Research Institute "Clemente Estable" (IIBCE), Department of Biochemistry and Microbial Genomics, Av. Italia 3318, Montevideo, Uruguay
| | - Patricia Bovio-Winkler
- Microbial Ecology Laboratory, Biological Research Institute "Clemente Estable" (IIBCE), Department of Biochemistry and Microbial Genomics, Av. Italia 3318, Montevideo, Uruguay
| | - Guillermo Zinola
- Microbial Ecology Laboratory, Biological Research Institute "Clemente Estable" (IIBCE), Department of Biochemistry and Microbial Genomics, Av. Italia 3318, Montevideo, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Biological Research Institute "Clemente Estable" (IIBCE), Department of Biochemistry and Microbial Genomics, Av. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
4
|
Seibel E, Um S, Bodawatta KH, Komor AJ, Decker T, Fricke J, Murphy R, Maiah G, Iova B, Maus H, Schirmeister T, Jønsson KA, Poulsen M, Beemelmanns C. Bacteria from the Amycolatopsis genus associated with a toxic bird secrete protective secondary metabolites. Nat Commun 2024; 15:8524. [PMID: 39358325 PMCID: PMC11446937 DOI: 10.1038/s41467-024-52316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Uropygial gland secretions of birds consist of host and bacteria derived compounds and play a major sanitary and feather-protective role. Here we report on our microbiome studies of the New Guinean toxic bird Pachycephala schlegelii and the isolation of a member of the Amycolatopsis genus from the uropygial gland secretions. Bioactivity studies in combination with co-cultures, MALDI imaging and HR-MS/MS-based network analyses unveil the basis of its activity against keratinolytic bacteria and fungal skin pathogens. We trace the protective antimicrobial activity of Amycolatopsis sp. PS_44_ISF1 to the production of rifamycin congeners, ciromicin A and of two yet unreported compound families. We perform NMR and HR-MS/MS studies to determine the relative structures of six members belonging to a yet unreported lipopeptide family of pachycephalamides and of one representative of the demiguisins, a new hexapeptide family. We then use a combination of phylogenomic, transcriptomic and knock-out studies to identify the underlying biosynthetic gene clusters responsible for the production of pachycephalamides and demiguisins. Our metabolomics data allow us to map molecular ion features of the identified metabolites in extracts of P. schlegelii feathers, verifying their presence in the ecological setting where they exert their presumed active role for hosts. Our study shows that members of the Actinomycetota may play a role in avian feather protection.
Collapse
Affiliation(s)
- Elena Seibel
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Soohyun Um
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy Yonsei University, Songdogwahak-ro 85, Incheon, 21983, Republic of Korea
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Anna J Komor
- Department of Biomolecular Chemistry, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Tanya Decker
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Janis Fricke
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Gibson Maiah
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Bulisa Iova
- Papua New Guinea National Museum and Art Gallery, Port Moresby, Papua New Guinea
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, P.O. Box 50007, SE-10405, Stockholm, Sweden
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Christine Beemelmanns
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany.
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
- Saarland University, Campus, 66123, Saarbrücken, Germany.
| |
Collapse
|
5
|
Martínez-Renau E, Martín-Platero AM, Bodawatta KH, Martín-Vivaldi M, Martínez-Bueno M, Poulsen M, Soler JJ. Social environment influences microbiota and potentially pathogenic bacterial communities on the skin of developing birds. Anim Microbiome 2024; 6:47. [PMID: 39148142 PMCID: PMC11325624 DOI: 10.1186/s42523-024-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Animal bacterial symbionts are established early in life, either through vertical transmission and/or by horizontal transmission from both the physical and the social environment, such as direct contact with con- or heterospecifics. The social environment particularly can influence the acquisition of both mutualistic and pathogenic bacteria, with consequences for the stability of symbiotic communities. However, segregating the effects of the shared physical environment from those of the social interactions is challenging, limiting our current knowledge on the role of the social environment in structuring bacterial communities in wild animals. Here, we take advantage of the avian brood-parasite system of Eurasian magpies (Pica pica) and great spotted cuckoos (Clamator glandarius) to explore how the interspecific social environment (magpie nestlings developing with or without heterospecifics) affects bacterial communities on uropygial gland skin. RESULTS We demonstrated interspecific differences in bacterial community compositions in members of the two species when growing up in monospecific nests. However, the bacterial community of magpies in heterospecific nests was richer, more diverse, and more similar to their cuckoo nest-mates than when growing up in monospecific nests. These patterns were alike for the subset of microbes that could be considered core, but when looking at the subset of potentially pathogenic bacterial genera, cuckoo presence reduced the relative abundance of potentially pathogenic bacterial genera on magpies. CONCLUSIONS Our findings highlight the role of social interactions in shaping the assembly of the avian skin bacterial communities during the nestling period, as exemplified in a brood parasite-host system.
Collapse
Affiliation(s)
- Ester Martínez-Renau
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Antonio M Martín-Platero
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Martín-Vivaldi
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
6
|
La S, Li J, Ma S, Liu X, Gao L, Tian Y. Protective role of native root-associated bacterial consortium against root-knot nematode infection in susceptible plants. Nat Commun 2024; 15:6723. [PMID: 39112511 PMCID: PMC11306399 DOI: 10.1038/s41467-024-51073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Root-knot nematodes (RKNs) are a global menace to agricultural crop production. The role of root-associated microbes (RAMs) in plant protection against RKN infection remains unclear. Here we observe that cucumber (highly susceptible to Meloidogyne incognita) exhibits a consistently lower susceptibility to M. incognita in the presence of native RAMs in three distinct soils. Nematode infection alters the assembly of bacterial RAMs along the life cycle of M. incognita. Particularly, the loss of bacterial diversity of RAMs exacerbates plant susceptibility to M. incognita. A diverse range of native bacterial strains isolated from M. incognita-infected roots has nematode-antagonistic activity. Increasing the number of native bacterial strains causes decreasing nematode infection, which is lowest when six or more bacterial strains are present. Multiple simplified synthetic communities consisting of six bacterial strains show pronounced inhibitory effects on M. incognita infection in plants. These inhibitory effects are underpinned via multiple mechanisms including direct inhibition of infection, secretion of anti-nematode substances, and regulation of plant defense responses. This study highlights the role of native bacterial RAMs in plant resistance against RKNs and provides a useful insight into the development of a sustainable way to protect susceptible plants.
Collapse
Affiliation(s)
- Shikai La
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
- Institute of Economic Crops, Hebei Academy of Agricultural and Forestry Sciences, Heping West Road No. 598, Shijiazhuang, 050051, China
| | - Jiafan Li
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Si Ma
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Xingqun Liu
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Lihong Gao
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China.
| | - Yongqiang Tian
- College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China.
| |
Collapse
|
7
|
Shi W, Maqsood I, Liu K, Yu M, Si Y, Rong K. Community Diversity of Fungi Carried by Four Common Woodpeckers in Heilongjiang Province, China. J Fungi (Basel) 2024; 10:389. [PMID: 38921375 PMCID: PMC11204829 DOI: 10.3390/jof10060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Woodpeckers exhibit selectivity when choosing tree cavities for nest development in forest ecosystems, and fungi play a significant and important role in this ecological process. Therefore, there is a complex and intricate relationship between the various behaviors of woodpeckers and the occurrence of fungal species. Research into the complex bond between fungi and woodpeckers was undertaken to provide more information about this remarkable ecological relationship. Through the process of line transect sampling, woodpecker traces were searched for, and mist nets were set up to capture them. A total of 21 woodpeckers belonging to four species were captured. High-throughput sequencing of the ITS region was performed on fungal-conserved samples to enable an in-depth analysis of the fungal communities linked to the woodpeckers' nests. Members of Ascomycota were the most abundant in the samples, accounting for 91.96% of the total, demonstrating the importance of this group in the forest ecosystem of this station. The statistical results indicate significant differences in the fungal diversity carried by woodpeckers among the different groups. Species of Cladosporium were found to be the most prevalent of all the detected fungal genera, accounting for 49.3%. The top 15 most abundant genera were Cladosporium, Trichoderma, Beauveria, Epicococcum, Hypoxylon, Penicillium, Nigrospora, Aspergillus, Oidiodendron, Cercospora, Talaromyces, Phialemo-nium, Petriella, Cordyceps, and Sistotrema. The standard Bray-Curtis statistical technique was used in a hierarchical clustering analysis to compute inter-sample distances, allowing for the identification of patterns and correlations within the dataset. We discovered that in the grouped samples from woodpeckers, there were differences in the diversity of fungal communities carried by four woodpecker species, but the less dominant fungal species were still similar. The findings highlight the need to consider these diverse ecological linkages in woodpecker research and conservation efforts.
Collapse
Affiliation(s)
- Wenhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Iram Maqsood
- Department of Zoology, Shaheed Benazir Bhutto Women University Peshawar Pakistan, Peshawar 25000, Pakistan
| | - Keying Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Meichen Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yuhui Si
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Ke Rong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Wildlife Conservation Biology, National Forestry and Grassland Administration, Beijing 100013, China
| |
Collapse
|
8
|
Sheta B, Waheed O, Ayad E, Habbak L, Hyder A. Constitutive immunity is influenced by avian influenza virus-induced modification of gut microbiota in Eurasian teal (Anas crecca). Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109867. [PMID: 38373511 DOI: 10.1016/j.cbpc.2024.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Understanding the dynamics of migrant birds' gut microbial communities is essential for evaluating their ecological interactions, since these birds act as vectors for zoonotic viruses and their gut microbiome may have exceptional relationship with zoonotic viral infection. The Eurasian teal duck Anas crecca traverses continents during migration, combining and providing intercontinental links for avian influenza viruses (AIV) of different origins. The present study aimed to investigate how the AIV infection affects gut microbial composition and evaluate the consequent physiological stress and constitutive immunity of teal birds. Samples were collected from 2 flocks during their migratory stopover in northern Egypt. An important shift in gut microbiota of AIV-infected individuals has been detected by RT-PCR. In healthy teal, firmicutes dominated followed by proteobacteria, while the structure was reversed in infected birds. Infection with AIV significantly increased the stress hormone corticosterone, accompanied by a significant increase in both oxidative stress markers and antioxidants. Constitutive immunity, measured by plasma bactericidal effect against E. coli, the nonspecific natural antibodies, and the mediated complement activation, was reduced in AIV-infected teal birds. Constitutive immunity parameters were proportionally correlated to the firmicutes and inversely to the proteobacteria abundances, but not to the viral positivity. In conclusion, the present study provides initial evidence of the alteration of the gut microbiome in the Eurasian teal Anas crecca by AIV infection and demonstrates that the AIV-induced reduction in constitutive immunity is a consequence of the shift in microbiome composition rather than the virus infection itself or its induced stress.
Collapse
Affiliation(s)
- Basma Sheta
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Omnia Waheed
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Esraa Ayad
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Lotfy Habbak
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Ayman Hyder
- Zoology Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
9
|
Hotopp AM, Olsen BJ, Ishaq SL, Frey SD, Kovach AI, Kinnison MT, Gigliotti FN, Roeder MR, Cammen KM. Plumage microorganism communities of tidal marsh sparrows. iScience 2024; 27:108668. [PMID: 38230264 PMCID: PMC10790016 DOI: 10.1016/j.isci.2023.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024] Open
Abstract
Microorganism communities can shape host phenotype evolution but are often comprised of thousands of taxa with varied impact on hosts. Identification of taxa influencing host evolution relies on first describing microorganism communities and acquisition routes. Keratinolytic (keratin-degrading) microorganisms are hypothesized to be abundant in saltmarsh sediments and to contribute to plumage evolution in saltmarsh-adapted sparrows. Metabarcoding was used to describe plumage bacterial (16S rRNA) and fungal (ITS) communities in three sparrow species endemic to North America's Atlantic coast saltmarshes. Results describe limited within-species variability and moderate host species-level patterns in microorganism diversity and community composition. A small percentage of overall microorganism diversity was comprised of potentially keratinolytic microorganisms, warranting further functional studies. Distinctions between plumage and saltmarsh sediment bacteria, but not fungal, communities were detected, suggesting multiple bacterial acquisition routes and/or vertebrate host specialization. This research lays groundwork for future testing of causal links between microorganisms and avian host evolution.
Collapse
Affiliation(s)
- Alice M. Hotopp
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Brian J. Olsen
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME 04469, USA
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Serita D. Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Adrienne I. Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Michael T. Kinnison
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME 04469, USA
| | - Franco N. Gigliotti
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | - Kristina M. Cammen
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
10
|
Baranova MN, Pilipenko EA, Gabibov AG, Terekhov SS, Smirnov IV. Animal Microbiomes as a Source of Novel Antibiotic-Producing Strains. Int J Mol Sci 2023; 25:537. [PMID: 38203702 PMCID: PMC10779147 DOI: 10.3390/ijms25010537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Natural compounds continue to serve as the most fruitful source of new antimicrobials. Analysis of bacterial genomes have revealed that the biosynthetic potential of antibiotic producers by far exceeds the number of already discovered structures. However, due to the repeated discovery of known substances, it has become necessary to change both approaches to the search for antibiotics and the sources of producer strains. The pressure of natural selection and the diversity of interactions in symbiotic communities make animal microbiomes promising sources of novel substances. Here, microorganisms associated with various animals were examined in terms of their antimicrobial agents. The application of alternative cultivation techniques, ultrahigh-throughput screening, and genomic analysis facilitated the investigation of compounds produced by unique representatives of the animal microbiota. We believe that new strategies of antipathogen defense will be discovered by precisely studying cell-cell and host-microbe interactions in microbiomes in the wild.
Collapse
Affiliation(s)
- Margarita N. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Ekaterina A. Pilipenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Ochoa-Sánchez M, Acuña Gomez EP, Moreno L, Moraga CA, Gaete K, Eguiarte LE, Souza V. Body site microbiota of Magellanic and king penguins inhabiting the Strait of Magellan follow species-specific patterns. PeerJ 2023; 11:e16290. [PMID: 37933257 PMCID: PMC10625763 DOI: 10.7717/peerj.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023] Open
Abstract
Animal hosts live in continuous interaction with bacterial partners, yet we still lack a clear understanding of the ecological drivers of animal-associated bacteria, particularly in seabirds. Here, we investigated the effect of body site in the structure and diversity of bacterial communities of two seabirds in the Strait of Magellan: the Magellanic penguin (Spheniscus magellanicus) and the king penguin (Aptenodytes patagonicus). We used 16S rRNA gene sequencing to profile bacterial communities associated with body sites (chest, back, foot) of both penguins and the nest soil of Magellanic penguin. Taxonomic composition showed that Moraxellaceae family (specifically Psychrobacter) had the highest relative abundance across body sites in both penguin species, whereas Micrococacceae had the highest relative abundance in nest soil. We were able to detect a bacterial core among 90% of all samples, which consisted of Clostridium sensu stricto and Micrococcacea taxa. Further, the king penguin had its own bacterial core across its body sites, where Psychrobacter and Corynebacterium were the most prevalent taxa. Microbial alpha diversity across penguin body sites was similar in most comparisons, yet we found subtle differences between foot and chest body sites of king penguins. Body site microbiota composition differed across king penguin body sites, whereas it remained similar across Magellanic penguin body sites. Interestingly, all Magellanic penguin body site microbiota composition differed from nest soil microbiota. Finally, bacterial abundance in penguin body sites fit well under a neutral community model, particularly in the king penguin, highlighting the role of stochastic process and ecological drift in microbiota assembly of penguin body sites. Our results represent the first report of body site bacterial communities in seabirds specialized in subaquatic foraging. Thus, we believe it represents useful baseline information that could serve for long-term comparisons that use marine host microbiota to survey ocean health.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, Mexico
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lucila Moreno
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Claudio A. Moraga
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Katherine Gaete
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Valeria Souza
- Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, Mexico
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
12
|
Streptomyces isolated from bird feathers as a potential source for novel antibiotics. Arch Microbiol 2023; 205:81. [PMID: 36738340 DOI: 10.1007/s00203-023-03422-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
Streptomyces, the main source of antibiotics essential for human health, are widely distributed in nature among terrestrial, oceanic and atmospheric environments. New trends in antibiotic discovery are focused in the search for novel bioactive strains in unexplored habitats. We provide here evidence of the presence of diverse Streptomyces populations in wild bird feathers, such as the seagull, Larus michahellis, collected at Northern Spain; the sparrow, Passer domesticus, and the hoopoe, Upupa epops, both collected in Southern Spain. Taxonomic identification of fourteen bioactive strains, by sequencing their 16S rRNA gene and phylogenetic analyses, revealed that all of them are homologous to a total of 10 different Streptomyces. Strains from seagull samples are homologous to other antibiotic producers previously isolated from atmospheric, marine and terrestrial environments in the Cantabrian Sea region, Northern Spain. Isolates form Southern feather samples, from a house sparrow and a Eurasian hoopoe, are homologues to Streptomyces strains previously isolated mainly from soils along the Mediterranean region. The most relevant feature is that they are producers of diverse antibiotics with activity against Gram-positive, Gram-negative bacteria and fungi. We report here the successful activation of silent antibiotic biosynthetic pathways in response to changes in environmental conditions, such as incubation temperature and salinity of the culture medium, in agreement with the OSMAC approach, One Strain Many Compounds. The finding of bioactive Streptomyces in bird's plumage might be of relevance, not only in the ecology of Streptomyces-birds associations, but also in medicine and biotechnology since they can be regarded as a potential source for novel antibiotics.
Collapse
|
13
|
Akram F, Aqeel A, Shoaib M, Haq IU, Shah FI. Multifarious revolutionary aspects of microbial keratinases: an efficient green technology for future generation with prospective applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86913-86932. [PMID: 36271998 DOI: 10.1007/s11356-022-23638-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Since the dawn of century, tons of keratin bio-waste is generated by the poultry industry annually, and they end up causing environmental havoc. Keratins are highly flexible fibrous proteins which exist in α- and β- forms and provide mechanical strength and stability to structural appendages. The finding of broad-spectrum protease, keratinase, from thermophilic bacteria and fungi, has provided an eco-friendly solution to hydrolyze the peptide bonds in highly recalcitrant keratinous substances such as nails, feathers, claws, and horns into valuable amino acids. Microorganisms produce these proteolytic enzymes by techniques of solid-state and submerged fermentation. However, solid-state fermentation is considered as a yielding approach for the production of thermostable keratinases. This review prioritized the molecular and biochemical properties of microbial keratinases, and the role of keratinases in bringing prodigious impact for the sustainable progress of the economy. It also emphasizes on the current development in keratinase production with the focus to improve the biochemical properties related to enzyme's catalytic activity and stability, and production of mutant and cloned microbial strains to improve the yield of keratinases. Recently, multitude molecular approaches have been employed to enhance enzyme's productivity, activity, and thermostability which makes them suitable for pharmaceutical industry and for the production of animal feed, organic fertilizers, biogas, clearing of animal hides, and detergent formulation. Hence, it can be surmised that microbial keratinolytic enzymes are the conceivable candidates for numerous commercial and industrial applications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Minahil Shoaib
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
14
|
Martínez-Renau E, Mazorra-Alonso M, Ruiz-Castellano C, Martín-Vivaldi M, Martín-Platero AM, Barón MD, Soler JJ. Microbial infection risk predicts antimicrobial potential of avian symbionts. Front Microbiol 2022; 13:1010961. [DOI: 10.3389/fmicb.2022.1010961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Symbiotic bacteria on animal hosts can prevent pathogenic bacterial infections by several mechanisms. Among them, symbiotic bacteria can indirectly enhance host’s immune responses or, directly, produce antimicrobial substances against pathogens. Due to differences in life-style, different host species are under different risks of microbial infections. Consequently, if symbiotic bacteria are somewhat selected by genetically determined host characteristics, we would expect the antimicrobial properties of bacterial symbionts to vary among host species and to be distributed according to risk of infection. Here we have tested this hypothesis by measuring the antimicrobial ability of the bacterial strains isolated from the uropygial-gland skin of 19 bird species differing in nesting habits, and, therefore, in risk of microbial infection. In accordance with our predictions, intensity and range of antimicrobial effects against the indicator strains assayed varied among bird species, with hole-and open-nesters showing the highest and the lowest values, respectively. Since it is broadly accepted that hole-nesters have higher risks of microbial infection than open nesters, our results suggest that the risk of infection is a strong driver of natural selection to enhance immunocompetence of animals through selecting for antibiotic-producing symbionts. Future research should focus on characterizing symbiotic bacterial communities and detecting coevolutionary processes with particular antibiotic-producing bacteria within-host species.
Collapse
|
15
|
Minich JJ, Härer A, Vechinski J, Frable BW, Skelton ZR, Kunselman E, Shane MA, Perry DS, Gonzalez A, McDonald D, Knight R, Michael TP, Allen EE. Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species. Nat Commun 2022; 13:6978. [PMID: 36396943 PMCID: PMC9671965 DOI: 10.1038/s41467-022-34557-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Fish are the most diverse and widely distributed vertebrates, yet little is known about the microbial ecology of fishes nor the biological and environmental factors that influence fish microbiota. To identify factors that explain microbial diversity patterns in a geographical subset of marine fish, we analyzed the microbiota (gill tissue, skin mucus, midgut digesta and hindgut digesta) from 101 species of Southern California marine fishes, spanning 22 orders, 55 families and 83 genera, representing ~25% of local marine fish diversity. We compare alpha, beta and gamma diversity while establishing a method to estimate microbial biomass associated with these host surfaces. We show that body site is the strongest driver of microbial diversity while microbial biomass and diversity is lowest in the gill of larger, pelagic fishes. Patterns of phylosymbiosis are observed across the gill, skin and hindgut. In a quantitative synthesis of vertebrate hindguts (569 species), we also show that mammals have the highest gamma diversity when controlling for host species number while fishes have the highest percent of unique microbial taxa. The composite dataset will be useful to vertebrate microbiota researchers and fish biologists interested in microbial ecology, with applications in aquaculture and fisheries management.
Collapse
Affiliation(s)
- Jeremiah J Minich
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Vechinski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| | - Benjamin W Frable
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| | - Zachary R Skelton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emily Kunselman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| | - Michael A Shane
- Hubbs-SeaWorld Research Institute, 2595 Ingraham Street, San Diego, CA, 92109, USA
| | - Daniela S Perry
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of San Diego, California, La Jolla, CA, 92093, USA
- Department of Computer Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Todd P Michael
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Eric E Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of San Diego, California, La Jolla, CA, 92093, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
Krumbeck JA, Turner DD, Diesel A, Hoffman AR, Heatley JJ. Skin microbiota of quaker parrots (Myiopsitta monachus) with normal feathering or feather loss via next-generation sequencing technology. J Exot Pet Med 2022. [DOI: 10.1053/j.jepm.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
18
|
Tang Y, Ma KY, Cheung MK, Yang CH, Wang Y, Hu X, Kwan HS, Chu KH. Gut Microbiota in Decapod Shrimps: Evidence of Phylosymbiosis. MICROBIAL ECOLOGY 2021; 82:994-1007. [PMID: 33629169 DOI: 10.1007/s00248-021-01720-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Gut microbiota have long attracted the interest of scientists due to their profound impact on the well-being of animals. A non-random pattern of microbial assembly that results in a parallelism between host phylogeny and microbial similarity is described as phylosymbiosis. Phylosymbiosis has been consistently observed in different clades of animal hosts, but there have been no studies on crustaceans. In this study, we investigated whether host phylogeny has an impact on the gut microbiota assemblages in decapod shrimps. We examined the gut microbial communities in 20 shrimp species from three families inhabiting distinct environments, using metabarcoding analyses of the V1-V3 hypervariable region of the 16S rRNA gene. Gut microbial communities varied within each shrimp group but were generally dominated by Proteobacteria. A prevalent phylosymbiotic pattern in shrimps was evidenced for the first time by the observations of (1) the distinguishability of microbial communities among species within each group, (2) a significantly lower intraspecific than interspecific gut microbial beta diversity across shrimp groups, (3) topological congruence between host phylogenetic trees and gut microbiota dendrograms, and (4) a correlation between host genetic distances and microbial dissimilarities. Consistent signals of phylosymbiosis were observed across all groups in dendrograms based on the unweighted UniFrac distances at 99% operational taxonomic units (OTUs) level and in Mantel tests based on the weighted UniFrac distances based on 97% OTUs and amplicon sequence variants. Penaeids exhibited phylosymbiosis in most tests, while phylosymbiotic signals in atyids and pandalids were only detected in fewer than half of the tests. A weak phylogenetic signal was detected in the predicted functions of the penaeid gut microbiota. However, the functional diversities of the two caridean groups were not significantly related to host phylogeny. Our observations of a parallelism in the taxonomy of the gut microbiota with host phylogeny for all shrimp groups examined and in the predicted functions for the penaeid shrimps indicate a tight host-microbial relationship during evolution.
Collapse
Affiliation(s)
- Yuanyuan Tang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka Yan Ma
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Man Kit Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chien-Hui Yang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yaqin Wang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xuelei Hu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, China
| | - Hoi Shan Kwan
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Hong Kong Branch of Southern Marine Science and Technology Guangdong Laboratory (Guangzhou), Hong Kong, SAR, China.
| |
Collapse
|
19
|
Li H, La S, Zhang X, Gao L, Tian Y. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. THE ISME JOURNAL 2021; 15:2865-2882. [PMID: 33875820 PMCID: PMC8443564 DOI: 10.1038/s41396-021-00974-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023]
Abstract
Salinity is a major abiotic stress threatening crop production. Root-derived bacteria (RDB) are hypothesized to play a role in enhancing plant adaptability to various stresses. However, it is still unclear whether and how plants build up specific RDB when challenged by salinity. In this study, we measured the composition and variation in the rhizosphere and endophyte bacteria of salt-sensitive (SSs) and salt-resistant (SRs) plants under soil conditions with/without salinity. The salt-induced RDB (both rhizobiomes and endophytes) were isolated to examine their effects on the physiological responses of SSs and SRs to salinity challenge. Moreover, we examined whether functional redundancy exists among salt-induced RDB in enhancing plant adaptability to salt stress. We observed that although SSs and SRs recruited distinct RDB and relevant functions when challenged by salinity, salt-induced recruitment of specific RDB led to a consistent growth promotion in plants regardless of their salinity tolerance capacities. Plants employed a species-specific strategy to recruit beneficial soil bacteria in the rhizosphere rather than in the endosphere. Furthermore, we demonstrated that the consortium, but not individual members of the salt-induced RDB, provided enduring resistance against salt stress. This study confirms the critical role of salt-induced RDB in enhancing plant adaptability to salt stress.
Collapse
Affiliation(s)
- Hong Li
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Shikai La
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xu Zhang
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Lihong Gao
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Yongqiang Tian
- grid.22935.3f0000 0004 0530 8290Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
20
|
Al Rubaiee Z, Al Murayati H, Tobolka M, Tryjanowski P, Møller AP. Not so black, not so white: differences in microorganism load of contiguous feathers from white stork chicks. Curr Zool 2021; 67:263-270. [PMID: 34616918 PMCID: PMC8489003 DOI: 10.1093/cz/zoaa062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Many organisms are characterized by strikingly contrasting black and white coloration, but the function of such contrasts has been inadequately studied. In this article, we tested the function of black and white contrasting plumage in white stork Ciconia ciconia chicks. We found greater abundance and diversity of microorganisms on black compared with adjacent white feathers. In addition, nest size was positively correlated with the abundance and diversity of microorganisms on white feathers. Flight initiation distance (FID), defined as the distance at which adult white storks took flight when approached by a human, was negatively correlated with most measurements of microorganism abundance. Breeding success was generally positively correlated with the abundance and diversity of microorganisms on black feathers. The feather growth rate was positively correlated with some and negatively correlated with other measurements of microbial abundance and diversity. Finally, chick growth was negatively correlated with the number of microbial species on black feathers and positively with the abundance and diversity of microorganisms on white feathers. These findings are consistent not only with the role of microorganisms in the maintenance of a benign microbial environment which differs between black and white feathers, but also with the hypothesis that several taxa of microorganisms found in black and white plumage are virulent, with negative effects on the fitness of their hosts.
Collapse
Affiliation(s)
- Zaid Al Rubaiee
- Department of Biology, College of Science, Mustansiriya University, Baghdad, Iraq
| | - Haider Al Murayati
- Department of Biology, College of Science, Mustansiriya University, Baghdad, Iraq
| | - Marcin Tobolka
- Institute of Zoology, Poznań University of Life Sciences, Poznań, PL-60-625, Poland
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Poznań, PL-60-625, Poland
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay Cedex, F-91405, France
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
21
|
Grieves LA, Gloor GB, Kelly TR, Bernards MA, MacDougall-Shackleton EA. Preen gland microbiota of songbirds differ across populations but not sexes. J Anim Ecol 2021; 90:2202-2212. [PMID: 34002375 DOI: 10.1111/1365-2656.13531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
Metabolites produced by symbiotic microbes can affect the odour of their hosts, providing olfactory cues of identity, sex or other salient features. In birds, preen oil is a major source of body odour that differs between populations and sexes. We hypothesized that population and sex differences in preen oil chemistry reflect underlying differences in preen gland microbiota, predicting that these microbes also differ among populations and between the sexes. We further predicted that pairwise similarity in the community composition of preen gland microbiota would covary with that of preen oil chemical composition, consistent with the fermentation hypothesis for chemical recognition. We analysed preen oil chemistry and preen gland bacterial communities of song sparrows Melospiza melodia. Birds were sampled at sites for which population and sex differences in preen oil have been reported, and at a third site that has been less studied. Consistent with prior work in this system, we found population and sex differences in preen oil chemistry. By contrast, we found population differences but not sex differences in the community composition of preen gland microbes. Overall similarity in the community composition of preen gland microbiota did not significantly covary with that of preen oil chemistry. However, we identified a subset of six microbial genera that maximally correlated with preen oil composition. Although both preen gland microbiota and preen oil composition differ across populations, we did not observe an overall association between them that would implicate symbiotic microbes in mediating variation in olfactory cues associated with preen oil. Instead, certain subsets of microbes may be involved in mediating olfactory cues in birds, but experiments are required to test this.
Collapse
Affiliation(s)
| | - Gregory B Gloor
- Biochemistry, University of Western Ontario, London, ON, Canada
| | - Tosha R Kelly
- Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | | |
Collapse
|
22
|
Labrador MDM, Doña J, Serrano D, Jovani R. Quantitative Interspecific Approach to the Stylosphere: Patterns of Bacteria and Fungi Abundance on Passerine Bird Feathers. MICROBIAL ECOLOGY 2021; 81:1088-1097. [PMID: 33225409 DOI: 10.1007/s00248-020-01634-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Feathers are the habitat of a myriad of organisms, from fungi and bacteria to lice and mites. Although most studies focus on specific taxa and their interaction with the bird host, anecdotal data glimpse feathers as holders of a system with its own ecology, what we call here the stylosphere. A major gap in our knowledge of the stylosphere is the ecology of the total abundance of microorganisms, being also rare to find studies that analyze abundance of more than one group of microorganisms at the bird interspecific level. Here, we quantified bacterial and fungi abundances through qPCR on the wing feathers of 144 birds from 24 passerine and one non-passerine bird species from three localities in Southern Spain. Bacteria and fungi abundances spanned three orders of magnitude among individual birds, but were consistent when comparing the right and the left wing feathers of individuals. Sampling locality explained ca. 14% of the variation in both bacteria and fungi abundances. Even when statistically controlling for sampling locality, microbial abundances consistently differed between birds from different species, but these differences were not explained by bird phylogeny. Finally, bird individuals and species having more bacteria also tended to held larger abundances of fungi. Our results suggest a quite complex explanation for stylosphere microorganisms' abundance, being shaped by bird individual and species traits, as well as environmental factors, and likely bacteria-fungi interactions.
Collapse
Affiliation(s)
- María Del Mar Labrador
- Department of Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio s/n, 41092, Seville, Spain.
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA
- Department of Animal Biology, Universidad de Granada, 18001, Granada, Spain
| | - David Serrano
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio s/n, 41092, Seville, Spain
| | - Roger Jovani
- Department of Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio s/n, 41092, Seville, Spain
| |
Collapse
|
23
|
Stephens CRA, McAmmond BM, Van Hamme JD, Otter KA, Reudink MW, Bottos EM. Analysis of bacterial communities associated with Mountain Chickadees ( Poecile gambeli) across urban and rural habitats. Can J Microbiol 2021; 67:572-583. [PMID: 33656947 DOI: 10.1139/cjm-2020-0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Host-associated microbial communities play important roles in wildlife health, but these dynamics can be influenced by environmental factors. Urbanization has numerous effects on wildlife; however, the degree to which wildlife-associated bacterial communities and potential bacterial pathogens vary across urban-rural/native habitat gradients remains largely unknown. We used 16S rRNA gene amplicon sequencing to examine bacterial communities found on Mountain Chickadee (Poecile gambeli) feathers and nests in urban and rural habitats. The feathers and nests in urban and rural sites had similar abundances of major bacterial phyla and dominant genera with pathogenic members. However, richness of bacterial communities and potential pathogens on birds were higher in urban habitats, and potential pathogens accounted for some of the differences in bacterial occurrence between urban and rural environments. We predicted habitat using potential pathogen occurrence with a 90% success rate for feather bacteria, and a 72.2% success rate for nest bacteria, suggesting an influence of urban environments on the presence of potential pathogens. We additionally observed similarities in bacterial communities between nests and their occupants, suggesting bacterial transmission between them. These findings improve our understanding of the bacterial communities associated with urban wildlife and suggest that urbanization impacts the composition of wildlife-associated bacterial communities.
Collapse
Affiliation(s)
- Colton R A Stephens
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Breanne M McAmmond
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Ken A Otter
- Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Matthew W Reudink
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Eric M Bottos
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| |
Collapse
|
24
|
Fecal Sample Collection Method for Wild Birds-Associated Microbiome Research: Perspectives for Wildlife Studies. Animals (Basel) 2020; 10:ani10081349. [PMID: 32759733 PMCID: PMC7459867 DOI: 10.3390/ani10081349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This paper describes an easy-to-build box for the noninvasive collection of feces from wild birds or small wild animals (up to 1 kg), including a plastic storage box, a plastic tray, and a vinyl-coated hardware cloth. This method could minimize potential contamination and allow for cross-study comparisons on gut microbiomes for wildlife medicine, conservation, ecology, and evolutionary biology. Abstract Gut microbial communities play important roles in host health, modulating development, nutrient acquisition, immune and metabolic regulation, behavior and diseases. Wildlife microbiome studies and host–microbe interaction and exploration might be an important goal for evolutionary biology, conservation, and ecology. Therefore, collection and sampling methods must be considered before choosing a microbiome-based research plan. Since the fecal microbial community reflects the true gut community better than that of cloacal swab samples and only few nondestructive methods have been described, we propose an easy-to-build box for a noninvasive fecal collection method. The main components of the collection box include a plastic storage box, a plastic tray, a vinyl-coated hardware cloth, and a 10% bleach solution. In the plastic box, the tray is positioned under the raised grate, where the bird is placed, to reduce the risk of contamination of the fecal samples. This procedure could simplify handling and processing phases in wild birds or other animals. It might represent a cheap and useful method for research studies, wildlife rescue center activities, veterinary practices, and conservation practitioners.
Collapse
|
25
|
Bodawatta KH, Schierbech SK, Petersen NR, Sam K, Bos N, Jønsson KA, Poulsen M. Great Tit ( Parus major) Uropygial Gland Microbiomes and Their Potential Defensive Roles. Front Microbiol 2020; 11:1735. [PMID: 32849371 PMCID: PMC7401573 DOI: 10.3389/fmicb.2020.01735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
The uropygial gland (preen gland) of birds plays an important role in maintaining feather integrity and hygiene. Although a few studies have demonstrated potential defensive roles of bacteria residing within these glands, the diversity and functions of the uropygial gland microbiota are largely unknown. Therefore, we investigated the microbiota of great tit (Parus major) uropygial glands through both isolation of bacteria (culture-dependent) and 16S rRNA amplicon sequencing (culture-independent). Co-culture experiments of selected bacterial isolates with four known feather-degrading bacteria (Bacillus licheniformis, Kocuria rhizophila, Pseudomonas monteilii, and Dermacoccus nishinomiyaensis), two non-feather degrading feather bacteria, one common soil bacterial pathogen and two common fungal pathogens enabled us to evaluate the potential antimicrobial properties of these isolates. Our results show major differences between bacterial communities characterized using culture-dependent and -independent approaches. In the former, we were only able to isolate 12 bacterial genera (dominated by members of the Firmicutes and Actinobacteria), while amplicon sequencing identified 110 bacterial genera (dominated by Firmicutes, Bacteroidetes, and Proteobacteria). Uropygial gland bacterial isolates belonging to the genera Bacillus and Kocuria were able to suppress the growth of four of the nine tested antagonists, attesting to potential defensive roles. However, these bacterial genera were infrequent in our MiSeq results suggesting that the isolated bacteria may not be obligate gland symbionts. Furthermore, bacterial functional predictions using 16S rRNA sequences also revealed the ability of uropygial gland bacteria to produce secondary metabolites with antimicrobial properties, such as terpenes. Our findings support that uropygial gland bacteria may play a role in feather health and that bacterial symbionts might act as defensive microbes. Future investigations of these bacterial communities, with targeted approaches (e.g., bacterial isolation and chemical analyses), are thus warranted to improve our understanding of the evolution and function of these host-microbe interactions.
Collapse
Affiliation(s)
- Kasun H. Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Signe K. Schierbech
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nanna R. Petersen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Sam
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Nick Bos
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Graves GR, Matterson KO, Milensky CM, Schmidt BK, O'Mahoney MJV, Drovetski SV. Does solar irradiation drive community assembly of vulture plumage microbiotas? Anim Microbiome 2020; 2:24. [PMID: 33499993 PMCID: PMC7807431 DOI: 10.1186/s42523-020-00043-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stereotyped sunning behaviour in birds has been hypothesized to inhibit keratin-degrading bacteria but there is little evidence that solar irradiation affects community assembly and abundance of plumage microbiota. The monophyletic New World vultures (Cathartiformes) are renowned for scavenging vertebrate carrion, spread-wing sunning at roosts, and thermal soaring. Few avian species experience greater exposure to solar irradiation. We used 16S rRNA sequencing to investigate the plumage microbiota of wild individuals of five sympatric species of vultures in Guyana. RESULTS The exceptionally diverse plumage microbiotas (631 genera of Bacteria and Archaea) were numerically dominated by bacterial genera resistant to ultraviolet (UV) light, desiccation, and high ambient temperatures, and genera known for forming desiccation-resistant endospores (phylum Firmicutes, order Clostridiales). The extremophile genera Deinococcus (phylum Deinococcus-Thermus) and Hymenobacter (phylum, Bacteroidetes), rare in vertebrate gut microbiotas, accounted for 9.1% of 2.7 million sequences (CSS normalized and log2 transformed). Five bacterial genera known to exhibit strong keratinolytic capacities in vitro (Bacillus, Enterococcus, Pseudomonas, Staphylococcus, and Streptomyces) were less abundant (totaling 4%) in vulture plumage. CONCLUSIONS Bacterial rank-abundance profiles from melanized vulture plumage have no known analog in the integumentary systems of terrestrial vertebrates. The prominence of UV-resistant extremophiles suggests that solar irradiation may play a significant role in the assembly of vulture plumage microbiotas. Our results highlight the need for controlled in vivo experiments to test the effects of UV on microbial communities of avian plumage.
Collapse
Affiliation(s)
- Gary R Graves
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA.
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.
| | - Kenan O Matterson
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, 48100, Ravenna, Italy
| | - Christopher M Milensky
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Brian K Schmidt
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Michael J V O'Mahoney
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Sergei V Drovetski
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
- Current address: USGS Patuxent Wildlife Research Center, 10300 Baltimore Avenue, BARC-East Bldg. 308, Beltsville, MD, 20705, USA
| |
Collapse
|
27
|
Abstract
Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the characterization of a new, cross-system trend in host-associated microbiomes. Defining phylosymbiosis as 'microbial community relationships that recapitulate the phylogeny of their host', we review the relevant literature and data in the last decade, emphasizing frequently used methods and regular patterns observed in analyses. Quantitative support for phylosymbiosis is provided by statistical methods evaluating higher microbiome variation between host species than within host species, topological similarities between the host phylogeny and microbiome dendrogram, and a positive association between host genetic relationships and microbiome beta diversity. Significant degrees of phylosymbiosis are prevalent, but not universal, in microbiomes of plants and animals from terrestrial and aquatic habitats. Consistent with natural selection shaping phylosymbiosis, microbiome transplant experiments demonstrate reduced host performance and/or fitness upon host-microbiome mismatches. Hybridization can also disrupt phylosymbiotic microbiomes and cause hybrid pathologies. The pervasiveness of phylosymbiosis carries several important implications for advancing knowledge of eco-evolutionary processes that impact host-microbiome interactions and future applications of precision microbiology. Important future steps will be to examine phylosymbiosis beyond bacterial communities, apply evolutionary modelling for an increasingly sophisticated understanding of phylosymbiosis, and unravel the host and microbial mechanisms that contribute to the pattern. This review serves as a gateway to experimental, conceptual and quantitative themes of phylosymbiosis and outlines opportunities ripe for investigation from a diversity of disciplines.
Collapse
Affiliation(s)
- Shen Jean Lim
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
28
|
Javůrková VG, Enbody ED, Kreisinger J, Chmel K, Mrázek J, Karubian J. Plumage iridescence is associated with distinct feather microbiota in a tropical passerine. Sci Rep 2019; 9:12921. [PMID: 31501471 PMCID: PMC6733896 DOI: 10.1038/s41598-019-49220-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
Birds present a stunning diversity of plumage colors that have long fascinated evolutionary ecologists. Although plumage coloration is often linked to sexual selection, it may impact a number of physiological processes, including microbial resistance. At present, the degree to which differences between pigment-based vs. structural plumage coloration may affect the feather microbiota remains unanswered. Using quantitative PCR and DGGE profiling, we investigated feather microbial load, diversity and community structure among two allopatric subspecies of White-shouldered Fairywren, Malurus alboscapulatus that vary in expression of melanin-based vs. structural plumage coloration. We found that microbial load tended to be lower and feather microbial diversity was significantly higher in the plumage of black iridescent males, compared to black matte females and brown individuals. Moreover, black iridescent males had distinct feather microbial communities compared to black matte females and brown individuals. We suggest that distinctive nanostructure properties of iridescent male feathers or different investment in preening influence feather microbiota community composition and load. This study is the first to point to structural plumage coloration as a factor that may significantly regulate feather microbiota. Future work might explore fitness consequences and the role of microorganisms in the evolution of avian sexual dichromatism, with particular reference to iridescence.
Collapse
Affiliation(s)
- Veronika Gvoždíková Javůrková
- Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic.
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic.
| | - Erik D Enbody
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Kryštof Chmel
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 44, Prague, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Vídeňská 1083, 160 00, Prague-Krč, Czech Republic
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|