1
|
Fan H, Hong X, Wang H, Gao F, Su Z, Yao H. Biodegradable microplastics affect tomato (Solanum lycopersicum L.) growth by interfering rhizosphere key phylotypes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137208. [PMID: 39842126 DOI: 10.1016/j.jhazmat.2025.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Biodegradable microplastics (BMPs), which form as biodegradable plastics degrade in agricultural settings, may influence plant growth and soil health. This study investigates the effects of BMPs on tomato growth and the microbial mechanisms involved. A greenhouse experiment applied BMPs-polyhydroxyalkanoate (PHA), polylactic acid (PLA), poly(butylene succinate-co-butylene adipate) (PBSA), and poly(butylene-adipate-co-terephthalate) (PBAT)-to tomato plants. The study analyzed their effects on plant growth, soil properties, and rhizosphere microbial communities. BMP treatments significantly reduced tomato biomass, height, and chlorophyll content compared to the control. PLA0.1 decreased the chlorophyll a/b ratio, while PLA1 increased it. Elemental analysis showed PLA1 increased phosphorus, calcium, and potassium in leaves, whereas all BMPs reduced nitrogen levels. BMPs also altered soil nitrogen and DOC levels, significantly shifting rhizosphere microbial communities, with a notable increase in Betaproteobacteria abundance. Ecological network analysis revealed that BMPs disrupted key microbial modules linked to plant growth. Beneficial modules positively associated with biomass and nutrient uptake were reduced under BMP treatments, whereas harmful microbial taxa in module 3, associated to poor plant health, were promoted. These shifts suggest that BMPs disrupt microbial ecological relationships critical for optimal plant growth. The findings highlight the potential negative impacts of BMPs on tomato growth through changes in microbial dynamics and soil properties.
Collapse
Affiliation(s)
- Haoxin Fan
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xincheng Hong
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hehua Wang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feng Gao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ziqi Su
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
2
|
Li G, Srinivasan V, Tooker NB, Wang D, Onnis-Hayden A, Bott C, Dombrowski P, Pinto A, Gu AZ. Metagenomic analysis revealed community-level metabolic differences between full-scale EBPR and S2EBPR systems. WATER RESEARCH 2025; 280:123509. [PMID: 40138860 DOI: 10.1016/j.watres.2025.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Side-Stream Enhanced Biological Phosphorus Removal (S2EBPR) has emerged as a promising technology addressing certain challenges of conventional Enhanced Biological Phosphorus Removal (EBPR), notably stability in phosphorus removal, yet the underlying mechanisms are not fully understood. Metagenomic analysis presents a powerful approach to elucidate community-level metabolic differences between EBPR and S2EBPR configurations. In this study, we compared three EBPR and three S2EBPR activated sludge communities using metagenomic analysis at taxonomy, key functional pathways/genes, and polyphosphate-metabolism marker genes. Our analysis revealed larger genus-level diversity variance in S2EBPR communities, indicating distinct microbial community compositions influenced by different operational configurations. A higher diversity index in the S2EBPR than the EBPR was observed, and a higher Ca. Accumulibacter abundance was detected in EBPRs, whereas the fermentative candidate PAOs genera, including Ca. Phosphoribacter and Ca. Promineifilum, were more abundant in S2EBPR systems. EBPR and S2EBPR groups displayed similar gene and pathway abundance patterns related to core metabolisms essential for carbon and nitrogen metabolism. PolyP-metabolism marker gene phylogeny analysis suggested that exopolyphosphatase gene (ppx) showed better distinctions between EBPR and S2EBPR communities than polyphosphate kinase gene (ppk). This also highlighted the needs in fine-cale microdiversity analysis and finding novel Ca. Accumulibacter clades and species as resolved using the ppk gene. These findings provide valuable insights into AS community dynamics and metabolic functionalities, paving the way for further research into optimizing phosphorus removal processes in wastewater treatment systems.
Collapse
Affiliation(s)
- Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Varun Srinivasan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; Brown and Caldwell, One Tech Drive, Andover, MA 01810, United States
| | - Nicholas B Tooker
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Dongqi Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Annalisa Onnis-Hayden
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, United States
| | | | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States.
| |
Collapse
|
3
|
Kridler MR, Howe A, Legins JA, Guerrero C, Bartelme RP, Taylor B, Carini P. High-quality PacBio draft genome sequences of 17 free-living Bradyrhizobium and four related Nitrobacteraceae strains isolated from arid soils in the Santa Catalina Mountains of Southern Arizona. Access Microbiol 2025; 7:000884.v3. [PMID: 39959470 PMCID: PMC11825986 DOI: 10.1099/acmi.0.000884.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/02/2024] [Indexed: 02/18/2025] Open
Abstract
Non-symbiotic Bradyrhizobium are among the most abundant and ubiquitous microbes in bulk soils globally. Despite this, most available genomic resources for Bradyrhizobium are derived from plant-associated strains. We present high-quality draft genomes for 17 Bradyrhizobium and four Nitrobacteraceae cultures isolated from bulk semiarid soils in Arizona, USA. The genome sizes range from 5.99 to 10.4 Mbp. Phylogenomic analysis of the 21 genomes indicates they fall into four clades. Two of the clades are nested within the Bradyrhizobium genus. The other two clades were associated with Nitrobacteraceae outgroups basal to Bradyrhizobium. All genomes lack genes coding for molybdenum or vanadium nitrogenases, and nod genes that code for proteins involved in nodulation, suggesting these isolates are free-living, non-symbiotic and do not fix dinitrogen gas. These genomes offer new resources for investigating free-living Bradyrhizobium lineages.
Collapse
Affiliation(s)
- Melanie R. Kridler
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Amanda Howe
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Jimaree A. Legins
- Arizona Biological and Biomedical Sciences Program, University of Arizona, Tucson, AZ 85721, USA
| | - Christina Guerrero
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Ryan P. Bartelme
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Bridget Taylor
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Paul Carini
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Ling L, Camuel A, Wang S, Wang X, Liao T, Tao J, Lin X, Nouwen N, Giraud E, Luo H. Correlating phylogenetic and functional diversity of the nod-free but nodulating Bradyrhizobium phylogroup. THE ISME JOURNAL 2025; 19:wraf030. [PMID: 39961027 PMCID: PMC11973431 DOI: 10.1093/ismejo/wraf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 04/08/2025]
Abstract
Bradyrhizobium is a main rhizobial lineage of which most members nodulate legume plants using Nod factors synthetized by the nod genes. However, members of the Photosynthetic supergroup (phylogroup) within Bradyrhizobium are nod-free, but still capable of establishing nitrogen-fixing nodules with some tropical legumes of the Aeschynomene genus. These unusual findings are based on the genomic sequences of only 13 Photosynthetic Bradyrhizobium strains, and almost all were isolated from Aeschynomene nodules. Here, we report that Photosynthetic Bradyrhizobium supergroup members are more abundantly associated with rice root (endosphere and rhizosphere) compared to grassland, forest, and maize samples based on rpoB amplicon sequence analyses. We sequenced 263 new isolates of this supergroup mostly from two main subspecies of cultivated rice (Oryza sativa L. spp. indica and japonica). The extended supergroup comprises three major clades with their diversity broadly covering the natural community of this supergroup: a basal clade with significant expansion of its diversity, a clade composed by two phylogenetically diverse strains including one newly isolated, and a new clade exclusively represented by our new strains. Although this supergroup members universally lack the canonical nod genes, all 28 assayed strains covering the broad diversity induced nodules on Aeschynomene indica. The three clades displayed important differences in the efficiency of symbiosis, aligning well with their phylogenetic divergence. With this expanded ecological, phylogenetic, and functional diversity, we conclude that the nod factor-independent nodulation of Aeschynomene is a common trait of this supergroup, in contrast to the photosynthetic trait originally thought of as its unifying feature.
Collapse
Affiliation(s)
- Lu Ling
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Alicia Camuel
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J-Campus de Baillarguet 34398, Montpellier Cedex 5, France
- PHIM Plant Health Institute, Universite de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Xiaojun Wang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Tianhua Liao
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Jinjin Tao
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Xingqin Lin
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J-Campus de Baillarguet 34398, Montpellier Cedex 5, France
- PHIM Plant Health Institute, Universite de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/Institut Agro/INRAE/Université de Montpellier/CIRAD, TA-A82/J-Campus de Baillarguet 34398, Montpellier Cedex 5, France
- PHIM Plant Health Institute, Universite de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Gao M, Yuan X, Ji Z, Yang B, Li H, Zhang B. Great diverse rhizobial community nodulating Astragalus mongholicus in the northeastern region of China. Front Microbiol 2024; 15:1507637. [PMID: 39735190 PMCID: PMC11671508 DOI: 10.3389/fmicb.2024.1507637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Astragalus mongholicus Bunge is an important medicinal legume species widely cultivated in northeastern China (NEC) and northwestern China (NWC) and can establish a symbiotic relationship with nitrogen-fixing rhizobial strains. However, there are limited reports comparing the genetic diversity, differentiation, and gene flow of rhizobial strains associated with this plant in different geographic regions. Methods We used multilocus sequence analysis (MLSA) to investigate the phylogeny and genetic diversity of rhizobia and to estimate their intra- and inter-regional gene flow and genetic differentiation based on the analysis of concatenated core genes (recA, atpD, and glnII) and the critical symbiotic gene nodC. Results We isolated eight known and three novel genospecies representing four genera, among which Rhizobium yanglingense was the most predominant microsymbiont. Phylogenetic analysis revealed a highly diverse rhizobial community nodulating Astragalus mongholicus in NEC, consisting of the four genera Rhizobium, Bradyrhizobium, Sinorhizobium, and Mesorhizobium. This community differed markedly from the rhizobial community found in NWC. Various rhizobial genospecies with different symbiotic gene nodC sequences were capable of nodulating A. mongholicus in NEC. Therefore, A. mongholicus exhibits promiscuity in its association with symbionts in the natural environment, showing no strong preference for either the species-defining core genes or the symbiotic genes of rhizobia. We also found that the Glyco_tranf_GTA_type superfamily (Glycosyltransferase family A) is the most highly conserved and essential domain in the NodC protein, which is encoded by the symbiotic nodC gene, across nodulating rhizobia. In addition, we found independent genetic differentiation among rhizobial communities geographically, and the frequency of gene flow among microsymbionts between NEC and NWC was low. We speculate that the formation of the highly diverse rhizobial community in NEC resulted from the independent evolution of each ancestral lineage. This diversity likely arose from intraregional genetic differentiation driven by mutations rather than recombination. Conclusion Ecogeographical isolation between NEC and NWC restricted inter-regional genetic drift and gene flow. Therefore, intraregional genetic differentiation is the major evolutionary force underlying the genetic diversity of rhizobia.
Collapse
Affiliation(s)
- Mengzhe Gao
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Xiaoxia Yuan
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Autonomous Region Engineering Technology Research Center for Prevention and Control of Pathogenic Bacteria in Milk, Tongliao, China
| | - Zhaojun Ji
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Autonomous Region Engineering Technology Research Center for Prevention and Control of Pathogenic Bacteria in Milk, Tongliao, China
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, China
| | - Bingjie Yang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Hua Li
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Autonomous Region Engineering Technology Research Center for Prevention and Control of Pathogenic Bacteria in Milk, Tongliao, China
| | - Bo Zhang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Inner Mongolia Autonomous Region Engineering Technology Research Center for Prevention and Control of Pathogenic Bacteria in Milk, Tongliao, China
| |
Collapse
|
6
|
Huo C, Zhang J, Yang X, Li X, Su Y, Chen Z. Dry season irrigation promotes nutrient cycling by reorganizing Eucalyptus rhizosphere microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176307. [PMID: 39284445 DOI: 10.1016/j.scitotenv.2024.176307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
In southern China, seasonal droughts and low soil phosphorus content constrain the productivity of Eucalyptus trees. To understand the rhizosphere microbiome response to the dry season, metagenomic sequencing analysis was used to investigate the 6-year-old Eucalyptus rhizosphere microbiome under four different irrigation and fertilization treatments. The results showed that irrigation and fertilization during the dry season significantly altered the composition of microbiome in the rhizosphere soil of Eucalyptus plantations. The soil physicochemical properties and enzyme activity explained 30.73 % and 29.75 % of the changes in bacterial and fungal community structure in Eucalyptus rhizosphere soil, respectively. Irrigation and fertilization during the dry season significantly altered the physicochemical properties of rhizosphere soil. Compared with the seasonal drought without fertilizer treatment (CK), the dry season irrigation with fertilizer treatment (WF) significantly increased the content of total nitrogen (46.34 %), available nitrogen (37.72 %), available phosphorus (440.9 %), and organic matter (35.34 %). Soil organic matter (OM), pH, and available phosphorus (AP) were key environmental factors influencing the microbial community composition. Moreover, irrigation and fertilization promoted carbon fixation and nitrogen and phosphorus mineralization, increasing soil OM content and the availability of inorganic nitrogen and phosphorus. Meanwhile, compared to the CK, the increase of acid phosphatase (16.81 %), invertase (146.89 %)and urease (59.45 %) in rhizosphere soil under irrigation (W) treatment further proves that dry season irrigation promote the soil carbon, nitrogen and phosphorus cycles. Irrigation and fertilization treatment alleviated the constraints of low phosphorus in southern China's soil, which promoted Eucalyptus productivity. In conclusion, we suggest implementing reasonable irrigation and fertilization strategies in the production practice of Eucalyptus and utilizing microbial resources to improve soil fertility and Eucalyptus productivity.
Collapse
Affiliation(s)
- Chunyu Huo
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianlang Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinzhu Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yu Su
- Guangzhou collaborative innovation center on science- tech of ecology and landscape, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Zujing Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Yang Y, Li Y, Hao K, Zhao Y, Li M, Fan Y. Microbial community composition and co-occurrence network analysis of the rhizosphere soil of the main constructive tree species in Helan Mountain of Northwest China. Sci Rep 2024; 14:24557. [PMID: 39427091 PMCID: PMC11490567 DOI: 10.1038/s41598-024-76195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
To understand the microbial diversity and community composition within the main constructive tree species, Picea crassifolia, Betula platyphylla, and Pinus tabuliformis, in Helan Mountain and their response to changes in soil physicochemical factors, a high throughput sequencing technology was used to analyze the bacterial and fungal diversity and community structure. RDA (Redundancy Analysis) and Pearson correlation analysis were used to explore the influence of soil physicochemical factors on microbial community construction, and co-occurrence network analysis was conducted on the microbial communities. The results showed that the fungal and bacterial diversity was highest in B. platyphylla, and lowest in P. crassifolia. Additionally, the fungal/bacterial richness was greatest in the rhizosphere soils of P. tabuliformis and B. platyphylla. RDA and Pearson correlation analysis revealed that NN (nitrate nitrogen) and AP (available phosphorus) were the main determining factors of the bacterial community, while NN and SOC (soil water content) were the main determining factors of the fungal community. Pearson correlation analysis between soil physicochemical factors and the alpha diversity of the microbial communities revealed a significant positive correlation between pH and the bacterial and fungal diversity, while SOC, TN (total nitrogen), AP, and AN (available nitrogen) were significantly negatively correlated with the bacterial and fungal diversity. Co-occurrence network analysis revealed that the soil bacterial communities exhibit richer network nodes, edges, greater diversity, and greater network connectivity. Indicating that bacterial communities exhibit more complex and stable interaction patterns in soil. This study reveals the complex interactive relationship between microbial communities and soil physicochemical factors in forest ecosystems. By analyzing the response of rhizosphere microbial communities of major tree species in Helan Mountain to nutrient dynamics and pH changes, we can deepen our understanding of the role of microorganisms in regulating ecosystem functions and provide theoretical basis for soil improvement and ecological restoration strategies.
Collapse
Affiliation(s)
- Yuze Yang
- College of Life Science and Technology, Inner Mongolia Normal University, Huhhot, 010022, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization for the College, University of Inner Mongolia Autonomous Region, Hohhot, China
| | - Yue Li
- College of Life Science and Technology, Inner Mongolia Normal University, Huhhot, 010022, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization for the College, University of Inner Mongolia Autonomous Region, Hohhot, China
| | - Ke Hao
- College of Life Science and Technology, Inner Mongolia Normal University, Huhhot, 010022, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization for the College, University of Inner Mongolia Autonomous Region, Hohhot, China
| | - Yujia Zhao
- College of Life Science and Technology, Inner Mongolia Normal University, Huhhot, 010022, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization for the College, University of Inner Mongolia Autonomous Region, Hohhot, China
| | - Min Li
- College of Life Science and Technology, Inner Mongolia Normal University, Huhhot, 010022, China.
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization for the College, University of Inner Mongolia Autonomous Region, Hohhot, China.
| | - Yongjun Fan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
8
|
Stonoha-Arther C, Panke-Buisse K, Duff AJ, Molodchenko A, Casler MD. Rhizosphere microbial community structure in high-producing, low-input switchgrass families. PLoS One 2024; 19:e0308753. [PMID: 39361607 PMCID: PMC11449334 DOI: 10.1371/journal.pone.0308753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 10/05/2024] Open
Abstract
Switchgrass (Panicum virgatum L.) is a native, low-input North American perennial crop primarily grown for bioenergy, livestock forage, and industrial fiber. To achieve no-input switchgrass production that meets biomass needs, several switchgrass genotypes have been identified that have a low or negative response to nitrogen fertilizer, i.e., the biomass accumulation with added nitrogen is less than or equal to that when grown without nitrogen. In order to improve the viability of low-input switchgrass production, a more detailed understanding of the biogeochemical mechanisms active in these select genotypes is needed. 16S and ITS amplicon sequencing and qPCR of key functional genes were applied to switchgrass rhizospheres to elucidate microbial community structure in high-producing, no-input switchgrass families. Rhizosphere microbial community structure differed strongly between sites, and nitrogen responsiveness.
Collapse
Affiliation(s)
| | - Kevin Panke-Buisse
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| | - Alison J Duff
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| | - Andrew Molodchenko
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| | - Michael D Casler
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| |
Collapse
|
9
|
Liao N, Pan L, Zhao H, Yang S, Qin X, Huang J, Li X, Dong K, Shi X, Hou Q, Chen Q, Wang P, Jiang G, Li N. Species pool and soil properties in mangrove habitats influence the species-immigration process of diazotrophic communities across southern China. mSystems 2024; 9:e0030724. [PMID: 38980055 PMCID: PMC11334429 DOI: 10.1128/msystems.00307-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Microbial immigration is an ecological process in natural environments; however, the ecological trade-off mechanisms that govern the balance between species extinction and migration are still lacking. In this study, we investigated the mechanisms underlying the migration of diazotrophic communities from soil to leaves across six natural mangrove habitats in southern China. The results showed that the diazotrophic alpha and beta diversity exhibited significant regional and locational variations. The diazotrophic species pool gradually increased from the leaves to nonrhizosphere soil at each site, exhibiting a vertical distribution pattern. Mantel test analyses suggested that climate factors, particularly mean annual temperature, significantly influenced the structure of the diazotrophic community. The diazotrophic community assembly was mainly governed by dispersal limitation in soil and root samples, whereas dispersal limitation and ecological drift were dominant in leaves. Partial least squares path modeling revealed that the species pool and soil properties, particularly the oxidation-reduction potential and pH, were closely linked to the species-immigration ratio of diazotrophic communities. Our study provides novel insights for understanding the ecological trait diversity patterns and spread pathways of functional microbial communities between below- and aboveground habitats in natural ecosystems.IMPORTANCEEnvironmental selection plays key roles in microbial transmission. In this study, we have provided a comprehensive framework to elucidate the driving patterns of the ecological trade-offs in diazotrophic communities across large-scale mangrove habitats. Our research revealed that Bradyrhizobium japonicum, Marinobacterium lutimaris, and Agrobacterium tumefaciens were more abundant in root-associated soil than in leaves by internal and external pathways. The nonrhizospheric and rhizospheric soil samples harbored the most core amplicon sequence variants, indicating that these dominant diazotrophs could adapt to broader ecological niches. Correlation analysis indicated that the diversities of the diazotrophic community were regulated by biotic and abiotic factors. Furthermore, this study found a lower species immigration ratio in the soil than in the leaves. Both species pool and soil properties regulate the species-immigration mechanisms of the diazotrophic community. These results suggest that substantial species immigration is a widespread ecological process, leading to alterations in local community diversity across diverse host environments.
Collapse
Affiliation(s)
- Nengjian Liao
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lianghao Pan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Shu Yang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Xinyi Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | | | - Xiaoli Li
- School of Agriculture, Ludong University, Yantai, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon-si, Gyeonggi-do, South Korea
| | - Xiaofang Shi
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qinghua Hou
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Qingxiang Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Gonglingxia Jiang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Nan Li
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
10
|
Rui R, Hei J, Li Y, Al Farraj DA, Noor F, Wang S, He X. Effects of humic acid fertilizer on the growth and microbial network stability of Panax notoginseng from the forest understorey. Sci Rep 2024; 14:17816. [PMID: 39090225 PMCID: PMC11294558 DOI: 10.1038/s41598-024-68949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Humic acid (HA) can substantially enhance plant growth and improve soil health. Currently, the impacts of HA concentrations variation on the development and soil quality of Panax notoginseng (Sanqi) from the forest understorey are still unclear. In this study, exogenous HA was administered to the roots of Sanqi at varying concentrations (2, 4, and 6 ml/L). Subsequently, the diversity and community structure of bacteria and fungi were assessed through high-throughput sequencing technology. The investigation further involved analyzing the interplay among the growth of sanqi, soil edaphic factors, and the microbial network stability. Our finding revealed that moderate concentrations (4 ml/L) of HA improved the fresh/dry weight of Sanqi and NO3--N levels. Compared with control, the moderate concentrations of HA had a notable impact on the bacterial and fungal communities compositions. However, there was no significant difference in the α and β diversity of bacteria and fungi. Moreover, the abundance of beneficial bacteria (Bradyrhizobium) and harmful bacteria (Xanthobacteraceae) increased and decreased at 4 ml/L HA, respectively, while the bacterial and fungal network stability were enhanced. Structural equation model (SEM) revealed that the fresh weight of Sanqi and bacterial and fungal communities were the factors that directly affected the microbial network stability at moderate concentrations of HA. In conclusion, 4 ml/L of HA is beneficial for promoting Sanqi growth and soil quality. Our study provides a reference for increasing the yield of Sanqi and sustainable development of the Sanqi-pine agroforestry system.
Collapse
Affiliation(s)
- Rui Rui
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China
| | - Jingying Hei
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China
| | - Yue Li
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Noor
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China
| | - Shu Wang
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China.
- Key Laboratory of Ministry of Education on Forest Resources Conservation and Utilization in Southwest Mountainous Area, Kunming International Research and Development Center of Ecological Forestry Industry, Kunming, 650233, China.
| | - Xiahong He
- Key Laboratory of Ministry of Education on Forest Resources Conservation and Utilization in Southwest Mountainous Area, Kunming International Research and Development Center of Ecological Forestry Industry, Kunming, 650233, China.
| |
Collapse
|
11
|
Câmara I, Ventura de Souza V, Brasileiro Vidal AC, Soares Fernandes B, Magalhães Amaral F, Motteran F, Gavazza S. Optimizing intermittent micro-aeration as a strategy for enhancing aniline anaerobic biodegradation: kinetic, ecotoxicity, and microbial community dynamics analyses. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1181-1197. [PMID: 39215731 DOI: 10.2166/wst.2024.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Groundwater and soil contamination by aromatic amines (AAs), used in the production of polymers, plastics, and pesticides, often results from improper waste disposal and accidental leaks. These compounds are resistant to anaerobic degradation; however, micro-aeration can enhance this process by promoting microbial interactions. In batch assays, anaerobic degradation of aniline (0.14 mM), a model AA, was tested under three micro-aeration conditions: T30, T15, and T10 (30, 15, and 10 min of micro-aeration every 2 h, respectively). Aniline degradation occurred in all conditions, producing both aerobic (catechol) and anaerobic (benzoic acid) byproducts. The main genera involved in T30 and T15 were Comamonas, Clostridium, Longilinea, Petrimonas, Phenylobacterium, Pseudoxanthomonas, and Thiobacillus. In contrast, in T10 were Pseudomonas, Delftia, Leucobacter, and Thermomonas. While T30 and T15 promoted microbial cooperation for anaerobic degradation and facultative respiration, T10 resulted in a competitive environment due to dominance and oxygen scarcity. Despite aniline degradation in 9.4 h under T10, this condition was toxic to Allium cepa seeds and exhibited cytogenotoxic effects. Therefore, T15 emerged as the optimal condition, effectively promoting anaerobic degradation without accumulating toxic byproducts. Intermittent micro-aeration emerges as a promising strategy for enhancing the anaerobic degradation of AA-contaminated effluents.
Collapse
Affiliation(s)
- Isabelle Câmara
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Victor Ventura de Souza
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Ana Christina Brasileiro Vidal
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Bruna Soares Fernandes
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Fernanda Magalhães Amaral
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Fabrício Motteran
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n. Cidade Universitária, Recife, PE CEP: 50740-530, Brazil E-mail:
| |
Collapse
|
12
|
Yan H, Wu Y, He G, Wen S, Yang L, Ji L. Fertilization regime changes rhizosphere microbial community assembly and interaction in Phoebe bournei plantations. Appl Microbiol Biotechnol 2024; 108:417. [PMID: 38995388 PMCID: PMC11245453 DOI: 10.1007/s00253-024-13106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 07/13/2024]
Abstract
Fertilizer input is one of the effective forest management practices, which improves soil nutrients and microbial community compositions and promotes forest productivity. However, few studies have explored the response of rhizosphere soil microbial communities to various fertilization regimes across seasonal dynamics. Here, we collected the rhizosphere soil samples from Phoebe bournei plantations to investigate the response of community assemblages and microbial interactions of the soil microbiome to the short-term application of four typical fertilizer practices (including chemical fertilizer (CF), organic fertilizer (OF), compound microbial fertilizer (CMF), and no fertilizer control (CK)). The amendments of organic fertilizer and compound microbial fertilizer altered the composition of rhizosphere soil bacterial and fungal communities, respectively. The fertilization regime significantly affected bacterial diversity rather than fungal diversity, and rhizosphere fungi responded more sensitively than bacteria to season. Fertilization-induced fungal networks were more complex than bacterial networks. Stochastic processes governed both rhizosphere soil bacterial and fungal communities, and drift and dispersal limitation dominated soil fungal and bacterial communities, respectively. Collectively, these findings demonstrate contrasting responses to community assemblages and interactions of rhizosphere bacteria and fungi to fertilizer practices. The application of organic fertilization strengthens microbial interactions and changes the succession of key taxa in the rhizosphere habitat. KEY POINTS: • Fertilization altered the key taxa and microbial interaction • Organic fertilizer facilitated the turnover of rhizosphere microbial communities • Stochasticity governed soil fungal and bacterial community assembly.
Collapse
Affiliation(s)
- Haoyu Yan
- School of Forestry, Central South University of Forestry and Technology, 410004, Changsha, People's Republic of China
| | - Yang Wu
- School of Forestry, Central South University of Forestry and Technology, 410004, Changsha, People's Republic of China
| | - Gongxiu He
- School of Forestry, Central South University of Forestry and Technology, 410004, Changsha, People's Republic of China
| | - Shizhi Wen
- School of Forestry, Central South University of Forestry and Technology, 410004, Changsha, People's Republic of China
| | - Lili Yang
- School of Forestry, Central South University of Forestry and Technology, 410004, Changsha, People's Republic of China.
| | - Li Ji
- School of Forestry, Central South University of Forestry and Technology, 410004, Changsha, People's Republic of China.
| |
Collapse
|
13
|
Qiu T, Peñuelas J, Chen Y, Sardans J, Yu J, Xu Z, Cui Q, Liu J, Cui Y, Zhao S, Chen J, Wang Y, Fang L. Arbuscular mycorrhizal fungal interactions bridge the support of root-associated microbiota for slope multifunctionality in an erosion-prone ecosystem. IMETA 2024; 3:e187. [PMID: 38898982 PMCID: PMC11183171 DOI: 10.1002/imt2.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 06/21/2024]
Abstract
The role of diverse soil microbiota in restoring erosion-induced degraded lands is well recognized. Yet, the facilitative interactions among symbiotic arbuscular mycorrhizal (AM) fungi, rhizobia, and heterotrophic bacteria, which underpin multiple functions in eroded ecosystems, remain unclear. Here, we utilized quantitative microbiota profiling and ecological network analyses to explore the interplay between the diversity and biotic associations of root-associated microbiota and multifunctionality across an eroded slope of a Robinia pseudoacacia plantation on the Loess Plateau. We found explicit variations in slope multifunctionality across different slope positions, associated with shifts in limiting resources, including soil phosphorus (P) and moisture. To cope with P limitation, AM fungi were recruited by R. pseudoacacia, assuming pivotal roles as keystones and connectors within cross-kingdom networks. Furthermore, AM fungi facilitated the assembly and composition of bacterial and rhizobial communities, collectively driving slope multifunctionality. The symbiotic association among R. pseudoacacia, AM fungi, and rhizobia promoted slope multifunctionality through enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism. Overall, our findings highlight the crucial role of AM fungal-centered microbiota associated with R. pseudoacacia in functional delivery within eroded landscapes, providing valuable insights for the sustainable restoration of degraded ecosystems in erosion-prone regions.
Collapse
Affiliation(s)
- Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
- Key Laboratory of Green Utilization of Critical Non‐metallic Mineral Resources, Ministry of EducationWuhan University of TechnologyWuhanChina
| | - Josep Peñuelas
- Consejo Superior de Investigaciones CientíficasGlobal Ecology Unit Centre de Recerca Ecològica i Aplicacions Forestals‐Consejo Superior de Investigaciones Científicas‐Universitat Autònoma de BarcelonaBellaterraSpain
- Centre de Recerca Ecològica i Aplicacions ForestalsCerdanyola del VallèsCataloniaSpain
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
- School of Agriculture and Environment, Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Jordi Sardans
- Consejo Superior de Investigaciones CientíficasGlobal Ecology Unit Centre de Recerca Ecològica i Aplicacions Forestals‐Consejo Superior de Investigaciones Científicas‐Universitat Autònoma de BarcelonaBellaterraSpain
- Centre de Recerca Ecològica i Aplicacions ForestalsCerdanyola del VallèsCataloniaSpain
| | - Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Zhiyuan Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
| | - Qingliang Cui
- Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and SimulationCentral China Normal UniversityWuhanChina
| | - Yongxing Cui
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Shuling Zhao
- Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina
| | - Jing Chen
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yunqiang Wang
- Chinese Academy of Sciences Center for Excellence in Quaternary Science and Global ChangeChinese Academy of SciencesXi'anChina
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- Key Laboratory of Green Utilization of Critical Non‐metallic Mineral Resources, Ministry of EducationWuhan University of TechnologyWuhanChina
- Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina
- Chinese Academy of Sciences Center for Excellence in Quaternary Science and Global ChangeChinese Academy of SciencesXi'anChina
| |
Collapse
|
14
|
Liu D, Song X, Hu J, Liu Y, Wang C, Henkin Z. Precipitation affects soil nitrogen fixation by regulating active diazotrophs and nitrate nitrogen in an alpine grassland of Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170648. [PMID: 38336078 DOI: 10.1016/j.scitotenv.2024.170648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Soil asymbiotic nitrogen (N) fixation provides a critical N source to support plant growth in alpine grasslands, and precipitation change is expected to lead to shifts in soil asymbiotic N fixation. However, large gaps remain in understanding the response of soil asymbiotic N fixation to precipitation gradients. Here we simulated five precipitation gradients (10 % (0.1P), 50 % (0.5P), 70 % (0.7P), 100 % (1.0P) and 150 % (1.5P) of the natural precipitation) in an alpine grassland of Qinghai-Tibetan Plateau and examined the soil nitrogenase activity and N fixation rate for each gradient. Quantitative PCR and high-throughput sequencing were used to measure the abundance and community composition of the soil nifH DNA (total diazotrophs) and nifH RNA reverse transcription (active diazotrophs) gene. Our results showed that the soil diazotrophic abundance, diversity and nifH gene expression rate peaked under the 0.5P. Soil nitrogenase activity and N fixation rate varied in the range 0.032-0.073 nmol·C2H4·g-1·h-1 and 0.008-0.022 nmol·N2·g-1·h-1 respectively, being highest under the 0.5P. The 50 % precipitation reduction enhanced the gene expression rates of Azospirillum and Halorhodospira which were likely responsible for the high N fixation potential. The 0.5P treatment also possessed a larger and more complex active diazotrophic network than the other treatments, which facilitated the resistance of diazotrophic community to environmental stress and thus maintained a high N fixation potential. The active diazotrophic abundance had the largest positive effect on soil N fixation, while nitrate nitrogen had the largest negative effect. Together, our study suggested that appropriate precipitation reduction can enhance soil N fixation through promoting the abundance of the soil active diazotrophs and decreasing soil nitrate nitrogen, and soil active diazotrophs and nitrate nitrogen should be considered in predicting soil N inputs in the alpine grassland of Qinghai-Tibetan Plateau under precipitation change.
Collapse
Affiliation(s)
- Dan Liu
- Provincial key laboratory for alpine grassland conservation and utilization on Qinghai-Tibetan Plateau, Institute of Qinghai-Tibetan Plateau Research, Southwest Minzu University, Chengdu 610041, China.
| | - Xiaoyan Song
- Provincial key laboratory for alpine grassland conservation and utilization on Qinghai-Tibetan Plateau, Institute of Qinghai-Tibetan Plateau Research, Southwest Minzu University, Chengdu 610041, China
| | - Jian Hu
- Provincial key laboratory for alpine grassland conservation and utilization on Qinghai-Tibetan Plateau, Institute of Qinghai-Tibetan Plateau Research, Southwest Minzu University, Chengdu 610041, China
| | - Yang Liu
- Provincial key laboratory for alpine grassland conservation and utilization on Qinghai-Tibetan Plateau, Institute of Qinghai-Tibetan Plateau Research, Southwest Minzu University, Chengdu 610041, China
| | - Changting Wang
- Provincial key laboratory for alpine grassland conservation and utilization on Qinghai-Tibetan Plateau, Institute of Qinghai-Tibetan Plateau Research, Southwest Minzu University, Chengdu 610041, China
| | - Zalmen Henkin
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Institute, Israel
| |
Collapse
|
15
|
Zhong C, Hu G, Hu C, Xu C, Zhang Z, Ning K. Comparative genomics analysis reveals genetic characteristics and nitrogen fixation profile of Bradyrhizobium. iScience 2024; 27:108948. [PMID: 38322985 PMCID: PMC10845061 DOI: 10.1016/j.isci.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Bradyrhizobium is a genus of nitrogen-fixing bacteria, with some species producing nodules in leguminous plants. Investigations into Bradyrhizobium have recently revealed its substantial genetic resources and agricultural benefits, but a comprehensive survey of its genetic diversity and functional properties is lacking. Using a panel of various strains (N = 278), this study performed a comparative genomics analysis to anticipate genes linked with symbiotic nitrogen fixation. Bradyrhizobium's pan-genome consisted of 84,078 gene families, containing 824 core genes and 42,409 accessory genes. Core genes were mainly involved in crucial cell processes, while accessory genes served diverse functions, including nitrogen fixation and nodulation. Three distinct genetic profiles were identified based on the presence/absence of gene clusters related to nodulation, nitrogen fixation, and secretion systems. Most Bradyrhizobium strains from soil and non-leguminous plants lacked major nif/nod genes and were evolutionarily more closely related. These findings shed light on Bradyrhizobium's genetic features for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Chaofang Zhong
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Gang Hu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Cong Hu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Chaohao Xu
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Zhonghua Zhang
- Key Laboratory of Wildlife Evolution and Conservation in Mountain Ecosystem of Guangxi, College of Environmental and Life Sciences, Nanning Normal University, Nanning 530001, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
16
|
Zhang N, Jin CZ, Zhuo Y, Li T, Jin FJ, Lee HG, Jin L. Genetic diversity into a novel free-living species of Bradyrhizobium from contaminated freshwater sediment. Front Microbiol 2023; 14:1295854. [PMID: 38075887 PMCID: PMC10708946 DOI: 10.3389/fmicb.2023.1295854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/30/2023] [Indexed: 10/10/2024] Open
Abstract
A free-living Bradyrhizobium strain isolated from a contaminated sediment sample collected at a water depth of 4 m from the Hongze Lake in China was characterized. Phylogenetic investigation of the 16S rRNA gene, concatenated housekeeping gene sequences, and phylogenomic analysis placed this strain in a lineage distinct from all previously described Bradyrhizobium species. The sequence similarities of the concatenated housekeeping genes support its distinctiveness with the type strains of the named species. The complete genome of strain S12-14-2 consists of a single chromosome of size 7.3M. The strain lacks both a symbiosis island and important nodulation genes. Based on the data presented here, the strain represents a new species, for which the name Bradyrhizobium roseus sp. nov. is proposed for the type strain S12-14-2T. Several functional differences between the isolate and other published genomes indicate that the genus Bradyrhizobium is extremely heterogeneous and has functions within the community, such as non-symbiotic nitrogen fixation. Functional denitrification and nitrogen fixation genes were identified on the genomes of strain S12-14-2T. Genes encoding proteins for sulfur oxidation, sulfonate transport, phosphonate degradation, and phosphonate production were also identified. Lastly, the B. roseus genome contained genes encoding ribulose 1,5-bisphosphate carboxylase/oxygenase, a trait that presumably enables autotrophic flexibility under varying environmental conditions. This study provides insights into the dynamics of a genome that could enhance our understanding of the metabolism and evolutionary characteristics of the genus Bradyrhizobium and a new genetic framework for future research.
Collapse
Affiliation(s)
- Naxue Zhang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ye Zhuo
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Taihua Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
17
|
Robicheau BM, Tolman J, Rose S, Desai D, LaRoche J. Marine nitrogen-fixers in the Canadian Arctic Gateway are dominated by biogeographically distinct noncyanobacterial communities. FEMS Microbiol Ecol 2023; 99:fiad122. [PMID: 37951299 PMCID: PMC10656255 DOI: 10.1093/femsec/fiad122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/30/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023] Open
Abstract
We describe diazotrophs present during a 2015 GEOTRACES expedition through the Canadian Arctic Gateway (CAG) using nifH metabarcoding. In the less studied Labrador Sea, Bradyrhizobium sp. and Vitreoscilla sp. nifH variants were dominant, while in Baffin Bay, a Stutzerimonas stutzeri variant was dominant. In comparison, the Canadian Arctic Archipelago (CAA) was characterized by a broader set of dominant variants belonging to Desulfobulbaceae, Desulfuromonadales, Arcobacter sp., Vibrio spp., and Sulfuriferula sp. Although dominant diazotrophs fell within known nifH clusters I and III, only a few of these variants were frequently recovered in a 5-year weekly nifH times series in the coastal NW Atlantic presented herein, notably S. stutzeri and variants belonging to Desulfobacterales and Desulfuromonadales. In addition, the majority of dominant Arctic nifH variants shared low similarity (< 92% nucleotide identities) to sequences in a global noncyanobacterial diazotroph catalog recently compiled by others. We further detected UCYN-A throughout the CAG at low-levels using quantitative-PCR assays. Temperature, depth, salinity, oxygen, and nitrate were most strongly correlated to the Arctic diazotroph diversity observed, and we found a stark division between diazotroph communities of the Labrador Sea versus Baffin Bay and the CAA, hence establishing that a previously unknown biogeographic community division can occur for diazotrophs in the CAG.
Collapse
Affiliation(s)
- Brent M Robicheau
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Sonja Rose
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
18
|
Avontuur JR, Wilken PM, Palmer M, Coetzee MPA, Stępkowski T, Venter SN, Steenkamp ET. Complex evolutionary history of photosynthesis in Bradyrhizobium. Microb Genom 2023; 9:001105. [PMID: 37676703 PMCID: PMC10569730 DOI: 10.1099/mgen.0.001105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Bradyrhizobium comprises a diverse group of bacteria with various lifestyles. Although best known for their nodule-based nitrogen-fixation in symbiosis with legumes, a select group of bradyrhizobia are also capable of photosynthesis. This ability seems to be rare among rhizobia, and its origin and evolution in these bacteria remain a subject of substantial debate. Therefore, our aim here was to investigate the distribution and evolution of photosynthesis in Bradyrhizobium using comparative genomics and representative genomes from closely related taxa in the families Nitrobacteraceae, Methylobacteriaceae, Boseaceae and Paracoccaceae . We identified photosynthesis gene clusters (PGCs) in 25 genomes belonging to three different Bradyrhizobium lineages, notably the so-called Photosynthetic, B. japonicum and B. elkanii supergroups. Also, two different PGC architectures were observed. One of these, PGC1, was present in genomes from the Photosynthetic supergroup and in three genomes from a species in the B. japonicum supergroup. The second cluster, PGC2, was also present in some strains from the B. japonicum supergroup, as well as in those from the B. elkanii supergroup. PGC2 was largely syntenic to the cluster found in Rhodopseudomonas palustris and Tardiphaga . Bayesian ancestral state reconstruction unambiguously showed that the ancestor of Bradyrhizobium lacked a PGC and that it was acquired horizontally by various lineages. Maximum-likelihood phylogenetic analyses of individual photosynthesis genes also suggested multiple acquisitions through horizontal gene transfer, followed by vertical inheritance and gene losses within the different lineages. Overall, our findings add to the existing body of knowledge on Bradyrhizobium ’s evolution and provide a meaningful basis from which to explore how these PGCs and the photosynthesis itself impact the physiology and ecology of these bacteria.
Collapse
Affiliation(s)
- Juanita R. Avontuur
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martin P. A. Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warszawa, Poland
| | - Stephanus N. Venter
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Li Y, Wang C, Zheng L, Ma W, Li M, Guo Z, Zhao Q, Zhang K, Liu R, Liu Y, Tian Z, Bai Y, Zhong Y, Liao H. Natural variation of GmRj2/Rfg1 determines symbiont differentiation in soybean. Curr Biol 2023; 33:2478-2490.e5. [PMID: 37301200 DOI: 10.1016/j.cub.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Symbiotic nitrogen fixation (SNF) provides much of the N utilized by leguminous plants throughout growth and development. Legumes may simultaneously establish symbiosis with different taxa of microbial symbionts. Yet, the mechanisms used to steer associations toward symbionts that are most propitious across variations in soil types remain mysterious. Here, we demonstrate that GmRj2/Rfg1 is responsible for regulating symbiosis with multiple taxa of soybean symbionts. In our experiments, the GmRj2/Rfg1SC haplotype favored association with Bradyrhizobia, which is mostly distributed in acid soils, whereas the GmRj2/Rfg1HH haplotype and knockout mutants of GmRj2/Rfg1SC associated equally with Bradyrhizobia and Sinorhizobium. Association between GmRj2/Rfg1 and NopP, furthermore, appeared to be involved in symbiont selection. Furthermore, geographic distribution analysis of 1,821 soybean accessions showed that GmRj2/Rfg1SC haplotypes were enriched in acidic soils where Bradyrhizobia were the dominant symbionts, whereas GmRj2/Rfg1HH haplotypes were most prevalent in alkaline soils dominated by Sinorhizobium, and neutral soils harbored no apparent predilections toward either haplotype. Taken together, our results suggest that GmRj2/Rfg1 regulates symbiosis with different symbionts and is a strong determinant of soybean adaptability across soil regions. As a consequence, the manipulation of the GmRj2/Rfg1 genotype or application of suitable symbionts according to the haplotype at the GmRj2/Rfg1 locus might be suitable strategies to explore for increasing soybean yield through the management of SNF.
Collapse
Affiliation(s)
- Yanjun Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cunhu Wang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Zheng
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Ma
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjia Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zilong Guo
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingsong Zhao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kefei Zhang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
20
|
Amin AB, Zhang L, Zhang J, Mao S. Metagenomics analysis reveals differences in rumen microbiota in cows with low and high milk protein percentage. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12620-2. [PMID: 37306708 DOI: 10.1007/s00253-023-12620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Variation exists in milk protein concentration of dairy cows of the same breed that are fed and managed in the same environment, and little information was available on this variation which might be attributed to differences in rumen microbial composition as well as their fermentation metabolites. This study is aimed at investigating the difference in the composition and functions of rumen microbiota as well as fermentation metabolites in Holstein cows with high and low milk protein concentrations. In this study, 20 lactating Holstein cows on the same diet were divided into two groups (10 cows each), high degree of milk protein group (HD), and low degree of milk protein (LD) concentrations based on previous milk composition history. Rumen content samples were obtained to explore the rumen fermentation parameters and rumen microbial composition. Shotgun metagenomics sequencing was employed to investigate the rumen microbial composition and sequences were assembled via the metagenomics binning technique. Metagenomics revealed that 6 Archaea genera, 5 Bacteria genera, 7 Eukaryota genera, and 7 virus genera differed significantly between the HD and LD group. The analysis of metagenome-assembled genomes (MAGs) showed that 2 genera (g__Eubacterium_H and g__Dialister) were significantly enriched (P < 0.05, linear discriminant analysis (LDA) > 2) in the HD group. However, the LD group recorded an increased abundance (P < 0.05, LDA > 2) of 8 genera (g__CAG-603, g__UBA2922, g__Ga6A1, g__RUG13091, g__Bradyrhizobium, g__Sediminibacterium, g__UBA6382, and g__Succinivibrio) when compared to the HD group. Furthermore, investigation of the KEGG genes revealed an upregulation in a higher number of genes associated with nitrogen metabolism and lysine biosynthesis pathways in the HD group as compared to the LD group. Therefore, the high milk protein concentration in the HD group could be explained by an increased ammonia synthesis by ruminal microbes which were converted to microbial amino acids and microbial protein (MCP) in presence of an increased energy source made possible by higher activities of carbohydrate-active enzymes (CAZymes). This MCP gets absorbed in the small intestine as amino acids and might be utilized for the synthesis of milk protein. KEY POINTS: • Rumen microbiota and their functions differed between cows with high milk protein % and those with low milk protein %. • The rumen microbiome of cows with high milk protein recorded a higher number of enriched genes linked to the nitrogen metabolism pathway and lysine biosynthesis pathway. • The activities of carbohydrate-active enzymes were found to be higher in the rumen of cows with high milk protein %.
Collapse
Affiliation(s)
- Abdulmumini Baba Amin
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory for Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Centre for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Science, Federal University Dutse, P.M.B 7156, Dutse, Jigawa State, Nigeria
| | - Lei Zhang
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory for Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Centre for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - JiYou Zhang
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory for Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Centre for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Laboratory for Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Centre for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Dahl MB, Kreyling J, Petters S, Wang H, Mortensen MS, Maccario L, Sørensen SJ, Urich T, Weigel R. Warmer winters result in reshaping of the European beech forest soil microbiome (bacteria, archaea and fungi)-With potential implications for ecosystem functioning. Environ Microbiol 2023. [PMID: 36752534 DOI: 10.1111/1462-2920.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Sebastian Petters
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Martin Steen Mortensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lorrie Maccario
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Weigel
- Plant Ecology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
22
|
Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes (Basel) 2023; 14:genes14020274. [PMID: 36833201 PMCID: PMC9957244 DOI: 10.3390/genes14020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
Collapse
|
23
|
Li Q, Qiu J, Liang Y, Lan G. Soil bacterial community changes along elevation gradients in karst graben basin of Yunnan-Kweichow Plateau. Front Microbiol 2022; 13:1054667. [PMID: 36620048 PMCID: PMC9813600 DOI: 10.3389/fmicb.2022.1054667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Elevation gradients could provide natural experiments to examine geomorphological influences on biota ecology and evolution, however little is known about microbial community structures with soil depths along altitudinal gradients in karst graben basin of Yunnan-Kweichow Plateau. Here, bulk soil in A layer (0 ~ 10 cm) and B layer (10 ~ 20 cm) from two transect Mounts were analyzed by using high-throughput sequencing coupled with physicochemical analysis. It was found that the top five phyla in A layer were Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Verrucomicrobia, and the top five phyla in B layer were Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi in a near-neutral environment. Edaphic parameters were different in two layers along altitudinal gradients. Besides that, soil microbial community compositions varied along altitudinal gradient, and soil organic carbon (SOC) and total nitrogen (TN) increased monotonically with increasing elevation. It was further observed that Shannon indexes with increasing altitudes in two transect Mounts decreased monotonically with significant difference (p = 0.001), however beta diversity followed U-trend with significant difference (p = 0.001). The low proportions of unique operational taxonomic units (OTUs) appeared at high altitude areas which impact the widely accepted elevation Rapoport's rules. The dominant Bradyrhizobium (alphaproteobacterial OTU 1) identified at high altitudes in two layers constitutes the important group of free-living diazotrophs and could bring fixed N into soils, which simultaneously enhances SOC and TN accumulation at high altitudes (p < 0.01). Due to different responses of bacterial community to environmental changes varying with soil depths, altitudinal gradients exerted negative effects on soil bacterial communities via soil physical properties and positive effects on soil bacterial diversities via soil chemical properties in A layer, however the results in B layer were opposite. Overall, our study is the first attempt to bring a deeper understanding of soil microbial structure patterns along altitudinal gradients at karst graben basin areas.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, MNR, Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China,International Research Center on Karst under the Auspices of UNESCO, Guilin, China,*Correspondence: Qiang Li, ✉
| | - Jiangmei Qiu
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, MNR, Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China,International Research Center on Karst under the Auspices of UNESCO, Guilin, China
| | - Yueming Liang
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, MNR, Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China,International Research Center on Karst under the Auspices of UNESCO, Guilin, China
| | - Gaoyong Lan
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, MNR, Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China,International Research Center on Karst under the Auspices of UNESCO, Guilin, China
| |
Collapse
|
24
|
Li N, Wang B, Huang Y, Huang Q, Jiao F, An S. Response of cbbL-harboring microorganisms to precipitation changes in a naturally-restored grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156191. [PMID: 35618124 DOI: 10.1016/j.scitotenv.2022.156191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The impact of the long-term uneven precipitation distribution model on the diversity and community composition of soil C-fixing microorganisms in arid and semiarid grasslands remains unclear. In 2015, we randomly set up five experimental plots with precipitation gradients on the natural restoration grassland of the Loess Plateau (natural precipitation, NP; ± 40% natural precipitation: decreased precipitation (DP), DP40; increased precipitation (IP), IP40; ± 80% natural precipitation: DP80; IP80). In the third and fifth years after the experimental layout (spanned two years), we explored the cbbL-genes, which are functional genes in the Calvin cycle, harboring microbial diversity and community composition under different precipitation treatments. The results showed that the increase in mean annual precipitation significantly changed the cbbL-harboring microbial alpha diversity, especially when controlling for 40% natural precipitation. The response of the dominant microbial communities to interannual increased precipitation variation shifted from Gammaproteobacteria (Bradyrhizobium) to Betaproteobacteria (Variovorax). The structural equation model showed that precipitation directly affected the cbbL-harboring microbial diversity and community composition and indirectly by affecting soil NO3- (mg N kg -1), soil organic matter, dissolved organic N content, and above- and underground biomass. In conclusion, studying how cbbL-harboring microbial diversity and community composition respond to uneven precipitation variability provides new insights into the ecological processes of C-fixing microbes in semi-arid naturally-restored grasslands dominated by the Calvin cycle.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Baorong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Huang
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feng Jiao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling 712100, China.
| |
Collapse
|
25
|
Graf DRH, Jones CM, Zhao M, Hallin S. Assembly of root-associated N2O-reducing communities of annual crops is governed by selection for nosZ clade I over clade II. FEMS Microbiol Ecol 2022; 98:fiac092. [PMID: 35927461 PMCID: PMC9397574 DOI: 10.1093/femsec/fiac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
The rhizosphere is a hotspot for denitrification. The nitrous oxide (N2O) reductase among denitrifiers and nondenitrifying N2O reducers is the only known N2O sink in the biosphere. We hypothesized that the composition of root-associated N2O-reducing communities when establishing on annual crops depend on soil type and plant species, but that assembly processes are independent of these factors and differ between nosZ clades I and II. Using a pot experiment with barley and sunflower and two soils, we analyzed the abundance, composition, and diversity of soil and root-associated N2O reducing communities by qPCR and amplicon sequencing of nosZ. Clade I was more abundant on roots compared to soil, while clade II showed the opposite. In barley, this pattern coincided with N2O availability, determined as potential N2O production rates, but for sunflower no N2O production was detected in the root compartment. Root and soil nosZ communities differed in composition and phylogeny-based community analyses indicated that assembly of root-associated N2O reducers was driven by the interaction between plant and soil type, with inferred competition being more influential than habitat selection. Selection between clades I and II in the root/soil interface is suggested, which may have functional consequences since most clade I microorganisms can produce N2O.
Collapse
Affiliation(s)
- Daniel R H Graf
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Christopher M Jones
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Ming Zhao
- Department of Plant Biology, Swedish University of Agricultural Science, Box 7080, 75007 Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| |
Collapse
|
26
|
Pedrolo AM, Matteoli FP, Soares CRFS, Arisi ACM. Comparative Genomics Reveal the High Conservation and Scarce Distribution of Nitrogen Fixation nif Genes in the Plant-Associated Genus Herbaspirillum. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02084-8. [PMID: 35932316 DOI: 10.1007/s00248-022-02084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The genus Herbaspirillum gained the spotlight due to the several reports of diazotrophic strains and promising results in plant-growth field assays. However, as diversity exploration of Herbaspirillum species gained momentum, it became clearer that the plant beneficial lifestyle was not the only form of ecological interaction in this genus, due to reports of phytopathogenesis and nosocomial infections. Here we performed a deep search across all publicly available Herbaspirillum genomes. Using a robust core genome phylogeny, we have found that all described species are well delineated, being the only exception H. aquaticum and H. huttiense clade. We also uncovered that the nif genes are only highly prevalent in H. rubrisubalbicans; however, irrespective to the species, all nif genes share the same gene arrangement with high protein identity, and are present in only two main types, in inverted strands. By means of a NifHDKENB phylogenetic tree, we have further revealed that the Herbaspirillum nif sequences may have been acquired from the same last common ancestor belonging to the Nitrosomonadales order.
Collapse
Affiliation(s)
- Ana Marina Pedrolo
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, Florianopolis, SC, 1346, 88034-001, Brazil
| | - Filipe Pereira Matteoli
- ESALQ USP, Soil Science Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, 13418-900, Brazil.
| | - Cláudio Roberto Fônseca Sousa Soares
- MIP CCB UFSC, Microbiology, Immunology and Parasitology Department, Federal University of Santa Catarina, Av. Prof. Henrique da Silva Fontes, Florianopolis, SC, 2754, 88040-900, Brazil
| | - Ana Carolina Maisonnave Arisi
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, Florianopolis, SC, 1346, 88034-001, Brazil
| |
Collapse
|
27
|
Hsouna J, Gritli T, Ilahi H, Ellouze W, Mansouri M, Chihaoui SA, Bouhnik O, Missbah El Idrissi M, Abdelmoumen H, Wipf D, Courty PE, Bekki A, Tambong JT, Mnasri B. Genotypic and symbiotic diversity studies of rhizobia nodulating Acacia saligna in Tunisia reveal two novel symbiovars within the Rhizobium leguminosarum complex and Bradyrhizobium. Syst Appl Microbiol 2022; 45:126343. [PMID: 35759954 DOI: 10.1016/j.syapm.2022.126343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Acacia saligna is an invasive alien species that has the ability to establish symbiotic relationships with rhizobia. In the present study, genotypic and symbiotic diversity of native rhizobia associated with A. saligna in Tunisia were studied. A total of 100 bacterial strains were selected and three different ribotypes were identified based on rrs PCR-RFLP analysis. Sequence analyses of rrs and four housekeeping genes (recA, atpD, gyrB and glnII) assigned 30 isolates to four putative new lineages and a single strain to Sinorhizobium meliloti. Thirteen slow-growing isolates representing the most dominant IGS (intergenic spacer) profile clustered distinctly from known rhizobia species within Bradyrhizobium with the closest related species being Bradyrhizobium shewense and Bradyrhizobium niftali, which had 95.17% and 95.1% sequence identity, respectively. Two slow-growing isolates, 1AS28L and 5AS6L, had B. frederekii as their closest species with a sequence identity of 95.2%, an indication that these strains could constitute a new lineage. Strains 1AS14I, 1AS12I and 6AS6 clustered distinctly from known rhizobia species but within the Rhizobium leguminosarum complex (Rlc) with the most closely related species being Rhizobium indicum with 96.3% sequence identity. Similarly, the remaining 11 strains showed 96.9 % and 97.2% similarity values with R. changzhiense and R. indicum, respectively. Based on nodC and nodA phylogenies and cross inoculation tests, these 14 strains of Rlc species clearly diverged from strains of Sinorhizobium and Rlc symbiovars, and formed a new symbiovar for which the name sv. "salignae" is proposed. Bacterial strains isolated in this study that were taxonomically assigned to Bradyrhizobium harbored different symbiotic genes and the data suggested a new symbiovar, for which sv. "cyanophyllae" is proposed. Isolates formed effective nodules on A. saligna.
Collapse
Affiliation(s)
- Jihed Hsouna
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Takwa Gritli
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Houda Ilahi
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Walid Ellouze
- Agriculture and Agri-Food Canada, 4902 Victoria Avenue North, Vineland Station, Ontario L0R 2E0, Canada.
| | - Maroua Mansouri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Saif-Allah Chihaoui
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia
| | - Omar Bouhnik
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Mustapha Missbah El Idrissi
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University, Rabat, Morocco
| | - Daniel Wipf
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, Institut Agro Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Abdelkader Bekki
- Laboratory of Rhizobia Biotechnology and Plant Breeding, University Oran1, Es Senia 31000, Algeria
| | - James T Tambong
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901 Hammam-lif 2050, Tunisia.
| |
Collapse
|
28
|
Wang M, Wu Y, Zhao J, Liu Y, Chen Z, Tang Z, Tian W, Xi Y, Zhang J. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153406. [PMID: 35092777 DOI: 10.1016/j.scitotenv.2022.153406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
PhoD-harboring bacteria and the secreted alkaline phosphatases (ALP) are crucial in the regulation of soil phosphorus (P) cycling. However, the influential factors of these crucial indicators and their internal interactions remain controversial. Here, a long-term field experiment containing different fertilization regimes was conducted (chemical, organic, and no fertilizer applied). The results indicated that the richness and diversity of phoD-harboring bacterial community were significantly decreased after long-term fertilization. The applied fertilizer promoted the growth of competitive species, while phoD-harboring bacteria lost the advantage to outcompete other microorganisms after long-term fertilization. The decreased ALP activity was caused by the declined phoD gene abundance, which is attributed to the comprehensive effects of soil organic C (SOC), total nitrogen (TN), and various forms of P. The random forest models identified SOC, TN, and available P (AP) to be the dominant environmental factors in shaping the phoD-harboring bacterial community. In addition, some other forms of P such as organic P (Po), inorganic P (Pi) or total P (TP) also exerted significant effects. Different fertilization regimes changed the keystone genera that contributed significantly to soil ALP activities, while Pseudolabrys and Pseudomonas were predicted to be the most important genera regardless of different fertilization regimes. This study extends the understanding of the main process and mechanisms of P mobilization in response to different fertilization regimes.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhe Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhaoyang Tang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Yunguan Xi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
29
|
Santana de Carvalho D, Trovatti Uetanabaro AP, Kato RB, Aburjaile FF, Jaiswal AK, Profeta R, De Oliveira Carvalho RD, Tiwar S, Cybelle Pinto Gomide A, Almeida Costa E, Kukharenko O, Orlovska I, Podolich O, Reva O, Ramos PIP, De Carvalho Azevedo VA, Brenig B, Andrade BS, de Vera JPP, Kozyrovska NO, Barh D, Góes-Neto A. The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth. Front Microbiol 2022; 13:782175. [PMID: 35369445 PMCID: PMC8970348 DOI: 10.3389/fmicb.2022.782175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (space-exposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications.
Collapse
Affiliation(s)
- Daniel Santana de Carvalho
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Biology and Biotechnology of Microorganisms, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Rodrigo Bentes Kato
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arun Kumar Jaiswal
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Dias De Oliveira Carvalho
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwar
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anne Cybelle Pinto Gomide
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo Almeida Costa
- Computational Biology and Biotechnological Information Management Center (NBCGIB), State University of Santa Cruz, Ilhéus, Brazil
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Pablo Ivan P. Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Institute Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ-Bahia), Salvador, Brazil
| | - Vasco Ariston De Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié, Brazil
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | | - Debmalya Barh
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
30
|
High Abundance of Thaumarchaeota Found in Deep Metamorphic Subsurface in Eastern China. Microorganisms 2022; 10:microorganisms10030542. [PMID: 35336118 PMCID: PMC8950554 DOI: 10.3390/microorganisms10030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Members of the Thaumarchaeota phylum play a key role in nitrogen cycling and are prevalent in a variety of environments including soil, sediment, and seawater. However, few studies have shown the presence of Thaumarchaeota in the terrestrial deep subsurface. Using high-throughput 16S rRNA gene sequencing, this study presents evidence for the high relative abundance of Thaumarchaeota in a biofilm sample collected from the well of Chinese Continental Scientific Drilling at a depth of 2000 m. Phylogenetic analysis showed a close relationship of these thaumarchaeotal sequences with known ammonia-oxidizing archaea (AOA) isolates, suggesting the presence of AOA in the deep metamorphic environment of eastern China which is believed to be oxic. Based on fluid geochemistry and FAProTax functional prediction, a pathway of nitrogen cycling is proposed. Firstly, heterotrophic nitrogen fixation is executed by diazotrophic bacteria coupled with methane oxidation. Then, ammonia is oxidized to nitrite by AOA, and nitrite is further oxidized to nitrate by bacteria within the phylum Nitrospirae. Denitrification and anaerobic ammonia oxidation occur slowly, leading to nitrate accumulation in the subsurface. With respect to biogeochemistry, the reaction between downward diffusing O2 and upward diffusing CH4 potentially fuels the ecosystem with a high relative abundance of Thaumarchaeota.
Collapse
|