1
|
Keneally C, Chilton D, Dornan TN, Kidd SP, Gaget V, Toomes A, Lassaline C, Petrovski R, Wood L, Brookes JD. Multi-omics reveal microbial succession and metabolomic adaptations to flood in a hypersaline coastal lagoon. WATER RESEARCH 2025; 280:123511. [PMID: 40147302 DOI: 10.1016/j.watres.2025.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/02/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Microorganisms drive essential biogeochemical processes in aquatic ecosystems and are sensitive to both salinity and hydrological changes. As climate change and anthropogenic activities alter hydrology and salinity worldwide, understanding microbial ecology and metabolism becomes increasingly important for managing aquatic ecosystems. Biogeochemical processes were investigated on sediment microbial communities during a significant flood event in the hypersaline Coorong lagoon, South Australia (the largest in the Murray-Darling Basin since 1956). Samples from six sites across a salinity gradient were collected before and during flooding in 2022. To assess changes in microbial taxonomy and metabolic function, 16S rRNA amplicon sequencing was employed alongside untargeted liquid chromatography-mass spectrometry (LC-MS) to assess changes in microbial taxonomy and metabolic function. Results showed a decrease in microbial richness and diversity during flooding, especially in hypersaline conditions. Pre-flood communities were enriched with osmolyte-degrading and methanogenic taxa, alongside osmoprotectant metabolites, such as glycine betaine and choline. Flood conditions favored taxa such as Halanaerobiaceae and Beggiatoaceae, inducing inferred metagenomic shifts indicative of sulfur cycling and nitrogen reduction pathways, while also enriching a greater diversity of metabolites including Gly-Phe dipeptides and guanine. This study demonstrates that integrating metabolomics with microbial community analysis enhances understanding of ecosystem responses to disturbance. These findings suggest microbial communities rapidly change in response to salinity reductions while maintaining key biogeochemical functions. Such insights are valuable for ecosystem management and predictive modelling under environmental stressors such as flooding.
Collapse
Affiliation(s)
- Christopher Keneally
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, South Australia, Australia.
| | - Daniel Chilton
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, South Australia, Australia
| | - Tyler N Dornan
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, South Australia, Australia
| | - Stephen P Kidd
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, South Australia, Australia; Research Centre for Infectious Disease (RCID), The University of Adelaide, Adelaide, South Australia, Australia; Australian Centre for Antimicrobial Resistance Ecology (ACARE), The University of Adelaide, Adelaide, South Australia, Australia
| | - Virginie Gaget
- Discipline of Surgery, The University of Adelaide, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, South Australia, Australia
| | - Adam Toomes
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, South Australia, Australia
| | - Charlotte Lassaline
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, South Australia, Australia
| | | | - Lisa Wood
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, South Australia, Australia; Terrestrial Ecosystem Research Network, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Justin D Brookes
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Wang M, Peñuelas J, Sardans J, Zeng Q, Song Z, Zhou J, Xu X, Zhou X, Fang Y, Vancov T, Wang W. Conversion of coastal marsh to aquaculture ponds decreased the potential of methane production by altering soil chemical properties and methanogenic archaea community structure. WATER RESEARCH 2024; 268:122608. [PMID: 39413712 DOI: 10.1016/j.watres.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Coastal wetlands are among the most productive and dynamic ecosystems globally, contributing significantly to atmospheric methane (CH4) emissions. The widespread conversion of these wetlands into aquaculture ponds degrades these ecosystems, yet its effects on CH4 production and associated microbial mechanisms are not well understood. This study aimed to assess the impact of land conversion on CH4 production potential, total and active soil organic C (SOC) content, and microbial communities. We conducted a comparative study on three brackish marshes and adjacent aquaculture ponds in southeastern China. Compared to costal marshes, aquaculture ponds exhibited significantly (P < 0.05) lower CH4 production potential (0.05 vs. 0.02 μg kg-1 h-1), SOC (17.64 vs. 6.97 g kg-1), total nitrogen (TN) content (1.62 vs. 1.24 g kg-1) and carbon/nitrogen (C/N) ratio (10.85 vs. 5.66). CH4 production potential in aquaculture ponds was influenced by both microbial and abiotic factors. Specifically, the relative abundance of Methanosarcina slightly decreased in aquaculture ponds, while the potential for CH4 production declined with lower SOC contents and C/N ratio. Overall, our findings demonstrate that converting natural coastal marshes into aquaculture ponds reduces CH4 production by altering key soil properties and the structure and diversity of methanogenic archaea communities. These results provide empirical evidence to enhance global carbon models, improving predictions of carbon feedback from wetland land conversion in the context of climate change.
Collapse
Affiliation(s)
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Barcelona 08193, Spain; CREAF, Catalonia, Cerdanyola del Vallès 08193, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Barcelona 08193, Spain; CREAF, Catalonia, Cerdanyola del Vallès 08193, Spain
| | - Qingsong Zeng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhaoliang Song
- Institute of Surface‑Earth System Science, School of Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China
| | - Jingyun Zhou
- Institute of Surface‑Earth System Science, School of Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China
| | - Xuping Xu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaoqi Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Yunying Fang
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tony Vancov
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
3
|
Lui LM, Nielsen TN. Decomposing a San Francisco estuary microbiome using long-read metagenomics reveals species- and strain-level dominance from picoeukaryotes to viruses. mSystems 2024; 9:e0024224. [PMID: 39158287 PMCID: PMC11406994 DOI: 10.1128/msystems.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
Although long-read sequencing has enabled obtaining high-quality and complete genomes from metagenomes, many challenges still remain to completely decompose a metagenome into its constituent prokaryotic and viral genomes. This study focuses on decomposing an estuarine metagenome to obtain a more accurate estimate of microbial diversity. To achieve this, we developed a new bead-based DNA extraction method, a novel bin refinement method, and obtained 150 Gbp of Nanopore sequencing. We estimate that there are ~500 bacterial and archaeal species in our sample and obtained 68 high-quality bins (>90% complete, <5% contamination, ≤5 contigs, contig length of >100 kbp, and all ribosomal and tRNA genes). We also obtained many contigs of picoeukaryotes, environmental DNA of larger eukaryotes such as mammals, and complete mitochondrial and chloroplast genomes and detected ~40,000 viral populations. Our analysis indicates that there are only a few strains that comprise most of the species abundances. IMPORTANCE Ocean and estuarine microbiomes play critical roles in global element cycling and ecosystem function. Despite the importance of these microbial communities, many species still have not been cultured in the lab. Environmental sequencing is the primary way the function and population dynamics of these communities can be studied. Long-read sequencing provides an avenue to overcome limitations of short-read technologies to obtain complete microbial genomes but comes with its own technical challenges, such as needed sequencing depth and obtaining high-quality DNA. We present here new sampling and bioinformatics methods to attempt decomposing an estuarine microbiome into its constituent genomes. Our results suggest there are only a few strains that comprise most of the species abundances from viruses to picoeukaryotes, and to fully decompose a metagenome of this diversity requires 1 Tbp of long-read sequencing. We anticipate that as long-read sequencing technologies continue to improve, less sequencing will be needed.
Collapse
Affiliation(s)
- Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
4
|
Arthi R, Parameswari E, Dhevagi P, Janaki P, Parimaladevi R. Microbial alchemists: unveiling the hidden potentials of halophilic organisms for soil restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33949-9. [PMID: 38877191 DOI: 10.1007/s11356-024-33949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.
Collapse
Affiliation(s)
- Ravichandran Arthi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Periyasamy Dhevagi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rathinasamy Parimaladevi
- Department of Bioenergy, Agrl. Engineering College & Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
5
|
Hartman WH, Bueno de Mesquita CP, Theroux SM, Morgan-Lang C, Baldocchi DD, Tringe SG. Multiple microbial guilds mediate soil methane cycling along a wetland salinity gradient. mSystems 2024; 9:e0093623. [PMID: 38170982 PMCID: PMC10804969 DOI: 10.1128/msystems.00936-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Estuarine wetlands harbor considerable carbon stocks, but rising sea levels could affect their ability to sequester soil carbon as well as their potential to emit methane (CH4). While sulfate loading from seawater intrusion may reduce CH4 production due to the higher energy yield of microbial sulfate reduction, existing studies suggest other factors are likely at play. Our study of 11 wetland complexes spanning a natural salinity and productivity gradient across the San Francisco Bay and Delta found that while CH4 fluxes generally declined with salinity, they were highest in oligohaline wetlands (ca. 3-ppt salinity). Methanogens and methanogenesis genes were weakly correlated with CH4 fluxes but alone did not explain the highest rates observed. Taxonomic and functional gene data suggested that other microbial guilds that influence carbon and nitrogen cycling need to be accounted for to better predict CH4 fluxes at landscape scales. Higher methane production occurring near the freshwater boundary with slight salinization (and sulfate incursion) might result from increased sulfate-reducing fermenter and syntrophic populations, which can produce substrates used by methanogens. Moreover, higher salinities can solubilize ionically bound ammonium abundant in the lower salinity wetland soils examined here, which could inhibit methanotrophs and potentially contribute to greater CH4 fluxes observed in oligohaline sediments.IMPORTANCELow-level salinity intrusion could increase CH4 flux in tidal freshwater wetlands, while higher levels of salinization might instead decrease CH4 fluxes. High CH4 emissions in oligohaline sites are concerning because seawater intrusion will cause tidal freshwater wetlands to become oligohaline. Methanogenesis genes alone did not account for landscape patterns of CH4 fluxes, suggesting mechanisms altering methanogenesis, methanotrophy, nitrogen cycling, and ammonium release, and increasing decomposition and syntrophic bacterial populations could contribute to increases in net CH4 flux at oligohaline salinities. Improved understanding of these influences on net CH4 emissions could improve restoration efforts and accounting of carbon sequestration in estuarine wetlands. More pristine reference sites may have older and more abundant organic matter with higher carbon:nitrogen compared to wetlands impacted by agricultural activity and may present different interactions between salinity and CH4. This distinction might be critical for modeling efforts to scale up biogeochemical process interactions in estuarine wetlands.
Collapse
Affiliation(s)
| | | | | | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dennis D. Baldocchi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Susannah G. Tringe
- DOE Joint Genome Institute, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
6
|
N RH, Tait DR, Nandan SB. Land use drives large CH 4 fluxes from a highly urbanized Indian estuary. MARINE POLLUTION BULLETIN 2023; 196:115594. [PMID: 37797539 DOI: 10.1016/j.marpolbul.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
There is growing awareness of the need to better constrain the contribution of atmospheric methane (CH4) fluxes from urbanized estuaries due to the high global warming potential of CH4 and the accelerating growth of urban expansion. This study undertook seasonal sampling campaigns to understand the impact of urbanization on atmospheric CH4 fluxes and their drivers in a large, tropical estuary in India. Overall, the study found that the Cochin estuary emitted large amounts of CH4 (398.8 ± 141.6 μmolm-2d-1) to the atmosphere with CH4 hotspots reaching up to 939.7 μmolm-2d-1 were identified. The strongest drivers of CH4 dynamics in different anthropogenically impacted zones were traced. The source of organic matter for CH4 production was revealed to be terrestrial C3 plants, autochthonous production, marine phytoplankton, and sewage inputs. The study suggests that monsoonal urbanized tropical estuaries may be an important but under-recognized element of the global CH4 budget.
Collapse
Affiliation(s)
- Regina Hershey N
- Dept. of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin 682 016, India; Dept. of Zoology, Bharata Mata College, Thrikkakara, Cochin 682 021, India.
| | - Douglas R Tait
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia.
| | - S Bijoy Nandan
- Dept. of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin 682 016, India.
| |
Collapse
|
7
|
Bueno de Mesquita CP, Wu D, Tringe SG. Methyl-Based Methanogenesis: an Ecological and Genomic Review. Microbiol Mol Biol Rev 2023; 87:e0002422. [PMID: 36692297 PMCID: PMC10029344 DOI: 10.1128/mmbr.00024-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Methyl-based methanogenesis is one of three broad categories of archaeal anaerobic methanogenesis, including both the methyl dismutation (methylotrophic) pathway and the methyl-reducing (also known as hydrogen-dependent methylotrophic) pathway. Methyl-based methanogenesis is increasingly recognized as an important source of methane in a variety of environments. Here, we provide an overview of methyl-based methanogenesis research, including the conditions under which methyl-based methanogenesis can be a dominant source of methane emissions, experimental methods for distinguishing different pathways of methane production, molecular details of the biochemical pathways involved, and the genes and organisms involved in these processes. We also identify the current gaps in knowledge and present a genomic and metagenomic survey of methyl-based methanogenesis genes, highlighting the diversity of methyl-based methanogens at multiple taxonomic levels and the widespread distribution of known methyl-based methanogenesis genes and families across different environments.
Collapse
Affiliation(s)
| | - Dongying Wu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Susannah G. Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
8
|
Fang W, Fan T, Xu L, Wang S, Wang X, Lu A, Chen Y. Seasonal succession of microbial community co-occurrence patterns and community assembly mechanism in coal mining subsidence lakes. Front Microbiol 2023; 14:1098236. [PMID: 36819062 PMCID: PMC9936157 DOI: 10.3389/fmicb.2023.1098236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Coal mining subsidence lakes are classic hydrologic characteristics created by underground coal mining and represent severe anthropogenic disturbances and environmental challenges. However, the assembly mechanisms and diversity of microbial communities shaped by such environments are poorly understood yet. In this study, we explored aquatic bacterial community diversity and ecological assembly processes in subsidence lakes during winter and summer using 16S rRNA gene sequencing. We observed that clear bacterial community structure was driven by seasonality more than by habitat, and the α-diversity and functional diversity of the bacterial community in summer were significantly higher than in winter (p < 0.001). Canonical correspondence analysis indicated that temperature and chlorophyll-a were the most crucial contributing factors influencing the community season variations in subsidence lakes. Specifically, temperature and chlorophyll-a explained 18.26 and 14.69% of the community season variation, respectively. The bacterial community variation was driven by deterministic processes in winter but dominated by stochastic processes in summer. Compared to winter, the network of bacterial communities in summer exhibited a higher average degree, modularity, and keystone taxa (hubs and connectors in a network), thereby forming a highly complex and stable community structure. These results illustrate the clear season heterogeneity of bacterial communities in subsidence lakes and provide new insights into revealing the effects of seasonal succession on microbial assembly processes in coal mining subsidence lake ecosystems.
Collapse
Affiliation(s)
- Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Tingyu Fan
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Liangji Xu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Shun Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Xingming Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Akang Lu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Yongchun Chen
- National Engineering Laboratory of Coal Mine Ecological Environment Protection, Huainan, China
| |
Collapse
|
9
|
Roux S, Fischer MG, Hackl T, Katz LA, Schulz F, Yutin N. Updated Virophage Taxonomy and Distinction from Polinton-like Viruses. Biomolecules 2023; 13:204. [PMID: 36830574 PMCID: PMC9952930 DOI: 10.3390/biom13020204] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Virophages are small dsDNA viruses that hijack the machinery of giant viruses during the co-infection of a protist (i.e., microeukaryotic) host and represent an exceptional case of "hyperparasitism" in the viral world. While only a handful of virophages have been isolated, a vast diversity of virophage-like sequences have been uncovered from diverse metagenomes. Their wide ecological distribution, idiosyncratic infection and replication strategy, ability to integrate into protist and giant virus genomes and potential role in antiviral defense have made virophages a topic of broad interest. However, one limitation for further studies is the lack of clarity regarding the nomenclature and taxonomy of this group of viruses. Specifically, virophages have been linked in the literature to other "virophage-like" mobile genetic elements and viruses, including polinton-like viruses (PLVs), but there are no formal demarcation criteria and proper nomenclature for either group, i.e., virophage or PLVs. Here, as part of the ICTV Virophage Study Group, we leverage a large set of genomes gathered from published datasets as well as newly generated protist genomes to propose delineation criteria and classification methods at multiple taxonomic ranks for virophages 'sensu stricto', i.e., genomes related to the prototype isolates Sputnik and mavirus. Based on a combination of comparative genomics and phylogenetic analyses, we show that this group of virophages forms a cohesive taxon that we propose to establish at the class level and suggest a subdivision into four orders and seven families with distinctive ecogenomic features. Finally, to illustrate how the proposed delineation criteria and classification method would be used, we apply these to two recently published datasets, which we show include both virophages and other virophage-related elements. Overall, we see this proposed classification as a necessary first step to provide a robust taxonomic framework in this area of the virosphere, which will need to be expanded in the future to cover other virophage-related viruses such as PLVs.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthias G. Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120 Heidelberg, Germany
| | - Thomas Hackl
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
10
|
Zhang S, Yan L, Cao J, Wang K, Luo Y, Hu H, Wang L, Yu R, Pan B, Yu K, Zhao J, Bao Z. Salinity significantly affects methane oxidation and methanotrophic community in Inner Mongolia lake sediments. Front Microbiol 2023; 13:1067017. [PMID: 36687579 PMCID: PMC9853545 DOI: 10.3389/fmicb.2022.1067017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Methanotrophs oxidize methane (CH4) and greatly help in mitigating greenhouse effect. Increased temperatures due to global climate change can facilitate lake salinization, particularly in the regions with cold semiarid climate. However, the effects of salinity on the CH4 oxidation activity and diversity and composition of methanotrophic community in the sediment of natural lakes at a regional scale are still unclear. Therefore, we collected lake sediment samples from 13 sites in Mongolian Plateau; CH4 oxidation activities of methanotrophs were investigated, and the diversity and abundance of methanotrophs were analyzed using real-time quantitative polymerase chain reaction and high throughput sequencing approach. The results revealed that the diversity of methanotrophic community decreased with increasing salinity, and community structure of methanotrophs was clearly different between the hypersaline sediment samples (HRS; salinity > 0.69%) and hyposaline sediment samples (HOS; salinity < 0.69%). Types II and I methanotrophs were predominant in HRS and HOS, respectively. Salinity was significantly positively correlated with the relative abundance of Methylosinus and negatively correlated with that of Methylococcus. In addition, CH4 oxidation rate and pmoA gene abundance decreased with increasing salinity, and salinity directly and indirectly affected CH4 oxidation rate via regulating the community diversity. Moreover, high salinity decreased cooperative association among methanotrophs and number of key methanotrophic species (Methylosinus and Methylococcus, e.g). These results suggested that salinity is a major driver of CH4 oxidation in lake sediments and acts by regulating the diversity of methanotrophic community and accociation among the methanotrophic species.
Collapse
Affiliation(s)
- Shaohua Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lei Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiahui Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Kexin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ying Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Haiyang Hu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Baozhu Pan
- Institute of Water Resources and Hydro-electric Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University, Hohhot, China,*Correspondence: Zhihua Bao, ✉
| |
Collapse
|
11
|
Jiang Y, Qin X, Zhu F, Zhang Y, Zhang X, Hartley W, Xue S. Halving gypsum dose by Penicillium oxalicum on alkaline neutralization and microbial community reconstruction in bauxite residue. CHEMICAL ENGINEERING JOURNAL 2023; 451:139008. [DOI: 10.1016/j.cej.2022.139008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
12
|
Li Y, Zhang Y, Xue S. pH mediated assemblage of carbon, nitrogen, and sulfur related microbial communities in petroleum reservoirs. Front Microbiol 2022; 13:952285. [PMID: 36187958 PMCID: PMC9515653 DOI: 10.3389/fmicb.2022.952285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are the core drivers of biogeochemistry processes in petroleum reservoirs and have been widely used to enhance petroleum recovery. However, systematic information about the microbial communities related to the C-N-S cycle in petroleum reservoirs under different pH conditions remains poorly understood. In this study, 16S rRNA gene data from 133 petroleum samples were collected, and 756 C-N-S related genera were detected. The Chao1 richness and Shannon diversity indices for the C-N-S-related microbial communities showed significant differences among different pH conditions and at the lowest levels in acidic conditions with pH values of 4.5-6.5. In addition, pH was the most important factor influencing the C-N-S related microbial communities and contributed to 17.95% of the variation in the methanogenesis community. A total of 55 functional genera were influenced by pH, which accounted for 42.08% of the C-N-S related genera. Among them, the genera Pseudomonas and Arcobacter were the highest and were concentrated in acidic conditions with pH values of 4.5-6.5. In parallel, 56 predicted C-N-S related genes were examined, and pH affected 16 of these genes, including putative chitinase, mcrA, mtrB, cysH, narGHIVYZ, nirK, nirB, nifA, sat, aprAB, and dsrAB. Furthermore, the co-occurrence networks of the C-N-S related microbial communities distinctly varied among the different pH conditions. The acidic environment exhibited the lowest complex network with the lowest keystone taxa number, and Escherichia-Shigella was the only keystone group that existed in all three networks. In summary, this study strengthened our knowledge regarding the C-N-S related microbial communities in petroleum reservoirs under different pH conditions, which is of great significance for understanding the microbial ecology and geochemical cycle of petroleum reservoirs.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, China
| | - Yuanyuan Zhang
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, China
| | - Sheng Xue
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, China
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
13
|
Zhang J, Fu Q, Huang Y, Fan Y, Liang M, Chen H, Yu S. Negative impacts of sea-level rise on soil microbial involvement in carbon metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156087. [PMID: 35605852 DOI: 10.1016/j.scitotenv.2022.156087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Sea-level rise has been threatening the terrestrial ecosystem functioning of coastal islands, of which the most important component is carbon (C) cycling. However, metagenomic and metabolomic evidence documenting salt intrusion effects on molecular biological processes of C cycling are still lacking. Here, we investigated microbial communities, metagenomic taxonomy and function, and metabolomic profiles in the marine-terrestrial transition zone of low- and high-tide, and low- and high-land areas based on distances of 0 m, 50 m, 100 m, and 200 m, respectively, to the water-land junction of Neilingding Island. Our results showed that soil salinity (EC) was the dominant driver controlling bacterial abundance and community composition and metagenomic taxonomy and function. The metabolomic profiling at the low-tide site was significantly different from that of other sites. The low-tide site had greater abundance of Proteobacteria and Bacteroidetes (1.6-3.7 fold), especially Gammaproteobacteria, but lower abundance (62-83%) of Acidobacteria and Chloroflexi, compared with other three sites. The metagenomic functional genes related to carbohydrate metabolism decreased at the low-tide site by 15.2%, including the metabolism of aminosugars, di- and oligo-saccharides, glycoside hydrolases, and monosaccharides, leading to significant decreases in 21 soil metabolites, such as monosaccharide (l-gulose), disaccharide (sucrose and turanose), and oligosaccharides (stachyose and maltotetraose). Our study demonstrates that elevated salinity due to sea-level rise may suppress C-cycling genes and their metabolites, therefore having negative impacts on microbial metabolism of organic matter.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
| | - Qi Fu
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China
| | - Yu Huang
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuxuan Fan
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
| | - Minxia Liang
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China
| | - Huaihai Chen
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shixiao Yu
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
14
|
Liu B, Chen J, Li Y. Keystone Microorganisms Regulate the Methanogenic Potential in Coals with Different Coal Ranks. ACS OMEGA 2022; 7:29901-29908. [PMID: 36061686 PMCID: PMC9435036 DOI: 10.1021/acsomega.2c02830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are the core drivers of coal biogeochemistry and are closely related to the formation of coalbed methane. However, it remains poorly understood about the network relationship and stability of microbial communities in coals with different ranks. In this study, a high-throughput sequencing data set was analyzed to understand the microbial co-occurrence network in coals with different ranks including anthracite, medium-volatile bituminous, and high-volatile bituminous. The results showed similar topological properties for the microbial networks among coals with different ranks, but a great difference was found in the microbial composition in different large modules among coals with different ranks, and these three networks had three, four, and four large modules with seven, nine, and nine phyla, respectively. Among these networks, a total of 46 keystone taxa were identified in large modules, and these keystone taxa were different in coals with different ranks. Bacteria dominated the keystone taxa in the microbial network, and these bacterial keystone taxa mainly belonged to phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Besides, the removal of the key microbial data could reduce the community stability of microbial communities in bituminous coals. A partial least-squares path model further showed that these bacterial keystone taxa indirectly affected methanogenic potential by maintaining the microbial community stability and bacterial diversity. In summary, these results showed that keystone taxa played an important role in determining the community diversity, maintaining the microbial community stability, and controlling the methanogenic potential, which is of great significance for understanding the microbial ecology and the geochemical cycle of coal seams.
Collapse
Affiliation(s)
- Bingjun Liu
- Institute
of Energy, Hefei Comprehensive National
Science Center, Anhui, Hefei 230031, China
| | - Jian Chen
- Coal
Mining National Engineering and Technology Research Institute, Huainan, Anhui Province 232033, China
| | - Yang Li
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science & Technology, Huainan, Anhui Province 232001, China
| |
Collapse
|
15
|
Zhang Q, Tang J, Angel R, Wang D, Hu X, Gao S, Zhang L, Tang Y, Zhang X, Koide RT, Yang H, Sun Q. Soil Properties Interacting With Microbial Metagenome in Decreasing CH 4 Emission From Seasonally Flooded Marshland Following Different Stages of Afforestation. Front Microbiol 2022; 13:830019. [PMID: 35283824 PMCID: PMC8905362 DOI: 10.3389/fmicb.2022.830019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Wetlands are the largest natural source of terrestrial CH4 emissions. Afforestation can enhance soil CH4 oxidation and decrease methanogenesis, yet the driving mechanisms leading to these effects remain unclear. We analyzed the structures of communities of methanogenic and methanotrophic microbes, quantification of mcrA and pmoA genes, the soil microbial metagenome, soil properties and CH4 fluxes in afforested and non-afforested areas in the marshland of the Yangtze River. Compared to the non-afforested land use types, net CH4 emission decreased from bare land, natural vegetation and 5-year forest plantation and transitioned to net CH4 sinks in the 10- and 20-year forest plantations. Both abundances of mcrA and pmoA genes decreased significantly with increasing plantation age. By combining random forest analysis and structural equation modeling, our results provide evidence for an important role of the abundance of functional genes related to methane production in explaining the net CH4 flux in this ecosystem. The structures of methanogenic and methanotrophic microbial communities were of lower importance as explanatory factors than functional genes in terms of in situ CH4 flux. We also found a substantial interaction between functional genes and soil properties in the control of CH4 flux, particularly soil particle size. Our study provides empirical evidence that microbial community function has more explanatory power than taxonomic microbial community structure with respect to in situ CH4 fluxes. This suggests that focusing on gene abundances obtained, e.g., through metagenomics or quantitative/digital PCR could be more effective than community profiling in predicting CH4 fluxes, and such data should be considered for ecosystem modeling.
Collapse
Affiliation(s)
- Qian Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jie Tang
- Hunan Academy of Forestry, Changsha, China
| | - Roey Angel
- Soil and Water Research Infrastructure and Institute of Soil Biology, Biology Centre, Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Dong Wang
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China
| | - Xingyi Hu
- Hubei Academy of Forestry, Wuhan, China
| | - Shenghua Gao
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lei Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yuxi Tang
- Hunan Academy of Forestry, Changsha, China
| | - Xudong Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Roger T. Koide
- Department of Biology, Brigham Young University, Provo, UT, United States
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qixiang Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
16
|
Bueno de Mesquita CP, Zhou J, Theroux S, Tringe SG. Methylphosphonate Degradation and Salt-Tolerance Genes of Two Novel Halophilic Marivita Metagenome-Assembled Genomes from Unrestored Solar Salterns. Genes (Basel) 2022; 13:genes13010148. [PMID: 35052488 PMCID: PMC8774927 DOI: 10.3390/genes13010148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Aerobic bacteria that degrade methylphosphonates and produce methane as a byproduct have emerged as key players in marine carbon and phosphorus cycles. Here, we present two new draft genome sequences of the genus Marivita that were assembled from metagenomes from hypersaline former industrial salterns and compare them to five other Marivita reference genomes. Phylogenetic analyses suggest that both of these metagenome-assembled genomes (MAGs) represent new species in the genus. Average nucleotide identities to the closest taxon were <85%. The MAGs were assembled with SPAdes, binned with MetaBAT, and curated with scaffold extension and reassembly. Both genomes contained the phnCDEGHIJLMP suite of genes encoding the full C-P lyase pathway of methylphosphonate degradation and were significantly more abundant in two former industrial salterns than in nearby reference and restored wetlands, which have lower salinity levels and lower methane emissions than the salterns. These organisms contain a variety of compatible solute biosynthesis and transporter genes to cope with high salinity levels but harbor only slightly acidic proteomes (mean isoelectric point of 6.48).
Collapse
Affiliation(s)
- Clifton P. Bueno de Mesquita
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
| | - Jinglie Zhou
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
| | - Susanna Theroux
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA;
| | - Susannah G. Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|
17
|
Jiang Y, Qin X, Zhu F, Zhang Y, Zhang X, Hartley W, Xue S. Halving Gypsum Dose by Penicillium Oxalicum on Alkaline Neutralization and Microbial Community Reconstruction in Bauxite Residue. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
18
|
Bueno de Mesquita CP, Zhou J, Theroux SM, Tringe SG. Methanogenesis and Salt Tolerance Genes of a Novel Halophilic Methanosarcinaceae Metagenome-Assembled Genome from a Former Solar Saltern. Genes (Basel) 2021; 12:genes12101609. [PMID: 34681003 PMCID: PMC8535929 DOI: 10.3390/genes12101609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Anaerobic archaeal methanogens are key players in the global carbon cycle due to their role in the final stages of organic matter decomposition in anaerobic environments such as wetland sediments. Here we present the first draft metagenome-assembled genome (MAG) sequence of an unclassified Methanosarcinaceae methanogen phylogenetically placed adjacent to the Methanolobus and Methanomethylovorans genera that appears to be a distinct genus and species. The genome is derived from sediments of a hypersaline (97–148 ppt chloride) unrestored industrial saltern that has been observed to be a significant methane source. The source sediment is more saline than previous sources of Methanolobus and Methanomethylovorans. We propose a new genus name, Methanosalis, to house this genome, which we designate with the strain name SBSPR1A. The MAG was binned with CONCOCT and then improved via scaffold extension and reassembly. The genome contains pathways for methylotrophic methanogenesis from trimethylamine and dimethylamine, as well as genes for the synthesis and transport of compatible solutes. Some genes involved in acetoclastic and hydrogenotrophic methanogenesis are present, but those pathways appear incomplete in the genome. The MAG was more abundant in two former industrial salterns than in a nearby reference wetland and a restored wetland, both of which have much lower salinity levels, as well as significantly lower methane emissions than the salterns.
Collapse
Affiliation(s)
- Clifton P. Bueno de Mesquita
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
| | - Jinglie Zhou
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
| | - Susanna M. Theroux
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA;
| | - Susannah G. Tringe
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (C.P.B.d.M.); (J.Z.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|