1
|
Ibarguren C, Bleriot I, Blasco L, Fernández-García L, Ortiz-Cartagena C, Arman L, Barrio-Pujante A, Rodríguez OM, García-Contreras R, Wood TK, Tomás M. The world of phage tail-like bacteriocins: State of the art and biotechnological perspectives. Microbiol Res 2025; 295:128121. [PMID: 40015081 DOI: 10.1016/j.micres.2025.128121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
In the struggle for resources, bacteria have developed different systems of competition, including the type VI secretion system (T6SS) and phage tail-like bacteriocins (PTLBs), that act by killing other bacterial species or strains from the same species. The emergence of antimicrobial resistance (AMR) is an urgent global health problem. In this context, the need to develop new antimicrobial agents has put PTLBs in the spotlight. This review focuses on the most relevant aspects of PTLBs such as their structural features, biology, the technological tools to improve their application, and the most importantly their patents.
Collapse
Affiliation(s)
- Clara Ibarguren
- Multidisciplinary and Translational Microbiology group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain; Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Multidisciplinary and Translational Microbiology group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain; Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Lucia Blasco
- Multidisciplinary and Translational Microbiology group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain; Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Laura Fernández-García
- Multidisciplinary and Translational Microbiology group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain; Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Concha Ortiz-Cartagena
- Multidisciplinary and Translational Microbiology group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain; Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Lucia Arman
- Multidisciplinary and Translational Microbiology group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain; Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Antonio Barrio-Pujante
- Multidisciplinary and Translational Microbiology group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain; Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Olaya Menéndez Rodríguez
- Multidisciplinary and Translational Microbiology group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain; Microbiology Service Hospital University Puerta de Hierro, Madrid, Spain
| | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - María Tomás
- Multidisciplinary and Translational Microbiology group (MicroTM), Biomedical Research Institute of A Coruña (INIBIC), Microbiology Service, University Hospital of A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain; Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain; MEPRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain.
| |
Collapse
|
2
|
Borowicz M, Krzyżanowska DM, Sobolewska M, Narajczyk M, Mruk I, Czaplewska P, Pédron J, Barny M, Canto PY, Dziadkowiec J, Czajkowski R. Tailocin-Mediated Interactions Among Soft Rot Pectobacteriaceae. Mol Ecol 2025; 34:e17728. [PMID: 40087984 PMCID: PMC11974492 DOI: 10.1111/mec.17728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Bacteria carry phage-derived elements within their genomes, some of which can produce phage-like particles (tailocins) used as weapons to kill kin strains in response to environmental conditions. This study investigates the production and activity of tailocins by plant-pathogenic bacteria: Pectobacterium, Dickeya, and Musicola genera, which compete for niche, providing an attractive model to study the ecological role of tailocins. Microscopy revealed that most analysed strains (88%) produced tailocins. Tailocin-mediated killing interactions were assessed across 351 strain pairs, showing that Dickeya spp. had a higher likelihood of killing neighbours (57.1%) than Pectobacterium spp. (21.6%). Additionally, Dickeya spp. strains exhibited broader phylogenetic killing, targeting both Pectobacterium spp. and Musicola sp., while Pectobacterium spp. tailocins were genus-specific. The mutual (bilateral) killing was observed in 33.9% of interactions, predominantly within Dickeya spp. Although tailocins were morphologically indistinguishable between producers, genomic analyses identified conserved clusters having diverse structural and organisational differences between Pectobacterium spp. and Dickeya spp. tailocins. This suggests different origins of these particles. Induction experiments demonstrated that tailocin production was boosted by hydrogen peroxide, supporting the role of these particles in bacteria-bacteria competition during plant infection when plants produce ROS to protect themselves from pathogens. Tailocins were detectable in infected potato tissue but not in river water, highlighting the particular ecological relevance of tailocins in these studied environments.
Collapse
Affiliation(s)
- Marcin Borowicz
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Dorota M. Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Marta Sobolewska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | | | - Inez Mruk
- Laboratory of Mass Spectrometry‐Core Facility Laboratories, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry‐Core Facility Laboratories, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Jacques Pédron
- Institute of Ecology and Environmental Sciences of ParisSorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618ParisFrance
| | - Marie‐Anne Barny
- Institute of Ecology and Environmental Sciences of ParisSorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618ParisFrance
| | - Pierre Yves Canto
- Institute of Ecology and Environmental Sciences of ParisSorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618ParisFrance
| | - Joanna Dziadkowiec
- Departments of Geosciences and Physics, The Njord CentreUniversity of OsloOsloNorway
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| |
Collapse
|
3
|
Mei M, Estrada I, Diggle SP, Goldberg JB. R-pyocins as targeted antimicrobials against Pseudomonas aeruginosa. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:17. [PMID: 40021925 PMCID: PMC11871291 DOI: 10.1038/s44259-025-00088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025]
Abstract
R-pyocins, bacteriocin-like proteins produced by Pseudomonas aeruginosa, present a promising alternative to phage therapy and/or adjunct to currently used antimicrobials in treating bacterial infections due to their targeted specificity, lack of replication, and stability. This review explores the structural, mechanistic, and therapeutic aspects of R-pyocins, including their potential for chronic infection management, and discusses recent advances in delivery methods, paving the way for novel antimicrobial applications in clinical settings.
Collapse
Affiliation(s)
- Madeline Mei
- Division of Pulmonary, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Isaac Estrada
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Dams D, Pas C, Latka A, Drulis-Kawa Z, Fieseler L, Briers Y. A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of Escherichia coli and Klebsiella pneumoniae. Antibiotics (Basel) 2025; 14:104. [PMID: 39858389 PMCID: PMC11762384 DOI: 10.3390/antibiotics14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from Pseudomonas aeruginosa, the process is labor-intensive, limiting broader application. Methods: We introduce a VersaTile-driven R2 tailocin engineering and screening platform to scale up RBP grafting. Results: This platform achieved three key milestones: (I) engineering R2 tailocins specific to Escherichia coli serogroups O26, O103, O104, O111, O145, O146, and O157; (II) reprogramming R2 tailocins to target, for the first time, the capsule and a new species, specifically the capsular serotype K1 of E. coli and K11 and K63 of Klebsiella pneumoniae; (III) creating the first bivalent tailocin with a branched RBP and cross-species activity, effective against both E. coli K1 and K. pneumoniae K11. Over 90% of engineered tailocins were effective, with clear pathways for further optimization identified. Conclusions: This work lays the groundwork for a scalable platform for the development of engineered tailocins, marking an important step towards making R2 tailocins a practical therapeutic tool for targeted bacterial infections.
Collapse
Affiliation(s)
- Dorien Dams
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Célia Pas
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Agnieszka Latka
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, Food Microbiology Research Group, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland;
| | - Yves Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| |
Collapse
|
5
|
Anbo M, Lubna MA, Moustafa DA, Paiva TO, Serioli L, Zor K, Sternberg C, Jeannot K, Ciofu O, Dufrêne YF, Goldberg JB, Jelsbak L. Serotype switching in Pseudomonas aeruginosa ST111 enhances adhesion and virulence. PLoS Pathog 2024; 20:e1012221. [PMID: 39621751 PMCID: PMC11637443 DOI: 10.1371/journal.ppat.1012221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/12/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Evolution of the highly successful and multidrug resistant clone ST111 in Pseudomonas aeruginosa involves serotype switching from O-antigen O4 to O12. How expression of a different O-antigen serotype alters pathogen physiology to enable global dissemination of this high-risk clone-type is not understood. Here, we engineered isogenic laboratory and clinical P. aeruginosa strains that express the different O-antigen gene clusters to assess the correlation of structural differences of O4 and O12 O-antigens to pathogen-relevant phenotypic traits. We show that serotype O12 is associated with enhanced adhesion, type IV pili dependent twitching motility, and tolerance to host defense molecules and serum. Moreover, we find that serotype O4 is less virulent compared to O12 in an acute murine pneumonia infection in terms of both colonization and survival rate. Finally, we find that these O-antigen effects may be explained by specific biophysical properties of the serotype repeat unit found in O4 and O12, and by differences in membrane stability between O4 and O12 expressing cells. The results demonstrate that differences in O-antigen sugar composition can affect P. aeruginosa pathogenicity traits, and provide a better understanding of the potential selective advantages that underlie serotype switching and emergence of serotype O12 ST111.
Collapse
Affiliation(s)
- Mikkel Anbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahbuba Akter Lubna
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Telmo O. Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Laura Serioli
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Bioinnovation Institute Foundation, Copenhagen, Denmark
| | - Kinga Zor
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Bioinnovation Institute Foundation, Copenhagen, Denmark
| | - Claus Sternberg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katy Jeannot
- Laboratory of Bacteriology, Associated Laboratory to French National Reference Center for Antibiotic Resistance, Teaching hospital of Besançon, France
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Heppert JK, Awori RM, Cao M, Chen G, McLeish J, Goodrich-Blair H. Analyses of Xenorhabdus griffiniae genomes reveal two distinct sub-species that display intra-species variation due to prophages. BMC Genomics 2024; 25:1087. [PMID: 39548374 PMCID: PMC11566119 DOI: 10.1186/s12864-024-10858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Nematodes of the genus Steinernema and their Xenorhabdus bacterial symbionts are lethal entomopathogens that are useful in the biocontrol of insect pests, as sources of diverse natural products, and as research models for mutualism and parasitism. Xenorhabdus play a central role in all aspects of the Steinernema lifecycle, and a deeper understanding of their genomes therefore has the potential to spur advances in each of these applications. RESULTS Here, we report a comparative genomics analysis of Xenorhabdus griffiniae, including the symbiont of Steinernema hermaphroditum nematodes, for which genetic and genomic tools are being developed. We sequenced and assembled circularized genomes for three Xenorhabdus strains: HGB2511, ID10 and TH1. We then determined their relationships to other Xenorhabdus and delineated their species via phylogenomic analyses, concluding that HGB2511 and ID10 are Xenorhabdus griffiniae while TH1 is a novel species. These additions to the existing X. griffiniae landscape further allowed for the identification of two subspecies within the clade. Consistent with other Xenorhabdus, the analysed X. griffiniae genomes each encode a wide array of antimicrobials and virulence-related proteins. Comparative genomic analyses, including the creation of a pangenome, revealed that a large amount of the intraspecies variation in X. griffiniae is contained within the mobilome and attributable to prophage loci. In addition, CRISPR arrays, secondary metabolite potential and toxin genes all varied among strains within the X. griffiniae species. CONCLUSIONS Our findings suggest that phage-related genes drive the genomic diversity in closely related Xenorhabdus symbionts, and that these may underlie some of the traits most associated with the lifestyle and survival of entomopathogenic nematodes and their bacteria: virulence and competition. This study establishes a broad knowledge base for further exploration of not only the relationships between X. griffiniae species and their nematode hosts but also the molecular mechanisms that underlie their entomopathogenic lifestyle.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | | | - Mengyi Cao
- Division of Biosphere Sciences Engineering, Carnegie Institute for Science, Pasadena, CA, USA
| | - Grischa Chen
- Division of Biosphere Sciences Engineering, Carnegie Institute for Science, Pasadena, CA, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|
7
|
Backman T, Burbano HA, Karasov TL. Tradeoffs and constraints on the evolution of tailocins. Trends Microbiol 2024; 32:1084-1095. [PMID: 39504934 DOI: 10.1016/j.tim.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 11/08/2024]
Abstract
Phage tail-like bacteriocins (tailocins) are protein complexes produced by bacteria with the potential to kill their neighbors. Widespread throughout Gram-negative bacteria, tailocins exhibit extreme specificity in their targets, largely killing closely related strains. Despite their presence in diverse bacteria, the impact of these competitive weapons on the surrounding microbiota is largely unknown. Recent studies revealed the rapid evolution and genetic diversity of tailocins in microbial communities and suggest that there are constraints on the evolution of specificity and resistance. Given the precision of their targeted killing and the ease of engineering new specificities, understanding the evolution and ecological impact of tailocins may enable the design of promising candidates for novel targeted antibiotics.
Collapse
Affiliation(s)
- Talia Backman
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, London, UK.
| | - Talia L Karasov
- School of Biological Sciences, University of Utah 257S 1400E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Biggs BW, Price MN, Lai D, Escobedo J, Fortanel Y, Huang YY, Kim K, Trotter VV, Kuehl JV, Lui LM, Chakraborty R, Deutschbauer AM, Arkin AP. High-throughput protein characterization by complementation using DNA barcoded fragment libraries. Mol Syst Biol 2024; 20:1207-1229. [PMID: 39375541 PMCID: PMC11535334 DOI: 10.1038/s44320-024-00068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Our ability to predict, control, or design biological function is fundamentally limited by poorly annotated gene function. This can be particularly challenging in non-model systems. Accordingly, there is motivation for new high-throughput methods for accurate functional annotation. Here, we used complementation of auxotrophs and DNA barcode sequencing (Coaux-Seq) to enable high-throughput characterization of protein function. Fragment libraries from eleven genetically diverse bacteria were tested in twenty different auxotrophic strains of Escherichia coli to identify genes that complement missing biochemical activity. We recovered 41% of expected hits, with effectiveness ranging per source genome, and observed success even with distant E. coli relatives like Bacillus subtilis and Bacteroides thetaiotaomicron. Coaux-Seq provided the first experimental validation for 53 proteins, of which 11 are less than 40% identical to an experimentally characterized protein. Among the unexpected function identified was a sulfate uptake transporter, an O-succinylhomoserine sulfhydrylase for methionine synthesis, and an aminotransferase. We also identified instances of cross-feeding wherein protein overexpression and nearby non-auxotrophic strains enabled growth. Altogether, Coaux-Seq's utility is demonstrated, with future applications in ecology, health, and engineering.
Collapse
Affiliation(s)
- Bradley W Biggs
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dexter Lai
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Jasmine Escobedo
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Yuridia Fortanel
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Yolanda Y Huang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kyoungmin Kim
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Valentine V Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romy Chakraborty
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
9
|
Kouzai Y, Sagehashi Y, Watanabe R, Kajiwara H, Suzuki N, Ono H, Naito K, Akimoto-Tomiyama C. BglaTNB6, a tailocin produced by a plant-associated nonpathogenic bacterium, prevents rice seed-borne bacterial diseases. PLoS Pathog 2024; 20:e1012645. [PMID: 39423232 PMCID: PMC11524443 DOI: 10.1371/journal.ppat.1012645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
Rice seed-borne diseases caused by the bacterial pathogens Burkholderia glumae and B. plantarii pose a major threat to rice production worldwide. To manage these diseases in a sustainable manner, a biocontrol strategy is crucial. In this study, we showed that B. gladioli NB6 (NB6), a nonpathogenic bacterium, strongly protects rice from infection caused by the above-mentioned pathogens. NB6 was isolated from the indica rice cultivar Nona Bokra seedlings, which possesses genetic resistance to B. glumae. We discovered that cell suspensions of NB6 and its culture filtrate suppressed the disease symptoms caused by B. glumae and B. plantarii in rice seedlings, which indicated that NB6 secretes a plant-protective substance extracellularly. Through purification and mass spectrometry analysis of the culture filtrate, combined with transmission electron microscopy and mutant analysis, the substance was identified as a tailocin and named BglaTNB6. Tailocins are bacteriotoxic multiprotein structures morphologically similar to headless phage tails. BglaTNB6 exhibited antibacterial activity against several Burkholderia species, including B. glumae, B. plantarii, and B. gladioli, suggesting it can prevent pathogen infection. Interestingly, BglaTNB6 greatly contributed only to the biocontrol activity of NB6 cell suspensions against B. plantarii, and not against B. glumae. BglaTNB6 was shown to be encoded by a prophage locus lacking genes for phage head proteins, and a B. gladioli strain with the coded BglaTNB6-like locus equipped with phage head proteins failed to prevent rice seedlings from being infected with B. plantarii. These results suggested that BglaTNB6 may enhance the competitiveness of NB6 against a specific range of bacteria. Our study also highlights the potential of tailocin-producing endophytes for managing crop bacterial diseases.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Sagehashi
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Riku Watanabe
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Hideyuki Kajiwara
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Suzuki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ono
- Bioactive Chemical Analysis Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Ken Naito
- Plant Resources Unit, Research Center of Genetic Resources, NARO, Tsukuba, Ibaraki, Japan
| | - Chiharu Akimoto-Tomiyama
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Backman T, Latorre SM, Symeonidi E, Muszyński A, Bleak E, Eads L, Martinez-Koury PI, Som S, Hawks A, Gloss AD, Belnap DM, Manuel AM, Deutschbauer AM, Bergelson J, Azadi P, Burbano HA, Karasov TL. A phage tail-like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria. Science 2024; 384:eado0713. [PMID: 38870284 PMCID: PMC11404688 DOI: 10.1126/science.ado0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 06/15/2024]
Abstract
Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.
Collapse
Affiliation(s)
- Talia Backman
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Sergio M. Latorre
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Efthymia Symeonidi
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ella Bleak
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Lauren Eads
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Sarita Som
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Aubrey Hawks
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew D. Gloss
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - David M. Belnap
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Allison M. Manuel
- Mass Spectrometry and Proteomics Core, The University of Utah, Salt Lake City, UT 84112, USA
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joy Bergelson
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Hernán A. Burbano
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Talia L. Karasov
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Lin L. The expanding universe of contractile injection systems in bacteria. Curr Opin Microbiol 2024; 79:102465. [PMID: 38520915 DOI: 10.1016/j.mib.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Contractile injection systems (CISs) are phage tail-like machineries found in a wide range of bacteria. They are often deployed by bacteria to translocate effectors into the extracellular space or into target cells. CISs are classified into intracellular type VI secretion systems (T6SSs) and extracellular CIS (eCISs). eCISs are assembled in cytoplasm and released into the extracellular milieu upon cell lysis, while T6SSs are the secretion systems widespread among Gram-negative bacteria and actively translocate effectors into the environment or into the adjacent cell, without lysis of T6SS-producing cells. Recently, several noncanonical CISs that exhibit distinct characteristics have been discovered. This review will provide an overview on these noncanonical CISs and their unique features, as well as new advances in reprogramming CISs for therapeutic protein delivery.
Collapse
Affiliation(s)
- Lin Lin
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
12
|
Backman T, Latorre SM, Symeonidi E, Muszyński A, Bleak E, Eads L, Martinez-Koury PI, Som S, Hawks A, Gloss AD, Belnap DM, Manuel AM, Deutschbauer AM, Bergelson J, Azadi P, Burbano HA, Karasov TL. A weaponized phage suppresses competitors in historical and modern metapopulations of pathogenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.17.536465. [PMID: 38352526 PMCID: PMC10862724 DOI: 10.1101/2023.04.17.536465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacteriophages, the viruses of bacteria, are proposed to drive bacterial population dynamics, yet direct evidence of their impact on natural populations is limited. Here we identified viral sequences in a metapopulation of wild plant-associated Pseudomonas spp. genomes. We discovered that the most abundant viral cluster does not encode an intact phage but instead encodes a tailocin - a phage-derived element that bacteria use to kill competitors for interbacterial warfare. Each pathogenic Pseudomonas sp. strain carries one of a few distinct tailocin variants, which target variable polysaccharides in the outer membrane of co-occurring pathogenic strains. Analysis of historic herbarium samples from the last 170 years revealed that the same tailocin and receptor variants have persisted in the Pseudomonas populations for at least two centuries, suggesting the continued use of a defined set of tailocin haplotypes and receptors. These results indicate that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control. One-Sentence Summary Bacterial pathogens in a host-associated metapopulation use a repurposed prophage to kill their competitors.
Collapse
|
13
|
Lucas-Elío P, ElAlami T, Martínez A, Sanchez-Amat A. Marinomonas mediterranea synthesizes an R-type bacteriocin. Appl Environ Microbiol 2024; 90:e0127323. [PMID: 38169292 PMCID: PMC10870725 DOI: 10.1128/aem.01273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Prophages integrated into bacterial genomes can become cryptic or defective prophages, which may evolve to provide various traits to bacterial cells. Previous research on Marinomonas mediterranea MMB-1 demonstrated the production of defective particles. In this study, an analysis of the genomes of three different strains (MMB-1, MMB-2, and MMB-3) revealed the presence of a region named MEDPRO1, spanning approximately 52 kb, coding for a defective prophage in strains MMB-1 and MMB-2. This prophage seems to have been lost in strain MMB-3, possibly due to the presence of spacers recognizing this region in an I-F CRISPR array in this strain. However, all three strains produce remarkably similar defective particles. Using strain MMB-1 as a model, mass spectrometry analyses indicated that the structural proteins of the defective particles are encoded by a second defective prophage situated within the MEDPRO2 region, spanning approximately 13 kb. This finding was further validated through the deletion of this second defective prophage. Genomic region analyses and the detection of antimicrobial activity of the defective prophage against other Marinomonas species suggest that it is an R-type bacteriocin. Marinomonas mediterranea synthesizes antimicrobial proteins with lysine oxidase activity, and the synthesis of an R-type bacteriocin constitutes an additional mechanism in microbial competition for the colonization of habitats such as the surface of marine plants.IMPORTANCEThe interactions between bacterial strains inhabiting the same environment determine the final composition of the microbiome. In this study, it is shown that some extracellular defective phage particles previously observed in Marinomonas mediterranea are in fact R-type bacteriocins showing antimicrobial activity against other Marinomonas strains. The operon coding for the R-type bacteriocin has been identified.
Collapse
Affiliation(s)
- Patricia Lucas-Elío
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Tarik ElAlami
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | - Alicia Martínez
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
| | | |
Collapse
|
14
|
Maffei E, Woischnig AK, Burkolter MR, Heyer Y, Humolli D, Thürkauf N, Bock T, Schmidt A, Manfredi P, Egli A, Khanna N, Jenal U, Harms A. Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication. Nat Commun 2024; 15:175. [PMID: 38168031 PMCID: PMC10761892 DOI: 10.1038/s41467-023-44157-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteriophages are ubiquitous viral predators that have primarily been studied using fast-growing laboratory cultures of their bacterial hosts. However, microbial life in nature is mostly in a slow- or non-growing, dormant state. Here, we show that diverse phages can infect deep-dormant bacteria and suspend their replication until the host resuscitates ("hibernation"). However, a newly isolated Pseudomonas aeruginosa phage, named Paride, can directly replicate and induce the lysis of deep-dormant hosts. While non-growing bacteria are notoriously tolerant to antibiotic drugs, the combination with Paride enables the carbapenem meropenem to eradicate deep-dormant cultures in vitro and to reduce a resilient bacterial infection of a tissue cage implant in mice. Our work might inspire new treatments for persistent bacterial infections and, more broadly, highlights two viral strategies to infect dormant bacteria (hibernation and direct replication) that will guide future studies on phage-host interactions.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Anne-Kathrin Woischnig
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Marco R Burkolter
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | - Dorentina Humolli
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | | | - Thomas Bock
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Harms
- Biozentrum, University of Basel, Basel, Switzerland.
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Stice SP, Jan HH, Chen HC, Nwosu L, Shin GY, Weaver S, Coutinho T, Kvitko BH, Baltrus DA. Pantailocins: phage-derived bacteriocins from Pantoea ananatis and Pantoea stewartii subsp. indologenes. Appl Environ Microbiol 2023; 89:e0092923. [PMID: 37982620 PMCID: PMC10870728 DOI: 10.1128/aem.00929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Phage-derived bacteriocins (tailocins) are ribosomally synthesized structures produced by bacteria in order to provide advantages against competing strains under natural conditions. Tailocins are highly specific in their target range and have proven to be effective for the prevention and/or treatment of bacterial diseases under clinical and agricultural settings. We describe the discovery and characterization of a new tailocin locus encoded within genomes of Pantoea ananatis and Pantoea stewartii subsp. indologenes, which may enable the development of tailocins as preventative treatments against phytopathogenic infection by these species.
Collapse
Affiliation(s)
- Shaun P. Stice
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Hsiao-Hsuan Jan
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Linda Nwosu
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Gi Yoon Shin
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - Savannah Weaver
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Teresa Coutinho
- The Plant Center, University of Georgia, Athens, Georgia, USA
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
| | - David A. Baltrus
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
16
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. Microbiol Spectr 2023; 11:e0177323. [PMID: 37877708 PMCID: PMC10714928 DOI: 10.1128/spectrum.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistant Pseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity of P. aeruginosa populations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.
Collapse
Affiliation(s)
- Madeline Mei
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Heiman CM, Vacheron J, Keel C. Evolutionary and ecological role of extracellular contractile injection systems: from threat to weapon. Front Microbiol 2023; 14:1264877. [PMID: 37886057 PMCID: PMC10598620 DOI: 10.3389/fmicb.2023.1264877] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture.
Collapse
Affiliation(s)
- Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
18
|
Jones DT, Schulz F, Roux S, Brown SD. Solvent-Producing Clostridia Revisited. Microorganisms 2023; 11:2253. [PMID: 37764097 PMCID: PMC10538166 DOI: 10.3390/microorganisms11092253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The review provides an overview of the current status of the solvent-producing clostridia. The origin and development of industrial clostridial species, as well as the history of the industrial Acetone Butanol Ethanol fermentation process, is reexamined, and the recent resurgence of interest in the production of biobutanol is reviewed. Over 300 fully sequenced genomes for solvent-producing and closely related clostridial species are currently available in public databases. These include 270 genomes sourced from the David Jones culture collection. These genomes were allocated arbitrary DJ codes, and a conversion table to identify the species and strains has now been provided. The expanded genomic database facilitated new comparative genomic and phylogenetic analysis. A synopsis of the common features, molecular taxonomy, and phylogeny of solvent-producing clostridia and the application of comparative phylogenomics are evaluated. A survey and analysis of resident prophages in solvent-producing clostridia are discussed, and the discovery, occurrence, and role of novel R-type tailocins are reported. Prophage genomes with R-type tailocin-like features were detected in all 12 species investigated. The widespread occurrence of tailocins in Gram-negative species is well documented; this survey has indicated that they may also be widespread in clostridia.
Collapse
Affiliation(s)
- David T. Jones
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand
| | - Frederik Schulz
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA; (F.S.); (S.R.)
| | - Simon Roux
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA; (F.S.); (S.R.)
| | | |
Collapse
|
19
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-Pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538445. [PMID: 37163048 PMCID: PMC10168318 DOI: 10.1101/2023.04.26.538445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chronic, highly antibiotic-resistant infections in cystic fibrosis (CF) lungs contribute to increasing morbidity and mortality. Pseudomonas aeruginosa, a common CF pathogen, exhibits resistance to multiple antibiotics, contributing to antimicrobial resistance (AMR). These bacterial populations display genetic and phenotypic diversity, but it is unclear how this diversity affects susceptibility to bacteriocins. R-pyocins, i.e. bacteriocins produced by P. aeruginosa, are phage tail-like antimicrobials. R-pyocins have potential as antimicrobials, however recent research suggests the diversity of P. aeruginosa variants within CF lung infections leads to varying susceptibility to R-pyocins. This variation may be linked to changes in lipopolysaccharide (LPS), acting as the R-pyocin receptor. Currently, it is unknown how frequently R-pyocin-susceptible strains are in chronic CF lung infection, particularly when considering the heterogeneity within these strains. In this study, we tested R2-pyocin susceptibility of 139 P. aeruginosa variants from 17 sputum samples of seven CF patients and analyzed LPS phenotypes. We found that 83% of sputum samples did not have R2-pyocin-resistant variants, while nearly all samples contained susceptible variants. there was no correlation between LPS phenotype and R2-pyocin susceptibility, though we estimate that about 76% of sputum-derived variants lack an O-specific antigen, 40% lack a common antigen, and 24% have altered LPS cores. The absence of a correlation between LPS phenotype and R-pyocin susceptibility suggests LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Our research supports the potential of R-pyocins as therapeutic agents, as many infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations.
Collapse
Affiliation(s)
- Madeline Mei
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Bali K, McCoy R, Lu Z, Treiber J, Savva A, Kaminski CF, Salmond G, Salleo A, Mela I, Monson R, Owens RM. Multiparametric Sensing of Outer Membrane Vesicle-Derived Supported Lipid Bilayers Demonstrates the Specificity of Bacteriophage Interactions. ACS Biomater Sci Eng 2023; 9:3632-3642. [PMID: 37137156 PMCID: PMC10265573 DOI: 10.1021/acsbiomaterials.3c00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The use of bacteriophages, viruses that specifically infect bacteria, as antibiotics has become an area of great interest in recent years as the effectiveness of conventional antibiotics recedes. The detection of phage interactions with specific bacteria in a rapid and quantitative way is key for identifying phages of interest for novel antimicrobials. Outer membrane vesicles (OMVs) derived from Gram-negative bacteria can be used to make supported lipid bilayers (SLBs) and therefore in vitro membrane models that contain naturally occurring components of the bacterial outer membrane. In this study, we employed Escherichia coli OMV derived SLBs and use both fluorescent imaging and mechanical sensing techniques to show their interactions with T4 phage. We also integrate these bilayers with microelectrode arrays (MEAs) functionalized with the conducting polymer PEDOT:PSS and show that the pore forming interactions of the phages with the SLBs can be monitored using electrical impedance spectroscopy. To highlight our ability to detect specific phage interactions, we also generate SLBs using OMVs derived from Citrobacter rodentium, which is resistant to T4 phage infection, and identify their lack of interaction with the phage. The work presented here shows how interactions occurring between the phages and these complex SLB systems can be monitored using a range of experimental techniques. We believe this approach can be used to identify phages that work against bacterial strains of interest, as well as more generally to monitor any pore forming structure (such as defensins) interacting with bacterial outer membranes, and thus aid in the development of next generation antimicrobials.
Collapse
Affiliation(s)
- Karan Bali
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Reece McCoy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Zixuan Lu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Jeremy Treiber
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Achilleas Savva
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - George Salmond
- Department
of Biochemistry, University of Cambridge, Hopkins Building, Downing Site,
Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Alberto Salleo
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Ioanna Mela
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | - Rita Monson
- Department
of Biochemistry, University of Cambridge, Hopkins Building, Downing Site,
Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Róisín M. Owens
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
21
|
Warring SL, Malone LM, Jayaraman J, Easingwood RA, Rigano LA, Frampton RA, Visnovsky SB, Addison SM, Hernandez L, Pitman AR, Lopez Acedo E, Kleffmann T, Templeton MD, Bostina M, Fineran PC. A lipopolysaccharide-dependent phage infects a pseudomonad phytopathogen and can evolve to evade phage resistance. Environ Microbiol 2022; 24:4834-4852. [PMID: 35912527 PMCID: PMC9796965 DOI: 10.1111/1462-2920.16106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
Bacterial pathogens are major causes of crop diseases, leading to significant production losses. For instance, kiwifruit canker, caused by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), has posed a global challenge to kiwifruit production. Treatment with copper and antibiotics, whilst initially effective, is leading to the rise of bacterial resistance, requiring new biocontrol approaches. Previously, we isolated a group of closely related Psa phages with biocontrol potential, which represent environmentally sustainable antimicrobials. However, their deployment as antimicrobials requires further insight into their properties and infection strategy. Here, we provide an in-depth examination of the genome of ΦPsa374-like phages and show that they use lipopolysaccharides (LPS) as their main receptor. Through proteomics and cryo-electron microscopy of ΦPsa374, we revealed the structural proteome and that this phage possess a T = 9 capsid triangulation, unusual for myoviruses. Furthermore, we show that ΦPsa374 phage resistance arises in planta through mutations in a glycosyltransferase involved in LPS synthesis. Lastly, through in vitro evolution experiments we showed that phage resistance is overcome by mutations in a tail fibre and structural protein of unknown function in ΦPsa374. This study provides new insight into the properties of ΦPsa374-like phages that informs their use as antimicrobials against Psa.
Collapse
Affiliation(s)
- Suzanne L. Warring
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Lucia M. Malone
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Jay Jayaraman
- The New Zealand Institute for Plant & Food Research Limited, Mt AlbertAucklandNew Zealand,Bioprotection AotearoaCanterburyNew Zealand
| | | | - Luciano A. Rigano
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,Plant Health & Environment Laboratory, Biosecurity New ZealandMinistry for Primary IndustriesAucklandNew Zealand
| | - Rebekah A. Frampton
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Sandra B. Visnovsky
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Shea M. Addison
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Loreto Hernandez
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand
| | - Andrew R. Pitman
- The New Zealand Institute for Plant & Food Research LimitedChristchurchNew Zealand,Foundation for Arable Research (FAR), TempletonChristchurchNew Zealand
| | - Elena Lopez Acedo
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | | | - Matthew D. Templeton
- The New Zealand Institute for Plant & Food Research Limited, Mt AlbertAucklandNew Zealand,Bioprotection AotearoaCanterburyNew Zealand,School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Mihnea Bostina
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,Otago Centre for Electron MicroscopyUniversity of OtagoDunedinNew Zealand
| | - Peter C. Fineran
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand,Bioprotection AotearoaCanterburyNew Zealand
| |
Collapse
|
22
|
Bhattacharjee R, Nandi A, Sinha A, Kumar H, Mitra D, Mojumdar A, Patel P, Jha E, Mishra S, Rout PK, Panda PK, Suar M, Verma SK. Phage-tail-like bacteriocins as a biomedical platform to counter anti-microbial resistant pathogens. Biomed Pharmacother 2022; 155:113720. [PMID: 36162371 DOI: 10.1016/j.biopha.2022.113720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Phage Tail Like bacteriocins (PTLBs) has been an area of interest in the last couple of years owing to their varied application against multi-drug resistant (MDR), anti-microbial resistant (AMR) pathogens and their evolutionary link with the dsDNA virus and bacteriophages. PTLBs are defective phages derived from Myoviridae and Siphoviridae phages, PTLBs are distinguished into R-type (Rigid type) characterized by a non-flexible contractile nanotube resembling Myoviridae phage contractile tails, and F-type (Flexible type) with a flexible non-contractile rod-like structure similar to Siphoviridae phages. In this review, we have discussed the structural association, mechanism, and characterization of PTLBs. Moreover, we have elucidated the symbiotic biological function and application of PTLBs against MDR and XDR pathogens and highlighted the evolutionary role of PTLBs. The difficulties that must be overcome to implement PTLBs clinically are also discussed. It is imperative that these issues be addressed by academics in future studies before being implemented in clinical settings. This article is novel in its way as it will not only provide us with a gateway that acts as a novel strategy for scholars to mitigate and control the uprising issue of AMR pathogens but also promote the development of clinical studies for PTLBs.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Hrithik Kumar
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala 695551, India
| | - Disha Mitra
- University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Abhik Mojumdar
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Ochang Center, Cheongju, Chungcheongbuk 28119, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suman Mishra
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Prabhat Kumar Rout
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
23
|
Mining of Thousands of Prokaryotic Genomes Reveals High Abundance of Prophages with a Strictly Narrow Host Range. mSystems 2022; 7:e0032622. [PMID: 35880895 PMCID: PMC9426530 DOI: 10.1128/msystems.00326-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phages and prophages are one of the principal modulators of microbial populations. However, much of their diversity is still poorly understood. Here, we extracted 33,624 prophages from 13,713 complete prokaryotic genomes to explore the prophage diversity and their relationships with their host. Our results reveal that prophages were present in 75% of the genomes studied. In addition, Enterobacterales were significantly enriched in prophages. We also found that pathogens are a significant reservoir of prophages. Finally, we determined that the prophage relatedness and the range of genomic hosts were delimited by the evolutionary relationships of their hosts. On a broader level, we got insights into the prophage population, identified in thousands of publicly available prokaryotic genomes, by comparing the prophage distribution and relatedness between them and their hosts. IMPORTANCE Phages and prophages play an essential role in controlling their host populations either by modulating the host abundance or providing them with genes that benefit the host. The constant growth in next-generation sequencing technology has caused the development of powerful computational tools to identify phages and prophages with high precision. Making it possible to explore the prophage populations integrated into host genomes on a large scale. However, it is still a new and under-explored area, and efforts are still required to identify prophage populations to understand their dynamics with their hosts.
Collapse
|
24
|
Heiman CM, Maurhofer M, Calderon S, Dupasquier M, Marquis J, Keel C, Vacheron J. Pivotal role of O-antigenic polysaccharide display in the sensitivity against phage tail-like particles in environmental Pseudomonas kin competition. THE ISME JOURNAL 2022; 16:1683-1693. [PMID: 35273372 PMCID: PMC9213528 DOI: 10.1038/s41396-022-01217-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
AbstractEnvironmental pseudomonads colonize various niches including insect and plant environments. When invading these environments, bacteria are confronted with the resident microbiota. To oppose with closely related strains, they rely on narrow-spectrum weaponry such as tailocins, i.e., phage tail-like particles. Little is known about the receptors for these tailocins especially among phylogenetically closely related species. Here, we studied the interaction between an R-tailocin from Pseudomonas protegens CHA0 and a targeted kin, Pseudomonas protegens Pf-5. Using genome-wide transposon insertion sequencing, we identified that lipopolysaccharides are involved in the sensitivity of Pf-5 towards the tailocin of CHA0. By generating Pf-5 lipopolysaccharide mutants and exposing them to extracted tailocin, we specified the two O-antigenic polysaccharides (O-PS) targeted by the tailocin. We affirmed the role of these O-PS through competition assays in vitro as well as in insects. Further, we demonstrate that O-PS are double-edge swords that are responsible for the sensitivity of P. protegens towards tailocins and phages produced by their kin, but shield bacteria from the immune system of the insect. Our results shed light on the trade-off that bacteria are confronted with, where specific O-PS decorations can both be of benefit or disadvantage depending on the host environment and its bacterial inhabitants.
Collapse
|
25
|
Tantoso E, Eisenhaber B, Kirsch M, Shitov V, Zhao Z, Eisenhaber F. To kill or to be killed: pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biol 2022; 20:146. [PMID: 35710371 PMCID: PMC9205054 DOI: 10.1186/s12915-022-01347-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Escherichia coli (E. coli) has been one of the most studied model organisms in the history of life sciences. Initially thought just to be commensal bacteria, E. coli has shown wide phenotypic diversity including pathogenic isolates with great relevance to public health. Though pangenome analysis has been attempted several times, there is no systematic functional characterization of the E. coli subgroups according to the gene profile. RESULTS Systematically scanning for optimal parametrization, we have built the E. coli pangenome from 1324 complete genomes. The pangenome size is estimated to be ~25,000 gene families (GFs). Whereas the core genome diminishes as more genomes are added, the softcore genome (≥95% of strains) is stable with ~3000 GFs regardless of the total number of genomes. Apparently, the softcore genome (with a 92% or 95% generation threshold) can define the genome of a bacterial species listing the critically relevant, evolutionarily most conserved or important classes of GFs. Unsupervised clustering of common E. coli sequence types using the presence/absence GF matrix reveals distinct characteristics of E. coli phylogroups B1, B2, and E. We highlight the bi-lineage nature of B1, the variation of the secretion and of the iron acquisition systems in ST11 (E), and the incorporation of a highly conserved prophage into the genome of ST131 (B2). The tail structure of the prophage is evolutionarily related to R2-pyocin (a tailocin) from Pseudomonas aeruginosa PAO1. We hypothesize that this molecular machinery is highly likely to play an important role in protecting its own colonies; thus, contributing towards the rapid rise of pandemic E. coli ST131. CONCLUSIONS This study has explored the optimized pangenome development in E. coli. We provide complete GF lists and the pangenome matrix as supplementary data for further studies. We identified biological characteristics of different E. coli subtypes, specifically for phylogroups B1, B2, and E. We found an operon-like genome region coding for a tailocin specific for ST131 strains. The latter is a potential killer weapon providing pandemic E. coli ST131 with an advantage in inter-bacterial competition and, suggestively, explains their dominance as human pathogen among E. coli strains.
Collapse
Affiliation(s)
- Erwin Tantoso
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Birgit Eisenhaber
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Miles Kirsch
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore.,Present address: Northeastern University, Boston, USA
| | - Vladimir Shitov
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Zhiya Zhao
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore.,Present address: The University of Cambridge, Cambridge, UK
| | - Frank Eisenhaber
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore. .,Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore. .,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, 637551, Singapore, Republic of Singapore.
| |
Collapse
|
26
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
27
|
Sun R, Zhao X, Meng Q, Huang P, Zhao Q, Liu X, Zhang W, Zhang F, Fu Y. Genome-Wide Screening and Characterization of Genes Involved in Response to High Dose of Ciprofloxacin in Escherichia coli. Microb Drug Resist 2022; 28:501-510. [PMID: 35512736 DOI: 10.1089/mdr.2021.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Inevitably, considering its extensive use and misuse, resistance toward ciprofloxacin has increased in almost all clinically relevant bacteria. This study aimed to investigate the transcriptome changes at a high concentration of ciprofloxacin in Escherichia coli. In brief, 1,418 differentially expressed genes (DEGs) were identified, from which 773 genes were upregulated by ciprofloxacin, whereas 651 genes were downregulated. Enriched biological pathways reflected the upregulation of biological processes such as DNA damage and repair system, toxin/antitoxin systems, formaldehyde detoxification system. With kyoto encyclopedia of genes and genomes pathway analysis, higher expressed DEGs were associated with "LPS biosynthesis," "streptomycin biosynthesis," and "polyketide sugar unit biosynthesis." Lower expressed DEGs were associated with "biosynthesis of amino acids" and "flagellar assembly" pathways. After treatment of ciprofloxacin, lipopolysaccharide (LPS) release was increased by two times, and the gene expression level of LPS synthesis was elevated (p < 0.05) in both reference and clinical strains. Our results demonstrated that transient exposure to high-dose ciprofloxacin is a double-edged sword. Cautions should be taken when administering high-dose antibiotic treatment for infectious diseases.
Collapse
Affiliation(s)
- Rui Sun
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xianqi Zhao
- Department of General Surgery, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qingtai Meng
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ping Huang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Qian Zhao
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xinyi Liu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenli Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Yingmei Fu
- Department of Microbiology, Harbin Medical University, Harbin, China
- Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Recent Mitigation Strategies in Engineered Health Care Materials Towards Antimicrobial Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Adler BA, Kazakov AE, Zhong C, Liu H, Kutter E, Lui LM, Nielsen TN, Carion H, Deutschbauer AM, Mutalik VK, Arkin AP. The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34910616 PMCID: PMC8744999 DOI: 10.1099/mic.0.001126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Though bacteriophages (phages) are known to play a crucial role in bacterial fitness and virulence, our knowledge about the genetic basis of their interaction, cross-resistance and host-range is sparse. Here, we employed genome-wide screens in Salmonella enterica serovar Typhimurium to discover host determinants involved in resistance to eleven diverse lytic phages including four new phages isolated from a therapeutic phage cocktail. We uncovered 301 diverse host factors essential in phage infection, many of which are shared between multiple phages demonstrating potential cross-resistance mechanisms. We validate many of these novel findings and uncover the intricate interplay between RpoS, the virulence-associated general stress response sigma factor and RpoN, the nitrogen starvation sigma factor in phage cross-resistance. Finally, the infectivity pattern of eleven phages across a panel of 23 genome sequenced Salmonella strains indicates that additional constraints and interactions beyond the host factors uncovered here define the phage host range.
Collapse
Affiliation(s)
- Benjamin A Adler
- The UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Crystal Zhong
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Heloise Carion
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
30
|
Patel RR, Kandel PP, Traverso E, Hockett KL, Triplett LR. Pseudomonas syringae pv. phaseolicola Uses Distinct Modes of Stationary-Phase Persistence To Survive Bacteriocin and Streptomycin Treatments. mBio 2021; 12:e00161-21. [PMID: 33849974 PMCID: PMC8092213 DOI: 10.1128/mbio.00161-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial treatment of bacteria often results in a small population of surviving tolerant cells, or persisters, that may contribute to recurrent infection. Antibiotic persisters are metabolically dormant, but the basis of their persistence in the presence of membrane-disrupting biological compounds is less well understood. We previously found that the model plant pathogen Pseudomonas syringae pv. phaseolicola 1448A (Pph) exhibits persistence to tailocin, a membrane-disrupting biocontrol compound with potential for sustainable disease control. Here, we compared physiological traits associated with persistence to tailocin and to the antibiotic streptomycin and established that both treatments leave similar frequencies of persisters. Microscopic profiling of treated populations revealed that while tailocin rapidly permeabilizes most cells, streptomycin treatment results in a heterogeneous population in the redox and membrane permeability state. Intact cells were sorted into three fractions according to metabolic activity, as indicated by a redox-sensing reporter dye. Streptomycin persisters were cultured from the fraction associated with the lowest metabolic activity, but tailocin persisters were cultured from a fraction associated with an active metabolic signal. Cells from culturable fractions were able to infect host plants, while the nonculturable fractions were not. Tailocin and streptomycin were effective in eliminating all persisters when applied sequentially, in addition to eliminating cells in other viable states. This study identifies distinct metabolic states associated with antibiotic persistence, tailocin persistence, and loss of virulence and demonstrates that tailocin is highly effective in eliminating dormant cells.IMPORTANCE Populations of genetically identical bacteria encompass heterogeneous physiological states. The small fraction of bacteria that are dormant can help the population survive exposure to antibiotics and other stresses, potentially contributing to recurring infection cycles in animal or plant hosts. Membrane-disrupting biological control treatments are effective in killing dormant bacteria, but these treatments also leave persister-like survivors. The current work demonstrates that in Pph, persisters surviving treatment with membrane-disrupting tailocin proteins have an elevated redox state compared to that of dormant streptomycin persisters. Combination treatment was effective in killing both persister types. Culturable persisters corresponded closely with infectious cells in each treated population, whereas the high-redox and unculturable fractions were not infectious. In linking redox states to heterogeneous phenotypes of tailocin persistence, streptomycin persistence, and infection capability, this work will inform the search for mechanisms and markers for each phenotype.
Collapse
Affiliation(s)
- Ravikumar R Patel
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Prem P Kandel
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eboni Traverso
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lindsay R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|