1
|
Sharma A, Tayal S, Bhatnagar S. Analysis of stress response in multiple bacterial pathogens using a network biology approach. Sci Rep 2025; 15:15342. [PMID: 40316612 PMCID: PMC12048639 DOI: 10.1038/s41598-025-91269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/19/2025] [Indexed: 05/04/2025] Open
Abstract
Stress response in bacterial pathogens promotes adaptation, virulence and antibiotic resistance. In this study, a network approach is applied to identify the common central mediators of stress response in five emerging opportunistic pathogens; Enterococcus faecium Aus0004, Staphylococcus aureus subsp. aureus USA300, Klebsiella pneumoniae MGH 78,578, Pseudomonas aeruginosa PAO1, and Mycobacterium tuberculosis H37Rv. A Protein-protein interaction network (PPIN) was constructed for each stressor using Cytoscape3.7.1 from the differentially expressed genes obtained from Gene expression omnibus datasets. A merged PPIN was constructed for each bacterium. Hub-bottlenecks in each network were the central stress response proteins and common pathways enriched in stress response were identified using KOBAS3.0. 31 hub-bottlenecks were common to each individual stress response, merged networks in all five pathogens and an independent cross stress (CS) response dataset of Escherichia coli. The 31 central nodes are in the RpoS mediated general stress regulon and also regulated by other stress response systems. Analysis of the 20 common metabolic pathways modulating stress response in all five bacteria showed that carbon metabolism pathway had the highest crosstalk with other pathways like amino acid biosynthesis and purine metabolism pathways. The central proteins identified can serve as targets for novel wide-spectrum antibiotics to overcome multidrug resistance.
Collapse
Affiliation(s)
- Anjali Sharma
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
2
|
Akbari MS, Joyce LR, Spencer BL, Brady A, McIver KS, Doran KS. Identification of glyoxalase A in group B Streptococcus and its contribution to methylglyoxal tolerance and virulence. Infect Immun 2025; 93:e0054024. [PMID: 40008888 PMCID: PMC11977320 DOI: 10.1128/iai.00540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive pathobiont that commonly colonizes the gastrointestinal and lower female genital tracts but can cause sepsis and pneumonia in newborns and is a leading cause of neonatal meningitis. Despite the resulting disease severity, the pathogenesis of GBS is not completely understood, especially during the early phases of infection. To investigate GBS factors necessary for bloodstream survival, we performed a transposon (Tn) mutant screen in our bacteremia infection model using a GBS mariner transposon mutant library previously developed by our group. We identified significantly underrepresented mutations in 623 genes that contribute to survival in the blood, including those encoding known virulence factors such as capsule, the β-hemolysin, and inorganic metal ion transport systems. Most of the underrepresented genes have not been previously characterized or studied in GBS, including gloA and gloB, which are homologs for genes involved in methylglyoxal (MG) detoxification. MG is a byproduct of glycolysis and a highly reactive toxic aldehyde that is elevated in immune cells during infection. Here, we observed MG sensitivity across multiple GBS isolates and confirmed that gloA contributes to MG tolerance and invasive GBS infection. We show specifically that gloA contributes to GBS survival in the presence of neutrophils and depleting neutrophils in mice abrogates the decreased survival and infection of the gloA mutant. The requirement of the glyoxalase pathway during GBS infection suggests that MG detoxification is important for bacterial survival during host-pathogen interactions.IMPORTANCEA transposon-mutant screen of group B Streptococcus (GBS) in a bacteremia mouse model of infection revealed virulence factors known to be important for GBS survival such as the capsule, β-hemolysin/cytolysin, and genes involved in metal homeostasis. Many uncharacterized factors were also identified including genes that are part of the metabolic pathway that breaks down methylglyoxal (MG). The glyoxalase pathway is the most ubiquitous metabolic pathway for MG breakdown and is only a two-step process using glyoxalase A (gloA) and B (gloB) enzymes. MG is a highly reactive byproduct of glycolysis and is made by most cells. Here, we show that in GBS, the first enzyme in the glyoxalase pathway, encoded by gloA, contributes to MG resistance and blood survival. We further demonstrate that GloA contributes to GBS survival against neutrophils in vitro and in vivo and, therefore, is an important virulence factor required for invasive infection.
Collapse
Affiliation(s)
- Madeline S. Akbari
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke R. Joyce
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Brady
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin S. McIver
- Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Ipe DS, Goh KG, Desai D, Ben-Zakour N, Sullivan MJ, Beatson SA, Ulett GC. Group B Streptococcus growth in human urine is associated with asymptomatic bacteriuria rather than urinary tract infection and is unaffected by iron sequestration. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001533. [PMID: 39976609 PMCID: PMC11842879 DOI: 10.1099/mic.0.001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Group B Streptococcus (GBS) causes various infections in adults, including urinary tract infection (UTI) and asymptomatic bacteriuria (ABU). Some bacteria that cause ABU can utilize urine as a substrate for growth, which can promote asymptomatic colonization in the host. An analysis of diverse GBS isolates associated with ABU and UTI for growth in human urine has not been undertaken. Here, we examined a large collection of clinical urinary GBS isolates from individuals with acute UTI (n=62), and ABU with bacteriuria ≥104 c.f.u. ml-1 (n=206) or <104 c.f.u. ml-1 (n=90) for their ability to grow in human urine. Among all 358 GBS isolates analysed, 40 exhibited robust growth in urine in contrast to 25 that were unable to grow and non-culturable after incubation in urine. Growth phenotypes were disproportionately represented among the different groups of isolates, whereby robust growth was significantly more likely to be associated with high-grade ABU versus low-grade ABU or acute UTI (38/40 vs. 11/25; odds ratio 4.6, 95% CI, 1.5-14.8). Growth of bacteria in urine can depend on iron bioavailability, and we therefore performed growth assays using urine supplemented with 2,2-dipyridyl to chelate iron. In contrast to a control strain of ABU Escherichia coli, for which iron limitation significantly attenuated growth, iron sequestration had no significant attenuation effect on the growth of ABU GBS strain 834 in urine. Despite this finding, PCR confirmed the presence of several known growth-associated genes in GBS 834, including fhuD for iron uptake. We conclude that GBS adaptation for growth in human urine is more likely to be associated with high-grade ABU than acute UTI, and for GBS 834, this growth trait is not significantly constrained by conditions of iron sequestration.
Collapse
Affiliation(s)
- Deepak S. Ipe
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Kelvin G.K. Goh
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Nouri Ben-Zakour
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Matthew J. Sullivan
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| |
Collapse
|
4
|
Akbari MS, Joyce LR, Spencer BL, Brady A, McIver KS, Doran KS. Identification of Glyoxalase A in Group B Streptococcus and its contribution to methylglyoxal tolerance and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605887. [PMID: 39131367 PMCID: PMC11312555 DOI: 10.1101/2024.07.30.605887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Group B Streptococcus (GBS) is a Gram-positive pathobiont that commonly colonizes the gastrointestinal and lower female genital tracts but can cause sepsis and pneumonia in newborns and is a leading cause of neonatal meningitis. Despite the resulting disease severity, the pathogenesis of GBS is not completely understood, especially during the early phases of infection. To investigate GBS factors necessary for blood stream survival, we performed a transposon (Tn) mutant screen in our bacteremia infection model using a GBS mariner transposon mutant library previously developed by our group. We identified significantly underrepresented mutations in 623 genes that contribute to survival in the blood, including those encoding known virulence factors such as capsule, the β-hemolysin, and inorganic metal ion transport systems. Most of the underrepresented genes have not been previously characterized or studied in GBS, including gloA and gloB, which are homologs for genes involved in methylglyoxal (MG) detoxification. MG is a byproduct of glycolysis and a highly reactive toxic aldehyde that is elevated in immune cells during infection. Here, we observed MG sensitivity across multiple GBS isolates and confirm that gloA contributes to MG tolerance and invasive GBS infection. We show specifically that gloA contributes to GBS survival in the presence of neutrophils and depleting neutrophils in mice abrogates the decreased survival and infection of the gloA mutant. The requirement of the glyoxalase pathway during GBS infection suggests that MG detoxification is important for bacterial survival during host-pathogen interactions.
Collapse
Affiliation(s)
- Madeline S. Akbari
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Luke R. Joyce
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Amanda Brady
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Kevin S. McIver
- Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| |
Collapse
|
5
|
Sullivan MJ, Terán I, Goh KG, Ulett GC. Resisting death by metal: metabolism and Cu/Zn homeostasis in bacteria. Emerg Top Life Sci 2024; 8:45-56. [PMID: 38362914 PMCID: PMC10903455 DOI: 10.1042/etls20230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Metal ions such as zinc and copper play important roles in host-microbe interactions and their availability can drastically affect the survival of pathogenic bacteria in a host niche. Mechanisms of metal homeostasis protect bacteria from starvation, or intoxication, defined as when metals are limiting, or in excess, respectively. In this mini-review, we summarise current knowledge on the mechanisms of resistance to metal stress in bacteria, focussing specifically on the homeostasis of cellular copper and zinc. This includes a summary of the factors that subvert metal stress in bacteria, which are independent of metal efflux systems, and commentary on the role of small molecules and metabolic systems as important mediators of metal resistance.
Collapse
Affiliation(s)
- Matthew J. Sullivan
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Ignacio Terán
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Kelvin G.K. Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| |
Collapse
|
6
|
Guo H, Lu F, Lu R, Huang M, Li X, Yuan J, Wang F. A novel tumor 4-driver gene signature for the prognosis of hepatocellular carcinoma. Heliyon 2023; 9:e17054. [PMID: 37484410 PMCID: PMC10361245 DOI: 10.1016/j.heliyon.2023.e17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), the main type of liver cancer, is the second most lethal tumor worldwide, with a 5-year survival rate of only 18%. Driver genes facilitate cancer cell growth and spread in the tumor microenvironment. Here, a comprehensive driver gene signature for the prognosis of HCC was developed. Methods HCC driver genes were analyzed comprehensively to develop a better prognostic signature. The dataset of HCC patients included mRNA sequencing data and clinical information from the TCGA, the ICGC, and the Guangxi Medical University Cancer Hospital cohorts. First, LASSO was performed to develop a prognostic signature for differentially expressed driver genes in the TCGA cohort. Then, the robustness of the signature was assessed using survival and time-dependent ROC curves. Furthermore, independent predictors were determined using univariate and multivariate Cox regression analyses. Stepwise multi-Cox regression analysis was employed to identify significant variables for the construction of a nomogram that predicts survival rates. Functional analysis by Spearman correlation analysis, enrichment analysis (GO, KEGG, and GSEA), and immunoassay (ssGSEA and xCell) were performed. Result A 4-driver gene signature (CLTC, DNMT3A, GMPS, and NRAS) was successfully constructed and showed excellent predictive efficiency in three cohorts. The nomogram indicated high predictive accuracy for the 1-, 3-, and 5-year prognoses of HCC patients, which included clinical information and risk score. Enrichment analysis revealed that driver genes were involved in regulating oncogenic processes, including the cell cycle and metabolic pathways, which were associated with the progression of HCC. ssGSEA and xCell showed differences in immune infiltration and the immune microenvironment between the two risk groups. Conclusion The 4-driver gene signature is closely associated with the survival prediction of HCC and is expected to provide new insights into targeted therapy for HCC patients.
Collapse
Affiliation(s)
- Houtian Guo
- First Clinical College of Guangxi Medical University, Nanning, China
| | - Fei Lu
- First Clinical College of Guangxi Medical University, Nanning, China
| | - Rongqi Lu
- First Clinical College of Guangxi Medical University, Nanning, China
| | - Meiqi Huang
- First Clinical College of Guangxi Medical University, Nanning, China
| | - Xuejing Li
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jianhui Yuan
- Department of Physics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Feng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
7
|
Varghese BR, Goh KGK, Desai D, Acharya D, Chee C, Sullivan MJ, Ulett GC. Variable resistance to zinc intoxication among Streptococcus agalactiae reveals a novel IS1381 insertion element within the zinc efflux transporter gene czcD. Front Immunol 2023; 14:1174695. [PMID: 37304277 PMCID: PMC10251203 DOI: 10.3389/fimmu.2023.1174695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus, is an important human and animal pathogen. Zinc (Zn) is an essential trace element for normal bacterial physiology but intoxicates bacteria at high concentrations. Molecular systems for Zn detoxification exist in S. agalactiae, however the degree to which Zn detoxification may vary among different S. agalactiae isolates is not clear. We measured resistance to Zn intoxication in a diverse collection of clinical isolates of S. agalactiae by comparing the growth of the bacteria in defined conditions of Zn stress. We found significant differences in the ability of different S. agalactiae isolates to resist Zn intoxication; some strains such as S. agalactiae 18RS21 were able to survive and grow at 3.8-fold higher levels of Zn stress compared to other reference strains such as BM110 (6.4mM vs 1.68mM Zn as inhibitory, respectively). We performed in silico analysis of the available genomes of the S. agalactiae isolates used in this study to examine the sequence of czcD, which encodes an efflux protein for Zn that supports resistance in S. agalactiae. Interestingly, this revealed the presence of a mobile insertion sequence (IS) element, termed IS1381, in the 5' region of czcD in S. agalactiae strain 834, which was hyper-resistant to Zn intoxication. Interrogating a wider collection of S. agalactiae genomes revealed identical placement of IS1381 in czcD in other isolates from the clonal-complex-19 (CC19) 19 lineage. Collectively, these results show a resistance spectrum among S. agalactiae isolates enables survival in varying degrees of Zn stress, and this phenotypic variability has implications for understanding bacterial survival in metal stress.
Collapse
Affiliation(s)
- Brian R. Varghese
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Kelvin G. K. Goh
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Collin Chee
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Matthew J. Sullivan
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Dual RNA sequencing of group B Streptococcus-infected human monocytes reveals new insights into host-pathogen interactions and bacterial evasion of phagocytosis. Sci Rep 2023; 13:2137. [PMID: 36747074 PMCID: PMC9902490 DOI: 10.1038/s41598-023-28117-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is a frequent cause of infections, including bacteraemia and other acute diseases in adults and immunocompromised individuals. We developed a novel system to study GBS within human monocytes to define the co-transcriptome of intracellular GBS (iGBS) and host cells simultaneously using dual RNA-sequencing (RNA-seq) to better define how this pathogen responds to host cells. Using human U937 monocytes and genome-sequenced GBS reference strain 874,391 in antibiotic protection assays we validated a system for dual-RNA seq based on measures of GBS and monocyte viability to ensure that the bacterial and host cell co-transcriptome reflected mainly intracellular (iGBS) rather than extracellular GBS. Elucidation of the co-transcriptome revealed 1119 dysregulated transcripts in iGBS with most genes, including several that encode virulence factors (e.g., scpB, hvgA, ribD, pil2b) exhibiting activation by upregulated expression. Infection with iGBS resulted in significant remodelling of the monocyte transcriptome, with 7587 transcripts differentially expressed including 7040 up-regulated and 547 down-regulated. qPCR confirmed that the most strongly activated genes included sht, encoding Streptococcal Histidine Triad Protein. An isogenic GBS mutant strain deficient in sht revealed a significant effect of this gene on phagocytosis of GBS and survival of the bacteria during systemic infection in mice. Identification of a novel contribution of sht to GBS virulence shows the co-transcriptome responses elucidated in GBS-infected monocytes help to shape the host-pathogen interaction and establish a role for sht in the response of the bacteria to phagocytic uptake. This study provides comprehension of concurrent transcriptional responses that occur in GBS and human monocytes that shape the host-pathogen interaction.
Collapse
|
9
|
Regulatory cross-talk supports resistance to Zn intoxication in Streptococcus. PLoS Pathog 2022; 18:e1010607. [PMID: 35862444 PMCID: PMC9345489 DOI: 10.1371/journal.ppat.1010607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/02/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023] Open
Abstract
Metals such as copper (Cu) and zinc (Zn) are important trace elements that can affect bacterial cell physiology but can also intoxicate bacteria at high concentrations. Discrete genetic systems for management of Cu and Zn efflux have been described in several bacterial pathogens, including streptococci. However, insight into molecular cross-talk between systems for Cu and Zn management in bacteria that drive metal detoxification, is limited. Here, we describe a biologically consequential cross-system effect of metal management in group B Streptococcus (GBS) governed by the Cu-responsive copY regulator in response to Zn. RNAseq analysis of wild-type (WT) and copY-deficient GBS subjected to metal stress revealed unique transcriptional links between the systems for Cu and Zn detoxification. We show that the Cu-sensing role of CopY extends beyond Cu and enables CopY to regulate Cu and Zn stress responses that effect changes in gene function for central cellular processes, including riboflavin synthesis. CopY also supported GBS intracellular survival in human macrophages and virulence during disseminated infection in mice. In addition, we show a novel role for CovR in modulating GBS resistance to Zn intoxication. Identification of the Zn resistome of GBS using TraDIS revealed a suite of genes essential for GBS growth in metal stress. Several of the genes identified are novel to systems that support bacterial survival in metal stress and represent a diverse set of mechanisms that underpin microbial metal homeostasis during cell stress. Overall, this study reveals a new and important mechanism of cross-system complexity driven by CopY in bacteria to regulate cellular management of metal stress and survival. Metals, such as Cu and Zn, can be used by the mammalian immune system to target bacterial pathogens for destruction, and consequently, bacteria have evolved discrete genetic systems to enable subversion of this host antimicrobial response. Systems for Cu and Zn homeostasis are well characterized, including transcriptional control elements that sense and respond to metal stress. Here, we discover novel features of metal response systems in Streptococcus, which have broad implications for bacterial pathogenesis and virulence. We show that Streptococcus resists Zn intoxication by utilizing a bona fide Cu regulator, CopY, to manage cellular metal homeostasis, and enable the bacteria to survive stressful conditions. We identify several new genes that confer resistance to Zn intoxication in Streptococcus, including some that have hitherto not been linked to metal ion homeostasis in any bacterial pathogen. Identification of a novel cross-system metal management mechanism exploited by Streptococcus to co-ordinate and achieve metal resistance enhances our understanding of metal ion homeostasis in bacteria and its effect on pathogenesis.
Collapse
|
10
|
Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction. Microorganisms 2022; 10:microorganisms10010142. [PMID: 35056591 PMCID: PMC8779874 DOI: 10.3390/microorganisms10010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Verrucomicrobiotal methanotrophs are thermoacidophilic methane oxidizers that have been isolated from volcanic and geothermal regions of the world. We used a metagenomic approach that entailed obtaining the whole genome sequence of a verrucomicrobiotal methanotroph from a microbial consortium enriched from samples obtained from Nymph Lake (89.9 °C, pH 2.73) in Yellowstone National Park in the USA. To identify and reconstruct the verrucomicrobiotal genome from Illumina NovaSeq 6000 sequencing data, we constructed a bioinformatic pipeline with various combinations of de novo assembly, alignment, and binning algorithms. Based on the marker gene (pmoA), we identified and assembled the Candidatus Methylacidiphilum sp. YNP IV genome (2.47 Mbp, 2392 ORF, and 41.26% GC content). In a comparison of average nucleotide identity between Ca. Methylacidiphilum sp. YNP IV and Ca. Methylacidiphilum fumariolicum SolV, its closest 16S rRNA gene sequence relative, is lower than 95%, suggesting that Ca. Methylacidiphilum sp. YNP IV can be regarded as a different species. The Ca. Methylacidiphilum sp. YNP IV genome assembly showed most of the key genes for methane metabolism, the CBB pathway for CO2 fixation, nitrogen fixation and assimilation, hydrogenases, and rare earth elements transporter, as well as defense mechanisms. The assembly and reconstruction of a thermoacidophilic methanotroph belonging to the Verrucomicrobiota phylum from a geothermal environment adds further evidence and knowledge concerning the diversity of biological methane oxidation and on the adaptation of this geochemically relevant reaction in extreme environments.
Collapse
|
11
|
Desai D, Goh KGK, Sullivan MJ, Chattopadhyay D, Ulett GC. Hemolytic activity and biofilm-formation among clinical isolates of group B streptococcus causing acute urinary tract infection and asymptomatic bacteriuria. Int J Med Microbiol 2021; 311:151520. [PMID: 34273854 DOI: 10.1016/j.ijmm.2021.151520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus, is an aetiological agent of urinary tract infection (UTI) in adults, including cystitis, pyelonephritis and asymptomatic bacteriuria (ABU). Whereas ABU-causing S. agalactiae (ABSA) have been shown to grow and achieve higher culture denstity in human urine compared to uropathogenic S. agalactiae (UPSA) other phenotypic distinctions between S. agalactiae isolated from different forms of UTI are not known. Here, we define the hemolytic activities and biofilm-formation of a collection of clinical isolates of UPSA, ABSA and recurrent S. agalactiae bacteriuria (rSAB) strains to explore these phenotypes in the context of clinical history of isolates. A total of 61 UPSA, 184 ABSA, and 47 rSAB isolates were analyzed for relative hemolytic activity by spot assay on blood agar, which was validated using a erythrocyte lysis suspension assay. Biofilm formation was determined by microtiter plate assay with Lysogeny and Todd-Hewitt broths supplemented with 1% glucose to induce biofilm formation. We also used multiplex PCR to analyze isolates for the presence of genes encoding adhesive pili, which contribute to biofilm formation. Comparing the hemolytic activities of 292 isolates showed, surprisingly, that ABSA strains were significantly more likely to be highly hemolytic compared to other strains. In contrast, there were no differences between the relative abilities of strains from the different clinical history groups to form biofilms. Taken together, these findings demonstrate a propensity of S. agalactiae causing ABU to be highly hemolytic but no link between clinical history of UTI strains and ability to form biofilm.
Collapse
Affiliation(s)
- Devika Desai
- School of Pharmacy and Medical Sciences, Australia
| | - Kelvin G K Goh
- School of Pharmacy and Medical Sciences, Australia; Menzies Health Institute Queensland, Griffith University, Parklands, 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, Australia; Menzies Health Institute Queensland, Griffith University, Parklands, 4222, Australia
| | - Debasish Chattopadhyay
- Department of Medicine, University of Alabama at Birmingham, Birmingham, 35294, AL, United States
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, Australia; Menzies Health Institute Queensland, Griffith University, Parklands, 4222, Australia; Department of Medicine, University of Alabama at Birmingham, Birmingham, 35294, AL, United States.
| |
Collapse
|