1
|
Zhang S, Zhang Z, Wang F, Huang X, Chen X, Wang Y, Li C, Li H. Advancing the comprehensive understanding of soil organic carbon priming effect: definitions, mechanisms, influencing factors, and future perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:201. [PMID: 40343583 DOI: 10.1007/s10653-025-02516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
The soil carbon (C) priming effect (PE), an important phenomenon in soil C cycle research, has garnered extensive attention in recent years. Soil C PE refers to the stimulation or inhibition of the original soil organic C (SOC) decomposition rate by newly added organic matter in the soil. Its mechanism of action involves the activity of soil microorganisms. Fresh organic matter input provides an additional source of energy and nutrients for soil microorganisms, prompting changes in microbial community structure and activity, which in turn affects SOC decomposition. Easily decomposable organic matter may stimulate rapid microbial growth and metabolic activity of microorganisms, thereby the decomposition accelerating of original SOC and producing a positive PE, whereas recalcitrant organic matter may lead microorganisms to preferentially utilise the newly added C source, thereby inhibiting original SOC decomposition and producing a negative PE. There are numerous factors influencing soil C PE, including organic matter properties such as chemical composition, C:N ratio, and lignin content; soil environmental factors such as temperature, humidity, and pH value; and land-use patterns and vegetation types. Research on soil C PE is crucial for an in-depth understanding of the soil C cycle, the accurate assessment of dynamic changes in the soil C pool, and the development of sustainable soil management strategies. This study introduces the definition, change mechanism, influencing factors, and research methods of soil C PE and elaborates on the status and deficiencies of PE research, which is helpful for predicting soil C responses to global climate change and provides a scientific basis for improving soil fertility and reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Shengman Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China
| | - Ziyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuchun Wang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
Connolly JP, Kelly L. The physical biogeography of Fusobacterium nucleatum in health and disease. mBio 2025; 16:e0298924. [PMID: 40062772 PMCID: PMC11980382 DOI: 10.1128/mbio.02989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/07/2025] [Indexed: 04/10/2025] Open
Abstract
Fusobacterium nucleatum (Fn) is an oral commensal inhabiting the human gingival plaque that is rarely found in the gut. However, in colorectal cancer (CRC), Fn can be isolated from stool samples and detected in metagenomes. We hypothesized that ecological characteristics of the gut are altered by disease, enabling Fn to colonize. Multiple genomically distinct populations of Fn exist, but their ecological preferences are unstudied. We identified six well-separated populations in 133 Fn genomes and used simulated metagenomes to demonstrate sensitive detection of populations in human oral and gut metagenomes. In 9,560 samples from 11 studies, Fn population C2 animalis is elevated in gut metagenomes from CRC and Crohn's disease patients and is observed more frequently in CRC stool samples than in the gingiva. Polymorphum, the most prevalent gingival Fn population, is significantly increased in Crohn's stool samples; this effect was significantly stronger in male hosts than in female. We find polymorphum genomes are enriched for biosynthetic gene clusters and fluoride exporters, while C2 animalis are high in iron transporters. Fn populations thus associate with specific clinical and demographic phenotypes and harbor distinct functional features. Ecological differences in closely related groups of bacteria inform microbiome impacts on human health. IMPORTANCE Fusobacterium nucleatum is a bacterium normally found in the gingiva. F. nucleatum generally does not colonize the healthy gut, but is observed in approximately a third of colorectal cancer (CRC) patient guts. F. nucleatum's presence in the gut during CRC has been linked to worse prognosis and increased tumor proliferation. Here, we describe the population structure of F. nucleatum in oral and gut microbiomes. We report substantial diversity in gene carriage among six distinct populations of F. nucleatum and identify population disease and body-site preferences. We find the C2 animalis population is more common in the CRC gut than in the gingiva and is enriched for iron transporters, which support gut colonization in known pathogens. We find that C2 animalis is also enriched in Crohn's disease and type 2 diabetes, suggesting ecological commonalities between the three diseases. Our work shows that closely related bacteria can have different associations with human physiology.
Collapse
Affiliation(s)
- John P. Connolly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
3
|
Salamzade R, Tran P, Martin C, Manson A, Gilmore M, Earl A, Anantharaman K, Kalan L. zol and fai: large-scale targeted detection and evolutionary investigation of gene clusters. Nucleic Acids Res 2025; 53:gkaf045. [PMID: 39907107 PMCID: PMC11795205 DOI: 10.1093/nar/gkaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/06/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Many universally and conditionally important genes are genomically aggregated within clusters. Here, we introduce fai and zol, which together enable large-scale comparative analysis of different types of gene clusters and mobile-genetic elements, such as biosynthetic gene clusters (BGCs) or viruses. Fundamentally, they overcome a current bottleneck to reliably perform comprehensive orthology inference at large scale across broad taxonomic contexts and thousands of genomes. First, fai allows the identification of orthologous instances of a query gene cluster of interest amongst a database of target genomes. Subsequently, zol enables reliable, context-specific inference of ortholog groups for individual protein-encoding genes across gene cluster instances. In addition, zol performs functional annotation and computes a variety of evolutionary statistics for each inferred ortholog group. Importantly, in comparison to tools for visual exploration of homologous relationships between gene clusters, zol can scale to handle thousands of gene cluster instances and produce detailed reports that are easy to digest. To showcase fai and zol, we apply them for: (i) longitudinal tracking of a virus in metagenomes, (ii) performing population genetic investigations of BGCs for a fungal species, and (iii) uncovering evolutionary trends for a virulence-associated gene cluster across thousands of genomes from a diverse bacterial genus.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Freshwater and Marine Science Doctoral Program, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Cody Martin
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Michael S Gilmore
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, 02114, United States
- Department of Microbiology, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, 02115, United States
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
4
|
Wang M, Xing X, Zhang Y, Sui X, Zheng C. Geographic Distribution Pattern Determines Soil Microbial Community Assembly Process in Acanthopanax senticosus Rhizosphere Soil. Microorganisms 2024; 12:2506. [PMID: 39770709 PMCID: PMC11728389 DOI: 10.3390/microorganisms12122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
The geographic distribution patterns of soil microbial communities associated with cultivated Acanthopanax senticosus plants in Northeast China were investigated. High-throughput sequencing revealed that the diversity and community assembly of bacterial and fungal communities in the inter-root soil varied significantly with geographic location. The study found that bacterial communities were predominantly assembled through stochastic processes at most sites, while fungal communities showed greater variation, with both stochastic and deterministic processes involved. The complexity of bacterial-fungal co-occurrence networks also varied with longitude and latitude, demonstrating both positive and negative interactions. PICRUSt 2.0 and FUNGuild were used to predict the potential functions of soil bacterial and fungal microbiota, respectively, during different land use patterns. The average taxonomic distinctness (AVD) index indicated varying degrees of community stability across sites. Key microbial taxa contributing to community variability were identified through Random Forest modeling, with Bacteriap25 and Sutterellaceae standing out among bacteria, and Archaeorhizomyces and Clavaria among fungi. Soil chemical properties, including pH, TN, TP, EC, and SOC, significantly correlated with microbial diversity, composition, and co-occurrence networks. Structural equation modeling revealed that geographic distribution patterns directly and indirectly influenced soil chemical properties and microbial communities. Overall, the study provides insights into the geographic distribution patterns of soil microbial communities associated with A. senticosus and highlights the need for further research into the underlying mechanisms shaping these patterns.
Collapse
Affiliation(s)
| | | | | | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (X.X.); (Y.Z.)
| | - Chunying Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (X.X.); (Y.Z.)
| |
Collapse
|
5
|
Bennett AE, Kelsey S, Saup C, Wilkins M, Malacrinò A. Selenium alters the gene content but not the taxonomic composition of the soil microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:92. [PMID: 39558431 PMCID: PMC11575018 DOI: 10.1186/s40793-024-00641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Microbiomes, essential to ecosystem processes, face strong selective forces that can drive rapid evolutionary adaptation. However, our understanding of evolutionary processes within natural systems remains limited. We investigated evolution in response to naturally occurring selenium in soils of different geological parental materials on the Western Slope of Colorado. Our study focused on examining changes in gene frequencies within microbial communities in response to selenium exposure. RESULTS Despite expectations of taxonomic composition shifts and increased gene content changes at high-selenium sites, we found no significant alterations in microbial diversity or community composition. Surprisingly, we observed a significant increase in differentially abundant genes within high-selenium sites. CONCLUSIONS These findings are suggestive that selection within microbiomes primarily drives the accumulation of genes among existing microbial taxa, rather than microbial species turnover, in response to strong stressors like selenium. Our study highlights an unusual system that allows us to examine evolution in response to the same stressor annually in a non-model system, contributing to understanding microbiome evolution beyond model systems.
Collapse
Affiliation(s)
- Alison E Bennett
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Scott Kelsey
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Casey Saup
- School of Earth Sciences, The Ohio State University, Columbus, OH, USA
| | - Mike Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy.
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
6
|
Wang YF, Liu YJ, Fu YM, Xu JY, Zhang TL, Cui HL, Qiao M, Rillig MC, Zhu YG, Zhu D. Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nat Commun 2024; 15:9788. [PMID: 39532872 PMCID: PMC11557862 DOI: 10.1038/s41467-024-54237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of microplastics on antibiotic resistance has attracted widespread attention. However, previous studies primarily focused on the effects of individual microplastics. In reality, diverse microplastic types accumulate in soil, and it remains less well studied whether microplastic diversity (i.e., variations in color, shape or polymer type) can be an important driver of increased antibiotic resistance gene (ARG) abundance. Here, we employed microcosm studies to investigate the effects of microplastic diversity on soil ARG dynamics through metagenomic analysis. Additionally, we evaluated the associated potential health risks by profiling virulence factor genes (VFGs) and mobile genetic elements (MGEs). Our findings reveal that as microplastic diversity increases, there is a corresponding rise in the abundance of soil ARGs, VFGs and MGEs. We further identified microbial adaptive strategies involving genes (changed genetic diversity), community (increased specific microbes), and functions (enriched metabolic pathways) that correlate with increased ARG abundance and may thus contribute to ARG dissemination. Additional global change factors, including fungicide application and plant diversity reduction, also contributed to elevated ARG abundance. Our findings suggest that, in addition to considering contamination levels, it is crucial to monitor microplastic diversity in ecosystems due to their potential role in driving the dissemination of antibiotic resistance through multiple pathways.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Yan-Jie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yan-Mei Fu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China.
| |
Collapse
|
7
|
Salamzade R, Tran PQ, Martin C, Manson AL, Gilmore MS, Earl AM, Anantharaman K, Kalan LR. zol & fai: large-scale targeted detection and evolutionary investigation of gene clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.07.544063. [PMID: 37333121 PMCID: PMC10274777 DOI: 10.1101/2023.06.07.544063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Many universally and conditionally important genes are genomically aggregated within clusters. Here, we introduce fai and zol, which together enable large-scale comparative analysis of different types of gene clusters and mobile-genetic elements (MGEs), such as biosynthetic gene clusters (BGCs) or viruses. Fundamentally, they overcome a current bottleneck to reliably perform comprehensive orthology inference at large scale across broad taxonomic contexts and thousands of genomes. First, fai allows the identification of orthologous instances of a query gene cluster of interest amongst a database of target genomes. Subsequently, zol enables reliable, context-specific inference of ortholog groups for individual protein-encoding genes across gene cluster instances. In addition, zol performs functional annotation and computes a variety of evolutionary statistics for each inferred ortholog group. Importantly, in comparison to tools for visual exploration of homologous relationships between gene clusters, zol can scale to thousands of gene cluster instances and produce detailed reports that are easy to digest. To showcase fai and zol, we apply them for: (i) longitudinal tracking of a virus in metagenomes, (ii) discovering novel population-level genetic insights of two common BGCs in the fungal species Aspergillus flavus, and (iii) uncovering large-scale evolutionary trends of a virulence-associated gene cluster across thousands of genomes from a diverse bacterial genus.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia Q. Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Freshwater and Marine Science Doctoral Program, University of Wisconsin-Madison, WI, USA
| | - Cody Martin
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Abigail L. Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael S. Gilmore
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School and Mass Eye and Ear, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School and Mass Eye and Ear, Boston, Massachusetts, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Molteni C, Forni D, Cagliani R, Sironi M. Comparative genomics reveal a novel phylotaxonomic order in the genus Fusobacterium. Commun Biol 2024; 7:1102. [PMID: 39244637 PMCID: PMC11380691 DOI: 10.1038/s42003-024-06825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Fusobacteria have been associated to different diseases, including colorectal cancer (CRC), but knowledge of which taxonomic groups contribute to specific conditions is incomplete. We analyzed the genetic diversity and relationships within the Fusobacterium genus. We report recent and ancestral recombination in core genes, indicating that fusobacteria have mosaic genomes and emphasizing that taxonomic demarcation should not rely on single genes/gene regions. Across databases, we found ample evidence of species miss-classification and of undescribed species, which are both expected to complicate disease association. By focusing on a lineage that includes F. periodonticum/pseudoperiodonticum and F. nucleatum, we show that genomes belong to four modern populations, but most known species/subspecies emerged from individual ancestral populations. Of these, the F. periodonticum/pseudoperiodonticum population experienced the lowest drift and displays the highest genetic diversity, in line with the less specialized distribution of these bacteria in oral sites. A highly drifted ancestral population instead contributed genetic ancestry to a new species, which includes genomes classified within the F. nucleatum animalis diversity in a recent CRC study. Thus, evidence herein calls for a re-analysis of F. nucleatum animalis features associated to CRC. More generally, our data inform future molecular profiling approaches to investigate the epidemiology of Fusobacterium-associated diseases.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
9
|
Li Y, Wang B, Wang Z, He W, Wang Y, Liu L, Yang H. The Response of Rhizosphere Microbial C and N-Cycling Gene Abundance of Sand-Fixing Shrub to Stand Age Following Desert Restoration. Microorganisms 2024; 12:1752. [PMID: 39338427 PMCID: PMC11434391 DOI: 10.3390/microorganisms12091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Rhizosphere microorganisms play a pivotal role in biogeochemical cycles, particularly in relation to carbon (C) and nitrogen (N) cycles. However, the impact of stand age on the composition of rhizosphere microbial communities and the abundance involved in C and N cycling remains largely unexplored in restoration ecosystems dominated by shrubs of temperate deserts. This study focuses on revealing changes in microbial composition and functional genes in the rhizosphere soil of Caragana korshinskii after revegetation, as well as their response mechanisms to changes in environmental factors. The alpha diversity of bacteria tended to increase with stand age, whereas that of fungi decreased. The abundance of denitrification; dissimilatory nitrate reduction to ammonium, nitrification, and ammonium assimilation; and C fixation-related gene levels increased with stand age, whereas those related to the degradation of starch, pectin, hemicellulose, cellulose, and aromatics decreased. The parameters MBC, MBN, and TC were the key factors affecting the bacterial community, whereas the fungal community was regulated by TN, EC, pH, and MBC. Stand age indirectly regulated C and N cycling functions of genes through altered soil properties and microbial community structures. This study presents a novel approach to accurately evaluate the C and N cycling dynamics within ecosystems at various stages of restoration.
Collapse
Affiliation(s)
- Yunfei Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bingyao Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
| | - Zhanjun Wang
- Institute of Desertification Control, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China;
| | - Wenqiang He
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yanli Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
| | - Lichao Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
| | - Haotian Yang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.L.); (B.W.); (W.H.); (L.L.)
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
10
|
Martín-Rodríguez AJ, Fernández-Juárez V, Valeriano VD, Mihindukulasooriya I, Ceresnova L, Joffré E, Jensie-Markopoulos S, Moore ERB, Sjöling Å. A hotspot of diversity: novel Shewanella species isolated from Baltic Sea sediments delineate a sympatric species complex. Int J Syst Evol Microbiol 2024; 74. [PMID: 39150443 PMCID: PMC11329295 DOI: 10.1099/ijsem.0.006480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Two bacterial strains, SP1S1-4T and SP2S1-2T, were isolated from sediment samples collected in the Stockholm archipelago in November 2021. Following whole-genome sequencing, these strains were identified as tentatively belonging to two novel Shewanella genospecies, based on digital DNA-DNA hybridization, as implemented in the Type Strain Genome Server. Shewanella septentrionalis, Shewanella baltica and Shewanella hafniensis were, in this order and within a narrow genomic relatedness range, their closest genotypic relatives. Additional sampling and sequencing efforts led to the retrieval of distinct isolates that were monophyletic with SP1S1-4T and SP2S1-2T, respectively, based on phylogenomic analysis of whole-genome sequences. Comparative analyses of genome sequence data, which included blast-based average nucleotide identity, core genome-based and core proteome-based phylogenomics, in addition to MALDI-TOF MS-based protein profiling, confirmed the distinctness of the putative novel genospecies with respect to their closest genotypic relatives. A comprehensive phenotypic characterisation of SP1S1-4T and SP2S1-2T revealed only minor differences with respect to the type strains of S. septentrionalis, S. baltica and S. hafniensis. Based on the collective phylogenomic, proteomic, and phenotypic evidence presented here, we describe two novel genospecies within the genus Shewanella, for which the names Shewanella scandinavica sp. nov. and Shewanella vaxholmensis sp. nov. are proposed. The type strains are, respectively, SP2S1-2T (=CCUG 76457T=CECT 30688T), with a draft genome sequence of 5 041 805 bp and a G+C content of 46.3 mol%, and SP1S1-4T (=CCUG 76453T=CECT 30684T), with a draft genome sequence of 4 920147 bp and a G+C content of 46.0 mol%. Our findings suggest the existence of a species complex formed by the species S. baltica, S. septentrionalis, S. scandinavica sp. nov., and S. vaxholmensis sp. nov., with S. hafniensis falling in the periphery, where distinct genomic species clusters could be identified. However, this does not exclude the possibility of a continuum of genomic diversity within this sedimental ecosystem, as discussed herein with additional sequenced isolates.
Collapse
Affiliation(s)
- Alberto J Martín-Rodríguez
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Víctor Fernández-Juárez
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Valerie D Valeriano
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Indiwari Mihindukulasooriya
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Livia Ceresnova
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Enrique Joffré
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Gothenburg, Sweden
| | - Susanne Jensie-Markopoulos
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Kehlet-Delgado H, Montoya AP, Jensen KT, Wendlandt CE, Dexheimer C, Roberts M, Torres Martínez L, Friesen ML, Griffitts JS, Porter SS. The evolutionary genomics of adaptation to stress in wild rhizobium bacteria. Proc Natl Acad Sci U S A 2024; 121:e2311127121. [PMID: 38507447 PMCID: PMC10990125 DOI: 10.1073/pnas.2311127121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics. We use comparative genomics and genetics to elucidate the evolutionary mechanisms of adaptation to physiologically stressful serpentine soils in rhizobial bacteria in western North American grasslands. In vitro experiments demonstrate that the presence of a locus of major effect, the nre operon, is necessary and sufficient to confer adaptation to nickel, a heavy metal enriched to toxic levels in serpentine soil, and a major axis of environmental soil chemistry variation. We find discordance between inferred evolutionary histories of the core genome and nreAXY genes, which often reside in putative genomic islands. This suggests that the evolutionary history of this adaptive variant is marked by frequent losses, and/or gains via horizontal acquisition across divergent rhizobium clades. However, different nre alleles confer distinct levels of nickel resistance, suggesting allelic substitution could also play a role in rhizobium adaptation to serpentine soil. These results illustrate that the interplay between evolution via gene gain and loss and evolution via allelic substitution may underlie adaptation in wild soil microbiota. Both processes are important to consider for understanding adaptive diversity in microbes and improving stress-adapted microbial inocula for human use.
Collapse
Affiliation(s)
| | | | - Kyson T. Jensen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT84602
| | | | | | - Miles Roberts
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| | | | - Maren L. Friesen
- Department of Plant Pathology, Washington State University, Pullman, WA99164
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA99164
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT84602
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| |
Collapse
|
12
|
Doré H, Eisenberg AR, Junkins EN, Leventhal GE, Ganesh A, Cordero OX, Paul BG, Valentine DL, O’Malley MA, Wilbanks EG. Targeted hypermutation of putative antigen sensors in multicellular bacteria. Proc Natl Acad Sci U S A 2024; 121:e2316469121. [PMID: 38354254 PMCID: PMC10907252 DOI: 10.1073/pnas.2316469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Diversity-generating retroelements (DGRs) are used by bacteria, archaea, and viruses as a targeted mutagenesis tool. Through error-prone reverse transcription, DGRs introduce random mutations at specific genomic loci, enabling rapid evolution of these targeted genes. However, the function and benefits of DGR-diversified proteins in cellular hosts remain elusive. We find that 82% of DGRs from one of the major monophyletic lineages of DGR reverse transcriptases are encoded by multicellular bacteria, which often have two or more DGR loci in their genomes. Using the multicellular purple sulfur bacterium Thiohalocapsa sp. PB-PSB1 as an example, we characterized nine distinct DGR loci capable of generating 10282 different combinations of target proteins. With environmental metagenomes from individual Thiohalocapsa aggregates, we show that most of PB-PSB1's DGR target genes are diversified across its biogeographic range, with spatial heterogeneity in the diversity of each locus. In Thiohalocapsa PB-PSB1 and other bacteria hosting this lineage of cellular DGRs, the diversified target genes are associated with NACHT-domain anti-phage defenses and putative ternary conflict systems previously shown to be enriched in multicellular bacteria. We propose that these DGR-diversified targets act as antigen sensors that confer a form of adaptive immunity to their multicellular consortia, though this remains to be experimentally tested. These findings could have implications for understanding the evolution of multicellularity, as the NACHT-domain anti-phage systems and ternary systems share both domain homology and conceptual similarities with the innate immune and programmed cell death pathways of plants and metazoans.
Collapse
Affiliation(s)
- H. Doré
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - A. R. Eisenberg
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| | - E. N. Junkins
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - G. E. Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Anakha Ganesh
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - O. X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - B. G. Paul
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - D. L. Valentine
- Department of Earth Science, University of California, Santa Barbara, CA93106
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - M. A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| | - E. G. Wilbanks
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| |
Collapse
|
13
|
Wang X, Feng X. Challenges in estimating effective population sizes from metagenome-assembled genomes. Front Microbiol 2024; 14:1331583. [PMID: 38249456 PMCID: PMC10797056 DOI: 10.3389/fmicb.2023.1331583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Effective population size (Ne) plays a critical role in shaping the relative efficiency between natural selection and genetic drift, thereby serving as a cornerstone for understanding microbial ecological dynamics. Direct Ne estimation relies on neutral genetic diversity within closely related genomes, which is, however, often constrained by the culturing difficulties for the vast majority of prokaryotic lineages. Metagenome-assembled genomes (MAGs) offer a high-throughput alternative for genomic data acquisition, yet their accuracy in Ne estimation has not been fully verified. This study examines the Thermococcus genus, comprising 66 isolated strains and 29 MAGs, to evaluate the reliability of MAGs in Ne estimation. Despite the even distribution across the Thermococcus phylogeny and the comparable internal average nucleotide identity (ANI) between isolate populations and MAG populations, our results reveal consistently lower Ne estimates from MAG populations. This trend of underestimation is also observed in various MAG populations across three other bacterial genera. The underrepresentation of genetic variation in MAGs, including loss of allele frequency data and variable genomic segments, likely contributes to the underestimation of Ne. Our findings underscore the necessity for caution when employing MAGs for evolutionary studies, which often depend on high-quality genome assemblies and nucleotide-level diversity.
Collapse
Affiliation(s)
- Xiaojun Wang
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyuan Feng
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
14
|
Santos-Medellín C, Blazewicz SJ, Pett-Ridge J, Firestone MK, Emerson JB. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils. Nat Ecol Evol 2023; 7:1809-1822. [PMID: 37770548 DOI: 10.1038/s41559-023-02207-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
As central members of soil trophic networks, viruses have the potential to drive substantial microbial mortality and nutrient turnover. Pinpointing viral contributions to terrestrial ecosystem processes remains a challenge, as temporal dynamics are difficult to unravel in the spatially and physicochemically heterogeneous soil environment. In Mediterranean grasslands, the first rainfall after seasonal drought provides an ecosystem reset, triggering microbial activity during a tractable window for capturing short-term dynamics. Here, we simulated precipitation in microcosms from four distinct dry grassland soils and generated 144 viromes, 84 metagenomes and 84 16S ribosomal RNA gene amplicon datasets to characterize viral, prokaryotic and relic DNA dynamics over 10 days. Vastly different viral communities in each soil followed remarkably similar successional trajectories. Wet-up triggered a significant increase in viral richness, followed by extensive compositional turnover. Temporal succession in prokaryotic communities was much less pronounced, perhaps suggesting differences in the scales of activity captured by viromes (representing recently produced, ephemeral viral particles) and total DNA. Still, differences in the relative abundances of Actinobacteria (enriched in dry soils) and Proteobacteria (enriched in wetted soils) matched those of their predicted phages, indicating viral predation of dominant bacterial taxa. Rewetting also rapidly depleted relic DNA, which subsequently reaccumulated, indicating substantial new microbial mortality in the days after wet-up, particularly of the taxa putatively under phage predation. Production of abundant, diverse viral particles via microbial host cell lysis appears to be a conserved feature of the early response to soil rewetting, and results suggest the potential for 'Cull-the-Winner' dynamics, whereby viruses infect and cull but do not decimate dominant host populations.
Collapse
Affiliation(s)
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California, Merced, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Mary K Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
15
|
Li L, Liu Y, Xiao Q, Xiao Z, Meng D, Yang Z, Deng W, Yin H, Liu Z. Dissecting the HGT network of carbon metabolic genes in soil-borne microbiota. Front Microbiol 2023; 14:1173748. [PMID: 37485539 PMCID: PMC10361621 DOI: 10.3389/fmicb.2023.1173748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/22/2023] [Indexed: 07/25/2023] Open
Abstract
The microbiota inhabiting soil plays a significant role in essential life-supporting element cycles. Here, we investigated the occurrence of horizontal gene transfer (HGT) and established the HGT network of carbon metabolic genes in 764 soil-borne microbiota genomes. Our study sheds light on the crucial role of HGT components in microbiological diversification that could have far-reaching implications in understanding how these microbial communities adapt to changing environments, ultimately impacting agricultural practices. In the overall HGT network of carbon metabolic genes in soil-borne microbiota, a total of 6,770 nodes and 3,812 edges are present. Among these nodes, phyla Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes are predominant. Regarding specific classes, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidia, Actinomycetia, Betaproteobacteria, and Clostridia are dominant. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional assignments of glycosyltransferase (18.5%), glycolysis/gluconeogenesis (8.8%), carbohydrate-related transporter (7.9%), fatty acid biosynthesis (6.5%), benzoate degradation (3.1%) and butanoate metabolism (3.0%) are primarily identified. Glycosyltransferase involved in cell wall biosynthesis, glycosylation, and primary/secondary metabolism (with 363 HGT entries), ranks first overwhelmingly in the list of most frequently identified carbon metabolic HGT enzymes, followed by pimeloyl-ACP methyl ester carboxylesterase, alcohol dehydrogenase, and 3-oxoacyl-ACP reductase. Such HGT events mainly occur in the peripheral functions of the carbon metabolic pathway instead of the core section. The inter-microbe HGT genetic traits in soil-borne microbiota genetic sequences that we recognized, as well as their involvement in the metabolism and regulation processes of carbon organic, suggest a pervasive and substantial effect of HGT on the evolution of microbes.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, China
| | - Qinzhi Xiao
- Yongzhou Tobacco Company of Hunan Province, Yongzhou, China
| | - Zhipeng Xiao
- Hengyang Tobacco Company of Hunan Province, Hengyang, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Wenqiao Deng
- Changsha Institute of Agricultural Science, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
16
|
Zhou Z, Tran PQ, Adams AM, Kieft K, Breier JA, Fortunato CS, Sheik CS, Huber JA, Li M, Dick GJ, Anantharaman K. Sulfur cycling connects microbiomes and biogeochemistry in deep-sea hydrothermal plumes. THE ISME JOURNAL 2023:10.1038/s41396-023-01421-0. [PMID: 37179442 DOI: 10.1038/s41396-023-01421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In globally distributed deep-sea hydrothermal vent plumes, microbiomes are shaped by the redox energy landscapes created by reduced hydrothermal vent fluids mixing with oxidized seawater. Plumes can disperse over thousands of kilometers and their characteristics are determined by geochemical sources from vents, e.g., hydrothermal inputs, nutrients, and trace metals. However, the impacts of plume biogeochemistry on the oceans are poorly constrained due to a lack of integrated understanding of microbiomes, population genetics, and geochemistry. Here, we use microbial genomes to understand links between biogeography, evolution, and metabolic connectivity, and elucidate their impacts on biogeochemical cycling in the deep sea. Using data from 36 diverse plume samples from seven ocean basins, we show that sulfur metabolism defines the core microbiome of plumes and drives metabolic connectivity in the microbial community. Sulfur-dominated geochemistry influences energy landscapes and promotes microbial growth, while other energy sources influence local energy landscapes. We further demonstrated the consistency of links among geochemistry, function, and taxonomy. Amongst all microbial metabolisms, sulfur transformations had the highest MW-score, a measure of metabolic connectivity in microbial communities. Additionally, plume microbial populations have low diversity, short migration history, and gene-specific sweep patterns after migrating from background seawater. Selected functions include nutrient uptake, aerobic oxidation, sulfur oxidation for higher energy yields, and stress responses for adaptation. Our findings provide the ecological and evolutionary bases of change in sulfur-driven microbial communities and their population genetics in adaptation to changing geochemical gradients in the oceans.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Freshwater and Marine Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alyssa M Adams
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John A Breier
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | | | - Cody S Sheik
- Department of Biology and Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, 55812, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
17
|
Edwards JA, Saran UB, Bonnette J, MacQueen A, Yin J, Nguyen TU, Schmutz J, Grimwood J, Pennacchio LA, Daum C, Glavina Del Rio T, Fritschi FB, Lowry DB, Juenger TE. Genetic determinants of switchgrass-root-associated microbiota in field sites spanning its natural range. Curr Biol 2023; 33:1926-1938.e6. [PMID: 37080198 DOI: 10.1016/j.cub.2023.03.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
A fundamental goal in plant microbiome research is to determine the relative impacts of host and environmental effects on root microbiota composition, particularly how host genotype impacts bacterial community composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host genetic diversity and grow plants outside of their native ranges, making the associations between host and microbes difficult to interpret. Here, we characterized the root microbiota of a large diversity panel of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, composed of 1,961 samples, suggest that field location is the primary determinant of microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, especially those in the Sphingomonadaceae family. Despite diverse compositions, relatively few highly prevalent taxa make up the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local genotypes preferentially recruit/filter for local microbes, supporting the idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core microbiota (i.e., microbes in >80% of samples), regardless of field location. Finally, we show a genetic relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.
Collapse
Affiliation(s)
- Joseph A Edwards
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA.
| | - Usha Bishnoi Saran
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Alice MacQueen
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jun Yin
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Tu Uyen Nguyen
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA; Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Len A Pennacchio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Chris Daum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tijana Glavina Del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, 91R183 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Felix B Fritschi
- Department of Plant Science and Technology, University of Missouri, Agriculture Bldg, 52, Columbia, MO 65201, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Rm 166, East Lansing, MI 48824, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas, Austin, 2415 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Dong X, Peng Y, Wang M, Woods L, Wu W, Wang Y, Xiao X, Li J, Jia K, Greening C, Shao Z, Hubert CRJ. Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps. Nat Commun 2023; 14:1127. [PMID: 36854684 PMCID: PMC9974965 DOI: 10.1038/s41467-023-36877-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Deep sea cold seep sediments host abundant and diverse microbial populations that significantly influence biogeochemical cycles. While numerous studies have revealed their community structure and functional capabilities, little is known about genetic heterogeneity within species. Here, we examine intraspecies diversity patterns of 39 abundant species identified in sediment layers down to 430 cm below the sea floor across six cold seep sites. These populations are grouped as aerobic methane-oxidizing bacteria, anaerobic methanotrophic archaea and sulfate-reducing bacteria. Different evolutionary trajectories are observed at the genomic level among these physiologically and phylogenetically diverse populations, with generally low rates of homologous recombination and strong purifying selection. Functional genes related to methane (pmoA and mcrA) and sulfate (dsrA) metabolisms are under strong purifying selection in most species investigated. These genes differ in evolutionary trajectories across phylogenetic clades but are functionally conserved across sites. Intrapopulation diversification of genomes and their mcrA and dsrA genes is depth-dependent and subject to different selection pressure throughout the sediment column redox zones at different sites. These results highlight the interplay between ecological processes and the evolution of key bacteria and archaea in deep sea cold seep extreme environments, shedding light on microbial adaptation in the subseafloor biosphere.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Muhua Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Laura Woods
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Wenxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, 510075, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
19
|
Ngugi DK, Salcher MM, Andrei AS, Ghai R, Klotz F, Chiriac MC, Ionescu D, Büsing P, Grossart HP, Xing P, Priscu JC, Alymkulov S, Pester M. Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes. SCIENCE ADVANCES 2023; 9:eadc9392. [PMID: 36724220 PMCID: PMC9891703 DOI: 10.1126/sciadv.adc9392] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ammonia-oxidizing archaea (AOA) play a key role in the aquatic nitrogen cycle. Their genetic diversity is viewed as the outcome of evolutionary processes that shaped ancestral transition from terrestrial to marine habitats. However, current genome-wide insights into AOA evolution rarely consider brackish and freshwater representatives or provide their divergence timeline in lacustrine systems. An unbiased global assessment of lacustrine AOA diversity is critical for understanding their origins, dispersal mechanisms, and ecosystem roles. Here, we leveraged continental-scale metagenomics to document that AOA species diversity in freshwater systems is remarkably low compared to marine environments. We show that the uncultured freshwater AOA, "Candidatus Nitrosopumilus limneticus," is ubiquitous and genotypically static in various large European lakes where it evolved 13 million years ago. We find that extensive proteome remodeling was a key innovation for freshwater colonization of AOA. These findings reveal the genetic diversity and adaptive mechanisms of a keystone species that has survived clonally in lakes for millennia.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Corresponding author.
| | - Michaela M. Salcher
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Adrian-Stefan Andrei
- Microbial Evogenomics Lab, Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Franziska Klotz
- Department of Biology, University of Konstanz, D-78457 Constance, Germany
| | - Maria-Cecilia Chiriac
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Danny Ionescu
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
| | - Petra Büsing
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, D-14469 Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Free University, D-14195 Berlin, Germany
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - John C. Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Salmor Alymkulov
- Institute of Physics, National Academy of Sciences of Kyrgyz Republic, Chui Avenue, 265-a, Bishkek 720071, Kyrgyzstan
| | - Michael Pester
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Institute of Microbiology, Technical University of Braunschweig, D-38108 Braunschweig, Germany
| |
Collapse
|
20
|
Santos-Medellín C, Estera-Molina K, Yuan M, Pett-Ridge J, Firestone MK, Emerson JB. Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands. Proc Natl Acad Sci U S A 2022; 119:e2209132119. [PMID: 36322723 PMCID: PMC9659419 DOI: 10.1073/pnas.2209132119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022] Open
Abstract
Viruses shape microbial communities, food web dynamics, and carbon and nutrient cycling in diverse ecosystems. However, little is known about the patterns and drivers of viral community composition, particularly in soil, precluding a predictive understanding of viral impacts on terrestrial habitats. To investigate soil viral community assembly processes, here we analyzed 43 soil viromes from a rainfall manipulation experiment in a Mediterranean grassland in California. We identified 5,315 viral populations (viral operational taxonomic units [vOTUs] with a representative sequence ≥10 kbp) and found that viral community composition exhibited a highly significant distance-decay relationship within the 200-m2 field site. This pattern was recapitulated by the intrapopulation microheterogeneity trends of prevalent vOTUs (detected in ≥90% of the viromes), which tended to exhibit negative correlations between spatial distance and the genomic similarity of their predominant allelic variants. Although significant spatial structuring was also observed in the bacterial and archaeal communities, the signal was dampened relative to the viromes, suggesting differences in local assembly drivers for viruses and prokaryotes and/or differences in the temporal scales captured by viromes and total DNA. Despite the overwhelming spatial signal, evidence for environmental filtering was revealed in a protein-sharing network analysis, wherein a group of related vOTUs predicted to infect actinobacteria was shown to be significantly enriched in low-moisture samples distributed throughout the field. Overall, our results indicate a highly diverse, dynamic, active, and spatially structured soil virosphere capable of rapid responses to changing environmental conditions.
Collapse
Affiliation(s)
| | - Katerina Estera-Molina
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - Mengting Yuan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
- Life & Environmental Sciences Department, University of California, Merced, CA 95343
| | - Mary K. Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - Joanne B. Emerson
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
21
|
Genome-Resolved Metagenomics Informs the Functional Ecology of Uncultured Acidobacteria in Redox Oscillated Sphagnum Peat. mSystems 2022; 7:e0005522. [PMID: 36036503 PMCID: PMC9599518 DOI: 10.1128/msystems.00055-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding microbial niche differentiation along ecological and geochemical gradients is critical for assessing the mechanisms of ecosystem response to hydrologic variation and other aspects of global change. The lineage-specific biogeochemical roles of the widespread phylum Acidobacteria in hydrologically sensitive ecosystems, such as peatlands, are poorly understood. Here, we demonstrate that Acidobacteria sublineages in Sphagnum peat respond differentially to redox fluctuations due to variable oxygen (O2) availability, a typical feature of hydrologic variation. Our genome-centric approach disentangles the mechanisms of niche differentiation between the Acidobacteria genera Holophaga and Terracidiphilus in response to the transient O2 exposure of peat in laboratory incubations. Interlineage functional diversification explains the enrichment of the otherwise rare Holophaga in anoxic peat after transient O2 exposure in comparison to Terracidiphilus dominance in continuously anoxic peat. The observed niche differentiation of the two lineages is linked to differences in their carbon degradation potential. Holophaga appear to be primarily reliant on carbohydrate oligomers and amino acids, produced during the prior period of O2 exposure via the O2-stimulated breakdown of peat carbon, rich in complex aromatics and carbohydrate polymers. In contrast, Terracidiphilus genomes are enriched in diverse respiratory hydrogenases and carbohydrate active enzymes, enabling the degradation of complex plant polysaccharides into monomers and oligomers for fermentation. We also present the first evidence for the potential contribution of Acidobacteria in peat nitrogen fixation. In addition to canonical molybdenum-based diazotrophy, the Acidobacteria genomes harbor vanadium and iron-only alternative nitrogenases. Together, the results better inform the different functional roles of Acidobacteria in peat biogeochemistry under global change. IMPORTANCE Acidobacteria are among the most widespread and abundant members of the soil bacterial community, yet their ecophysiology remains largely underexplored. In acidic peat systems, Acidobacteria are thought to perform key biogeochemical functions, yet the mechanistic links between the phylogenetic and metabolic diversity within this phylum and peat carbon transformations remain unclear. Here, we employ genomic comparisons of Acidobacteria subgroups enriched in laboratory incubations of peat under variable O2 availability to disentangle the lineage-specific functional roles of these microorganisms in peat carbon transformations. Our genome-centric approach reveals that the diversification of Acidobacteria subpopulations across transient O2 exposure is linked to differences in their carbon substrate preferences. We also identify a previously unknown functional potential for biological nitrogen fixation in these organisms. This has important implications for carbon, nitrogen, and trace metal cycling in peat systems.
Collapse
|
22
|
Abstract
The subseafloor is a vast habitat that supports microorganisms that have a global scale impact on geochemical cycles. Many of the endemic microbial communities inhabiting the subseafloor consist of small populations under growth-limited conditions. For small populations, stochastic evolutionary events can have large impacts on intraspecific population dynamics and allele frequencies. These conditions are fundamentally different from those experienced by most microorganisms in surface environments, and it is unknown how small population sizes and growth-limiting conditions influence evolution and population structure in the subsurface. Using a 2-year, high-resolution environmental time series, we examine the dynamics of microbial populations from cold, oxic crustal fluids collected from the subseafloor site North Pond, located near the mid-Atlantic ridge. Our results reveal rapid shifts in overall abundance, allele frequency, and strain abundance across the time points observed, with evidence for homologous recombination between coexisting lineages. We show that the subseafloor aquifer is a dynamic habitat that hosts microbial metapopulations that disperse frequently through the crustal fluids, enabling gene flow and recombination between microbial populations. The dynamism and stochasticity of microbial population dynamics in North Pond suggest that these forces are important drivers in the evolution of microbial populations in the vast subseafloor habitat.
Collapse
|
23
|
Differentiated Evolutionary Strategies of Genetic Diversification in Atlantic and Pacific Thaumarchaeal Populations. mSystems 2022; 7:e0147721. [PMID: 35695431 PMCID: PMC9239043 DOI: 10.1128/msystems.01477-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Some marine microbes are seemingly “ubiquitous,” thriving across a wide range of environmental conditions. While the increased depth in metagenomic sequencing has led to a growing body of research on within-population heterogeneity in environmental microbial populations, there have been fewer systematic comparisons and characterizations of population-level genetic diversity over broader expanses of time and space. Here, we investigated the factors that govern the diversification of ubiquitous microbial taxa found within and between ocean basins. Specifically, we use mapped metagenomic paired reads to examine the genetic diversity of ammonia-oxidizing archaeal (“Candidatus Nitrosopelagicus brevis”) populations in the Pacific (Hawaii Ocean Time-series [HOT]) and Atlantic (Bermuda Atlantic Time Series [BATS]) Oceans sampled over 2 years. We observed higher nucleotide diversity in “Ca. N. brevis” at HOT, driven by a higher rate of homologous recombination. In contrast, “Ca. N. brevis” at BATS featured a more open pangenome with a larger set of genes that were specific to BATS, suggesting a history of dynamic gene gain and loss events. Furthermore, we identified highly differentiated genes that were regulatory in function, some of which exhibited evidence of recent selective sweeps. These findings indicate that different modes of genetic diversification likely incur specific adaptive advantages depending on the selective pressures that they are under. Within-population diversity generated by the environment-specific strategies of genetic diversification is likely key to the ecological success of “Ca. N. brevis.” IMPORTANCE Ammonia-oxidizing archaea (AOA) are one of the most abundant chemolithoautotrophic microbes in the marine water column and are major contributors to global carbon and nitrogen cycling. Despite their ecological importance and geographical pervasiveness, there have been limited systematic comparisons and characterizations of their population-level genetic diversity over time and space. Here, we use metagenomic time series from two ocean observatories to address the fundamental questions of how abiotic and biotic factors shape the population-level genetic diversity and how natural microbial populations adapt across diverse habitats. We show that the marine AOA “Candidatus Nitrosopelagicus brevis” in different ocean basins exhibits distinct modes of genetic diversification in response to their selective regimes shaped by nutrient availability and patterns of environmental fluctuations. Our findings specific to “Ca. N. brevis” have broader implications, particularly in understanding the population-level responses to the changing climate and predicting its impact on biogeochemical cycles.
Collapse
|
24
|
Shikov AE, Malovichko YV, Nizhnikov AA, Antonets KS. Current Methods for Recombination Detection in Bacteria. Int J Mol Sci 2022; 23:ijms23116257. [PMID: 35682936 PMCID: PMC9181119 DOI: 10.3390/ijms23116257] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The role of genetic exchanges, i.e., homologous recombination (HR) and horizontal gene transfer (HGT), in bacteria cannot be overestimated for it is a pivotal mechanism leading to their evolution and adaptation, thus, tracking the signs of recombination and HGT events is importance both for fundamental and applied science. To date, dozens of bioinformatics tools for revealing recombination signals are available, however, their pros and cons as well as the spectra of solvable tasks have not yet been systematically reviewed. Moreover, there are two major groups of software. One aims to infer evidence of HR, while the other only deals with horizontal gene transfer (HGT). However, despite seemingly different goals, all the methods use similar algorithmic approaches, and the processes are interconnected in terms of genomic evolution influencing each other. In this review, we propose a classification of novel instruments for both HR and HGT detection based on the genomic consequences of recombination. In this context, we summarize available methodologies paying particular attention to the type of traceable events for which a certain program has been designed.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
25
|
Altermann E, Tegetmeyer HE, Chanyi RM. The evolution of bacterial genome assemblies - where do we need to go next? MICROBIOME RESEARCH REPORTS 2022; 1:15. [PMID: 38046358 PMCID: PMC10688829 DOI: 10.20517/mrr.2022.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 12/05/2023]
Abstract
Genome sequencing has fundamentally changed our ability to decipher and understand the genetic blueprint of life and how it changes over time in response to environmental and evolutionary pressures. The pace of sequencing is still increasing in response to advances in technologies, paving the way from sequenced genes to genomes to metagenomes to metagenome-assembled genomes (MAGs). Our ability to interrogate increasingly complex microbial communities through metagenomes and MAGs is opening up a tantalizing future where we may be able to delve deeper into the mechanisms and genetic responses emerging over time. In the near future, we will be able to detect MAG assembly variations within strains originating from diverging sub-populations, and one of the emerging challenges will be to capture these variations in a biologically relevant way. Here, we present a brief overview of sequencing technologies and the current state of metagenome assemblies to suggest the need to develop new data formats that can capture the genetic variations within strains and communities, which previously remained invisible due to sequencing technology limitations.
Collapse
Affiliation(s)
- Eric Altermann
- AgResearch Ltd., Private Bag 11008, Palmerston North 4410, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Massey University, School of Veterinary Science, Palmerston North 4100, New Zealand
| | - Halina E. Tegetmeyer
- AgResearch Ltd., Private Bag 11008, Palmerston North 4410, New Zealand
- Center for Biotechnology, Bielefeld University, Universitaetsstrasse 27, Bielefeld 33615, Germany
| | - Ryan M. Chanyi
- AgResearch Ltd., Private Bag 11008, Palmerston North 4410, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
26
|
Abstract
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.
Collapse
|
27
|
Palomo A, Dechesne A, Cordero OX, Smets BF. Evolutionary Ecology of Natural Comammox Nitrospira Populations. mSystems 2022; 7:e0113921. [PMID: 35014874 PMCID: PMC8751384 DOI: 10.1128/msystems.01139-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Microbes commonly exist in diverse and complex communities where species interact, and their genomic repertoires evolve over time. Our understanding of species interaction and evolution has increased during the last decades, but most studies of evolutionary dynamics are based on single species in isolation or in experimental systems composed of few interacting species. Here, we use the microbial ecosystem found in groundwater-fed sand filter as a model to avoid this limitation. In these open systems, diverse microbial communities experience relatively stable conditions, and the coupling between chemical and biological processes is generally well defined. Metagenomic analysis of 12 sand filters communities revealed systematic co-occurrence of at least five comammox Nitrospira species, likely promoted by low ammonium concentrations. These Nitrospira species showed intrapopulation sequence diversity, although possible clonal expansion was detected in a few abundant local comammox populations. Nitrospira species showed low homologous recombination and strong purifying selection, the latter process being especially strong in genes essential in energy metabolism. Positive selection was detected for genes related to resistance to foreign DNA and phages. We found that, compared to other habitats, groundwater-fed sand filters impose strong purifying selection and low recombination on comammox Nitrospira populations. These results suggest that evolutionary processes are more affected by habitat type than by species identity. Together, this study improves our understanding of species interaction and evolution in complex microbial communities and sheds light on the environmental dependency of evolutionary processes. IMPORTANCE Microbial species interact with each other and their environment (ecological processes) and undergo changes in their genomic repertoire over time (evolutionary processes). How these two classes of processes interact is largely unknown, especially for complex communities, as most studies of microbial evolutionary dynamics consider single species in isolation or a few interacting species in simplified experimental systems. In this study, these limitations are circumvented by examining the microbial communities found in stable and well-described groundwater-fed sand filters. Combining metagenomics and strain-level analyses, we identified the microbial interactions and evolutionary processes affecting comammox Nitrospira, a recently discovered bacterial type capable of performing the whole nitrification process. We found that abundant and co-occurrent Nitrospira populations in groundwater-fed sand filters are characterized by low recombination and strong purifying selection. In addition, by comparing these observations with those obtained from Nitrospira species inhabiting other environments, we revealed that evolutionary processes are more affected by habitat type than by species identity.
Collapse
Affiliation(s)
- Alejandro Palomo
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Otto X. Cordero
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Barth F. Smets
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
28
|
Keren R, Méheust R, Santini JM, Thomas A, West-Roberts J, Banfield JF, Alvarez-Cohen L. Global genomic analysis of microbial biotransformation of arsenic highlights the importance of arsenic methylation in environmental and human microbiomes. Comput Struct Biotechnol J 2022; 20:559-572. [PMID: 36284711 PMCID: PMC9582695 DOI: 10.1016/j.csbj.2021.12.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Arsenic is a ubiquitous toxic element, the global cycle of which is highly affected by microbial redox reactions and assimilation into organoarsenic compounds through sequential methylation reactions. While microbial biotransformation of arsenic has been studied for decades, the past years have seen the discovery of multiple new genes related to arsenic metabolism. Still, most studies focus on a small set of key genes or a small set of cultured microorganisms. Here, we leveraged the recently greatly expanded availability of microbial genomes of diverse organisms from lineages lacking cultivated representatives, including those reconstructed from metagenomes, to investigate genetic repertoires of taxonomic and environmental controls on arsenic metabolic capacities. Based on the collection of arsenic-related genes, we identified thirteen distinct metabolic guilds, four of which combine the aio and ars operons. We found that the best studied phyla have very different combinations of capacities than less well-studied phyla, including phyla lacking isolated representatives. We identified a distinct arsenic gene signature in the microbiomes of humans exposed or likely exposed to drinking water contaminated by arsenic and that arsenic methylation is important in soil and in human microbiomes. Thus, the microbiomes of humans exposed to arsenic have the potential to exacerbate arsenic toxicity. Finally, we show that machine learning can predict bacterial arsenic metabolism capacities based on their taxonomy and the environment from which they were sampled.
Collapse
Affiliation(s)
- Ray Keren
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Raphaël Méheust
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Joanne M Santini
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Alex Thomas
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Jacob West-Roberts
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
29
|
Shoemaker WR, Chen D, Garud NR. Comparative Population Genetics in the Human Gut Microbiome. Genome Biol Evol 2022; 14:evab116. [PMID: 34028530 PMCID: PMC8743038 DOI: 10.1093/gbe/evab116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic variation in the human gut microbiome is responsible for conferring a number of crucial phenotypes like the ability to digest food and metabolize drugs. Yet, our understanding of how this variation arises and is maintained remains relatively poor. Thus, the microbiome remains a largely untapped resource, as the large number of coexisting species in the microbiome presents a unique opportunity to compare and contrast evolutionary processes across species to identify universal trends and deviations. Here we outline features of the human gut microbiome that, while not unique in isolation, as an assemblage make it a system with unparalleled potential for comparative population genomics studies. We consciously take a broad view of comparative population genetics, emphasizing how sampling a large number of species allows researchers to identify universal evolutionary dynamics in addition to new genes, which can then be leveraged to identify exceptional species that deviate from general patterns. To highlight the potential power of comparative population genetics in the microbiome, we reanalyze patterns of purifying selection across ∼40 prevalent species in the human gut microbiome to identify intriguing trends which highlight functional categories in the microbiome that may be under more or less constraint.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Daisy Chen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
- Department of Human Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
30
|
Chevrette MG, Gavrilidou A, Mantri S, Selem-Mojica N, Ziemert N, Barona-Gómez F. The confluence of big data and evolutionary genome mining for the discovery of natural products. Nat Prod Rep 2021; 38:2024-2040. [PMID: 34787598 DOI: 10.1039/d1np00013f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers literature between 2003-2021The development and application of genome mining tools has given rise to ever-growing genetic and chemical databases and propelled natural products research into the modern age of Big Data. Likewise, an explosion of evolutionary studies has unveiled genetic patterns of natural products biosynthesis and function that support Darwin's theory of natural selection and other theories of adaptation and diversification. In this review, we aim to highlight how Big Data and evolutionary thinking converge in the study of natural products, and how this has led to an emerging sub-discipline of evolutionary genome mining of natural products. First, we outline general principles to best utilize Big Data in natural products research, addressing key considerations needed to provide evolutionary context. We then highlight successful examples where Big Data and evolutionary analyses have been combined to provide bioinformatic resources and tools for the discovery of novel natural products and their biosynthetic enzymes. Rather than an exhaustive list of evolution-driven discoveries, we highlight examples where Big Data and evolutionary thinking have been embraced for the evolutionary genome mining of natural products. After reviewing the nascent history of this sub-discipline, we discuss the challenges and opportunities of genomic and metabolomic tools with evolutionary foundations and/or implications and provide a future outlook for this emerging and exciting field of natural product research.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Athina Gavrilidou
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Shrikant Mantri
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany. .,Computational Biology Laboratory, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Nelly Selem-Mojica
- Laboratorio de Evolución de la Diversidad Metabólica, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Guanajuato, Mexico.
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Francisco Barona-Gómez
- Laboratorio de Evolución de la Diversidad Metabólica, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
31
|
Metagenomic Sequencing of Multiple Soil Horizons and Sites in Close Vicinity Revealed Novel Secondary Metabolite Diversity. mSystems 2021; 6:e0101821. [PMID: 34636675 PMCID: PMC8510542 DOI: 10.1128/msystems.01018-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Discovery of novel antibiotics is crucial for combating rapidly spreading antimicrobial resistance and new infectious diseases. Most of the clinically used antibiotics are natural products—secondary metabolites produced by soil microbes that can be cultured in the lab. Rediscovery of these secondary metabolites during discovery expeditions costs both time and resources. Metagenomics approaches can overcome this challenge by capturing both culturable and unculturable hidden microbial diversity. To be effective, such an approach should address questions like the following. Which sequencing method is better at capturing the microbial diversity and biosynthesis potential? What part of the soil should be sampled? Can patterns and correlations from such big-data explorations guide future novel natural product discovery surveys? Here, we address these questions by a paired amplicon and shotgun metagenomic sequencing survey of samples from soil horizons of multiple forest sites very close to each other. Metagenome mining identified numerous novel biosynthetic gene clusters (BGCs) and enzymatic domain sequences. Hybrid assembly of both long reads and short reads improved the metagenomic assembly and resulted in better BGC annotations. A higher percentage of novel domains was recovered from shotgun metagenome data sets than from amplicon data sets. Overall, in addition to revealing the biosynthetic potential of soil microbes, our results suggest the importance of sampling not only different soils but also their horizons to capture microbial and biosynthetic diversity and highlight the merits of metagenome sequencing methods. IMPORTANCE This study helped uncover the biosynthesis potential of forest soils via exploration of shotgun metagenome and amplicon sequencing methods and showed that both methods are needed to expose the full microbial diversity in soil. Based on our metagenome mining results, we suggest revising the historical strategy of sampling soils from far-flung places, as we found a significant number of novel and diverse BGCs and domains even in different soils that are very close to each other. Furthermore, sampling of different soil horizons can reveal the additional diversity that often remains hidden and is mainly caused by differences in environmental key parameters such as soil pH and nutrient content. This paired metagenomic survey identified diversity patterns and correlations, a step toward developing a rational approach for future natural product discovery surveys.
Collapse
|
32
|
Li WL, Dong X, Lu R, Zhou YL, Zheng PF, Feng D, Wang Y. Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments. Environ Microbiol 2021; 23:6844-6858. [PMID: 34622529 DOI: 10.1111/1462-2920.15796] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Microbial sulfate reduction is largely associated with anaerobic methane oxidation and alkane degradation in sulfate-methane transition zone (SMTZ) of deep-sea cold seeps. How the sulfur cycling is mediated by microbes near SMTZ has not been fully understood. In this study, we detected a shallow SMTZ in three of eight sediment cores sampled from two cold seep areas in the South China Sea. One hundred ten genomes representing sulfur-oxidizing bacteria (SOB) and sulfur-reducing bacteria (SRB) strains were identified from three SMTZ-bearing cores. In the layers above SMTZ, SOB were mostly constituted by Campylobacterota, Gammaproteobacteria and Alphaproteobacteria that probably depended on nitrogen oxides and/or oxygen for oxidation of sulfide and thiosulfate in near-surface sediment layers. In the layers below the SMTZ, the deltaproteobacterial SRB genomes and metatranscriptomes revealed CO2 fixation by Wood-Ljungdahl pathway, sulfate reduction and nitrogen fixation for syntrophic or fermentative lifestyle. A total of 68% of the metagenome assembled genomes were not adjacent to known species in a phylogenomic tree, indicating a high diversity of bacteria involved in sulfur cycling. With the large number of genomes for SOB and SRB, our study uncovers the microbial populations that potentially mediate sulfur metabolism and associated carbon and nitrogen cycles, which sheds light on complex biogeochemical processes in deep-sea environments.
Collapse
Affiliation(s)
- Wen-Li Li
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Rui Lu
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Li Zhou
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng-Fei Zheng
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| | - Dong Feng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Yong Wang
- Department of Life Science, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, China
| |
Collapse
|
33
|
Bouma-Gregson K, Crits-Christoph A, Olm MR, Power ME, Banfield JF. Microcoleus (Cyanobacteria) form watershed-wide populations without strong gradients in population structure. Mol Ecol 2021; 31:86-103. [PMID: 34608694 PMCID: PMC9298114 DOI: 10.1111/mec.16208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
The relative importance of separation by distance and by environment to population genetic diversity can be conveniently tested in river networks, where these two drivers are often independently distributed over space. To evaluate the importance of dispersal and environmental conditions in shaping microbial population structures, we performed genome‐resolved metagenomic analyses of benthic Microcoleus‐dominated cyanobacterial mats collected in the Eel and Russian River networks (California, USA). The 64 Microcoleus genomes were clustered into three species that shared >96.5% average nucleotide identity (ANI). Most mats were dominated by one strain, but minor alleles within mats were often shared, even over large spatial distances (>300 km). Within the most common Microcoleus species, the ANI between the dominant strains within mats decreased with increasing spatial separation. However, over shorter spatial distances (tens of kilometres), mats from different subwatersheds had lower ANI than mats from the same subwatershed, suggesting that at shorter spatial distances environmental differences between subwatersheds in factors like canopy cover, conductivity, and mean annual temperature decreases ANI. Since mats in smaller creeks had similar levels of nucleotide diversity (π) as mats in larger downstream subwatersheds, within‐mat genetic diversity does not appear to depend on the downstream accumulation of upstream‐derived strains. The four‐gamete test and sequence length bias suggest recombination occurs between almost all strains within each species, even between populations separated by large distances or living in different habitats. Overall, our results show that, despite some isolation by distance and environmental conditions, sufficient gene‐flow occurs among cyanobacterial strains to prevent either driver from producing distinctive population structures across the watershed.
Collapse
Affiliation(s)
- Keith Bouma-Gregson
- Office of Information Management and Analysis, State Water Resources Control Board, Sacramento, California, USA.,Earth and Planetary Science Department, University of California, Berkeley, California, USA
| | | | - Mathew R Olm
- Plant and Microbial Ecology Department, University of California, Berkeley, California, USA
| | - Mary E Power
- Integrative Biology Department, University of California, Berkeley, California, USA
| | - Jillian F Banfield
- Earth and Planetary Science Department, University of California, Berkeley, California, USA.,Plant and Microbial Ecology Department, University of California, Berkeley, California, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
34
|
Contribution of single-cell omics to microbial ecology. Trends Ecol Evol 2021; 37:67-78. [PMID: 34602304 DOI: 10.1016/j.tree.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Micro-organisms play key roles in various ecosystems, but many of their functions and interactions remain undefined. To investigate the ecological relevance of microbial communities, new molecular tools are being developed. Among them, single-cell omics assessing genetic diversity at the population and community levels and linking each individual cell to its functions is gaining interest in microbial ecology. By giving access to a wider range of ecological scales (from individual to community) than culture-based approaches and meta-omics, single-cell omics can contribute not only to micro-organisms' genomic and functional identification but also to the testing of concepts in ecology. Here, we discuss the contribution of single-cell omics to possible breakthroughs in concepts and knowledge on microbial ecosystems and ecoevolutionary processes.
Collapse
|
35
|
The Tempo and Mode of Adaptation in a Complex Natural Population: the Microbiome. mSystems 2021; 6:e0077921. [PMID: 34427524 PMCID: PMC8407300 DOI: 10.1128/msystems.00779-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation is a fundamental process by which populations evolve to grow more fit in their environments. Recent studies are starting to show us that commensal microbes can evolve on short timescales of days and months, suggesting that ecological changes are not the only means by which microbes in complex natural populations respond to selection pressures. However, we still lack a complete understanding of the tempo and mode of adaptation in microbiomes given the many complex forces that natural populations experience, which include ecological pressures, changes in population size, spatial structure, and fluctuations in selection pressures. Advances in modeling complex populations and scenarios will allow us to understand adaptation not only in microbiomes but also more generically in other natural populations that experience similar complexities.
Collapse
|
36
|
Roodgar M, Good BH, Garud NR, Martis S, Avula M, Zhou W, Lancaster SM, Lee H, Babveyh A, Nesamoney S, Pollard KS, Snyder MP. Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment. Genome Res 2021; 31:1433-1446. [PMID: 34301627 PMCID: PMC8327913 DOI: 10.1101/gr.265058.120] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Gut microbial communities can respond to antibiotic perturbations by rapidly altering their taxonomic and functional composition. However, little is known about the strain-level processes that drive this collective response. Here, we characterize the gut microbiome of a single individual at high temporal and genetic resolution through a period of health, disease, antibiotic treatment, and recovery. We used deep, linked-read metagenomic sequencing to track the longitudinal trajectories of thousands of single nucleotide variants within 36 species, which allowed us to contrast these genetic dynamics with the ecological fluctuations at the species level. We found that antibiotics can drive rapid shifts in the genetic composition of individual species, often involving incomplete genome-wide sweeps of pre-existing variants. These genetic changes were frequently observed in species without obvious changes in species abundance, emphasizing the importance of monitoring diversity below the species level. We also found that many sweeping variants quickly reverted to their baseline levels once antibiotic treatment had concluded, demonstrating that the ecological resilience of the microbiota can sometimes extend all the way down to the genetic level. Our results provide new insights into the population genetic forces that shape individual microbiomes on therapeutically relevant timescales, with potential implications for personalized health and disease.
Collapse
Affiliation(s)
- Morteza Roodgar
- Department of Genetics, Stanford University, Stanford, California 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Stephen Martis
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Mohan Avula
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Samuel M Lancaster
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Hayan Lee
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Afshin Babveyh
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Sophia Nesamoney
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, California 94158, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94158, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
37
|
Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution. Nat Microbiol 2021; 6:1021-1030. [PMID: 34267358 DOI: 10.1038/s41564-021-00935-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Natural bacterial populations can display enormous genomic diversity, primarily in the form of gene content variation caused by the frequent exchange of DNA with the local environment. However, the ecological drivers of genomic variability and the role of selection remain controversial. Here, we address this gap by developing a nationwide atlas of 1,854 Listeria isolates, collected systematically from soils across the contiguous United States. We found that Listeria was present across a wide range of environmental parameters, being mainly controlled by soil moisture, molybdenum and salinity concentrations. Whole-genome data from 594 representative strains allowed us to decompose Listeria diversity into 12 phylogroups, each with large differences in habitat breadth and endemism. 'Cosmopolitan' phylogroups, prevalent across many different habitats, had more open pangenomes and displayed weaker linkage disequilibrium, reflecting higher rates of gene gain and loss, and allele exchange than phylogroups with narrow habitat ranges. Cosmopolitan phylogroups also had a large fraction of genes affected by positive selection. The effect of positive selection was more pronounced in the phylogroup-specific core genome, suggesting that lineage-specific core genes are important drivers of adaptation. These results indicate that genome flexibility and recombination are the consequence of selection to survive in variable environments.
Collapse
|
38
|
Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek B, Morowitz MJ, Banfield JF. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat Biotechnol 2021; 39:727-736. [PMID: 33462508 PMCID: PMC9223867 DOI: 10.1038/s41587-020-00797-0] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Coexisting microbial cells of the same species often exhibit genetic variation that can affect phenotypes ranging from nutrient preference to pathogenicity. Here we present inStrain, a program that uses metagenomic paired reads to profile intra-population genetic diversity (microdiversity) across whole genomes and compares microbial populations in a microdiversity-aware manner, greatly increasing the accuracy of genomic comparisons when benchmarked against existing methods. We use inStrain to profile >1,000 fecal metagenomes from newborn premature infants and find that siblings share significantly more strains than unrelated infants, although identical twins share no more strains than fraternal siblings. Infants born by cesarean section harbor Klebsiella with significantly higher nucleotide diversity than infants delivered vaginally, potentially reflecting acquisition from hospital rather than maternal microbiomes. Genomic loci that show diversity in individual infants include variants found between other infants, possibly reflecting inoculation from diverse hospital-associated sources. inStrain can be applied to any metagenomic dataset for microdiversity analysis and rigorous strain comparison.
Collapse
Affiliation(s)
- Matthew R. Olm
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | - Keith Bouma-Gregson
- Office of Information Management and Analysis, California State Water Resources Control Board, Sacramento, CA, USA
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Chan Zuckerberg Biohub, San Francisco, CA, USA,Corresponding author:
| |
Collapse
|
39
|
Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient. Proc Natl Acad Sci U S A 2021; 118:2101254118. [PMID: 33906949 PMCID: PMC8106337 DOI: 10.1073/pnas.2101254118] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence suggests that evolutionary processes frequently shape ecological patterns; however, most microbiome studies thus far have focused on only the ecological responses of these communities. By using parallel field experiments and focusing in on a model soil bacterium, we showed that bacterial “species” are differentially adapted to local climates, leading to changes in their composition. Furthermore, we detected strain-level evolution, providing direct evidence that both ecological and evolutionary processes operate on annual timescales. The consideration of eco-evolutionary dynamics may therefore be important to understand the response of soil microbiomes to future environmental change. Microbial community responses to environmental change are largely associated with ecological processes; however, the potential for microbes to rapidly evolve and adapt remains relatively unexplored in natural environments. To assess how ecological and evolutionary processes simultaneously alter the genetic diversity of a microbiome, we conducted two concurrent experiments in the leaf litter layer of soil over 18 mo across a climate gradient in Southern California. In the first experiment, we reciprocally transplanted microbial communities from five sites to test whether ecological shifts in ecotypes of the abundant bacterium, Curtobacterium, corresponded to past adaptive differentiation. In the transplanted communities, ecotypes converged toward that of the native communities growing on a common litter substrate. Moreover, these shifts were correlated with community-weighted mean trait values of the Curtobacterium ecotypes, indicating that some of the trait variation among ecotypes could be explained by local adaptation to climate conditions. In the second experiment, we transplanted an isogenic Curtobacterium strain and tracked genomic mutations associated with the sites across the same climate gradient. Using a combination of genomic and metagenomic approaches, we identified a variety of nonrandom, parallel mutations associated with transplantation, including mutations in genes related to nutrient acquisition, stress response, and exopolysaccharide production. Together, the field experiments demonstrate how both demographic shifts of previously adapted ecotypes and contemporary evolution can alter the diversity of a soil microbiome on the same timescale.
Collapse
|
40
|
Klasek SA, Brock MT, Morrison HG, Weinig C, Maignien L. Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure. Front Microbiol 2021; 12:645784. [PMID: 33897658 PMCID: PMC8058099 DOI: 10.3389/fmicb.2021.645784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
Microorganisms residing on root surfaces play a central role in plant development and performance and may promote growth in agricultural settings. Studies have started to uncover the environmental parameters and host interactions governing their assembly. However, soil microbial communities are extremely diverse and heterogeneous, showing strong variations over short spatial scales. Here, we quantify the relative effect of meter-scale variation in soil bacterial community composition among adjacent field microsites, to better understand how microbial communities vary by host plant genotype as well as soil microsite heterogeneity. We used bacterial 16S rDNA amplicon sequencing to compare rhizosphere communities from four Brassica rapa cultivars grown in three contiguous field plots (blocks) and evaluated the relative contribution of resident soil communities and host genotypes in determining rhizosphere community structure. We characterize concomitant meter-scale variation in bacterial community structure among soils and rhizospheres and show that this block-scale variability surpasses the influence of host genotype in shaping rhizosphere communities. We identified biomarker amplicon sequence variants (ASVs) associated with bulk soil and rhizosphere habitats, each block, and three of four cultivars. Numbers and percent abundances of block-specific biomarkers in rhizosphere communities far surpassed those from bulk soils. These results highlight the importance of fine-scale variation in the pool of colonizing microorganisms during rhizosphere assembly and demonstrate that microsite variation may constitute a confounding effect while testing biotic and abiotic factors governing rhizosphere community structure.
Collapse
Affiliation(s)
- Scott A Klasek
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, United States.,Department of Botany, University of Wyoming, Laramie, WY, United States
| | - Marcus T Brock
- Department of Botany, University of Wyoming, Laramie, WY, United States
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, United States
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, United States.,Program in Ecology, University of Wyoming, Laramie, WY, United States.,Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Loïs Maignien
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, United States.,UMR 6197, Laboratory of Microbiology of Extreme Environments, Institut Européen de la Mer, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
41
|
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu Rev Microbiol 2020; 74:81-100. [PMID: 32530732 DOI: 10.1146/annurev-micro-022620-014327] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jonathan M Conway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Sarah Gilbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Paulo José Pereira Lima Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo 13418-900, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|