1
|
Flörl L, Meyer A, Bokulich NA. Exploring sub-species variation in food microbiomes: a roadmap to reveal hidden diversity and functional potential. Appl Environ Microbiol 2025:e0052425. [PMID: 40304520 DOI: 10.1128/aem.00524-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Within-species diversity of microorganisms in food systems significantly shapes community function. While next-generation sequencing (NGS) methods have advanced our understanding of microbiomes at the community level, it is essential to recognize the importance of within-species variation for understanding and predicting the functional activities of these communities. This review highlights the substantial variation observed among microbial species in food systems and its implications for their functionality. We discuss a selection of key species in fermented foods and food systems, highlighting examples of strain-level variation and its influence on quality and safety. We present a comprehensive roadmap of methodologies aimed at uncovering this often overlooked underlying diversity. Technologies like long-read marker-gene or shotgun metagenome sequencing offer enhanced resolution of microbial communities and insights into the functional potential of individual strains and should be integrated with techniques such as metabolomics, metatranscriptomics, and metaproteomics to link strain-level microbial community structure to functional activities. Furthermore, the interactions between viruses and microbes that contribute to strain diversity and community stability are also critical to consider. This article highlights existing research and emphasizes the importance of incorporating within-species diversity in microbial community studies to harness their full potential, advance fundamental science, and foster innovation.
Collapse
Affiliation(s)
- Lena Flörl
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Annina Meyer
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nicholas A Bokulich
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
White K, Eraclio G, McDonnell B, Lugli GA, Crowley T, Ventura M, Volonté F, Cambillau C, Dal Bello F, Mahony J, van Sinderen D. Lactococcal phage-host profiling through binding studies between cell wall polysaccharide types and Skunavirus receptor-binding proteins. Microb Genom 2025; 11. [PMID: 40294100 DOI: 10.1099/mgen.0.001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Dairy fermentations using mesophilic starter cultures rely on the activity of specific lactic acid bacteria (LAB) such as Lactococcus lactis and Lactococcus cremoris for the acidification of milk. This biotechnological process can be affected by bacteriophage infection of LAB starter strains, which may result in delayed or even failed fermentations. Most studied lactococcal phages commence infection with the binding of a tail-associated receptor-binding protein (RBP) to a host cell surface-exposed cell wall polysaccharide (CWPS). In the present study, phage prevalence and diversity in whey samples originating from fermentations performed in various European countries employing undefined mesophilic starter cultures were investigated using phageome analysis. The range of Skunavirus RBP genotypes present in the phageomes and associated RBP-CWPS binding abilities were evaluated, resulting in the refinement and expansion of the Skunavirus RBP grouping system and the identification of several heretofore unknown Skunavirus RBP (sub)groups. These findings substantially expand our knowledge on lactococcal Skunavirus RBP diversity and their binding specificity towards CWPS receptor structures, thereby improving the predictability of fermentation outcomes and robustness of starter culture rotations and blends.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | | | - Brian McDonnell
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 12 - I 43121 Parma, Italy
| | - Tadhg Crowley
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Flow Cytometry Platform, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 12 - I 43121 Parma, Italy
| | | | - Christian Cambillau
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, UMR 7255, Marseille, France
| | | | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
3
|
Kiraz D, Özcan A. Comparative genome analysis of 15 Streptococcus thermophilus strains isolated from Turkish traditional yogurt. Antonie Van Leeuwenhoek 2025; 118:64. [PMID: 40153053 DOI: 10.1007/s10482-025-02070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Streptococcus thermophilus plays a pivotal role in yogurt fermentation, yet strains from traditional fermented products remain largely unexplored compared to their industrial counterparts. This study aimed to characterize the genomic diversity and functional potential of 15 S. thermophilus strains isolated from Turkish traditional yogurts, and to compare them with industrial strains. Through whole-genome sequencing and advanced bioinformatics analyses, we revealed distinct phylogenetic patterns and genetic features that differentiate these traditional strains from industrial isolates. The genomes (1.68-1.86 Mb) exhibited high genetic homogeneity (ANI > 98.69%) while maintaining significant functional diversity. Pan-genome analysis identified 1160 core genes and 5694 accessory genes, highlighting substantial genomic plasticity that enables niche adaptation. Our analysis uncovered several distinctive features: (1) unique phylogenetic clustering patterns based on both housekeeping genes and whole-genome SNPs, suggesting geographical isolation effects; (2) an extensive repertoire of carbohydrate-active enzymes (CAZymes), comprising 111 Glycoside Hydrolases, 227 Glycosyl Transferases, and 44 Carbohydrate Esterases and 13 Carbohydrate-Binding Modules, demonstrating sophisticated carbohydrate metabolism adaptation significantly enriched compared to industrial strains; (3) widespread GABA biosynthesis pathways in 8 strains, including complete gadB gene, indicating potential health-promoting properties; (4) multiple genomic islands containing genes for galactose utilization and stress response, suggesting specific adaptation to traditional fermentation environments; (5) diverse exopolysaccharide biosynthesis and bacteriocin gene clusters; and (6) widespread CRISPR-Cas systems with variable spacer content. Notably, we identified vanY glycopeptide resistance genes across all strains, with two strains additionally harboring vanT. These results reveal the genetic mechanisms behind S. thermophilus adaptation to traditional yogurt environments, offering valuable insights for developing starter cultures and preserving the unique qualities and potential health benefits of traditional dairy products.
Collapse
Affiliation(s)
- Deniz Kiraz
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey.
| | - Ali Özcan
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey
| |
Collapse
|
4
|
Tintrop LK, Meola M, Stern MT, Haueter M, Shani N, Berthoud H, Guggenbühl Gasser B, Fuchsmann P. Analytical Mapping of Swiss Hard Cheese to Highlight the Distribution of Volatile Compounds, Aroma, and Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7383-7392. [PMID: 40066887 PMCID: PMC11951147 DOI: 10.1021/acs.jafc.4c10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Cheese is one of the most consumed fermented animal-based products globally, rendering its quality assessment and evaluation of substantial economic interest. Understanding the degree of cheese homogeneity is paramount for designing effective sampling strategies, yet this information is largely lacking. This study investigates the homogeneity of a cheese wheel based on the distribution of volatile compounds, microbiota, sodium chloride content, and pH, combined with sensory analyses. The outer zones of the cheese wheel were primarily characterized by the presence of sulfur compounds, esters, pyrazines, ketones, Streptococcus thermophilus, high sodium chloride concentration and high pH. In contrast, the inner zones of the cheese wheel were dominated by lactones, carboxylic acids, aldehydes, Lactobacillus delbrueckii subsp. lactis and Lacticaseibacillus paracasei. The presence of alcohols and Lactobacillus helveticus was observed throughout the cheese wheel. Furthermore, sensory descriptions were found to match predominantly with the aroma of the volatile compounds identified. The cheese wheel was found to be heterogeneous in all investigated characteristics. Our results indicate that the level of cheese homogeneity should be considered when designing sampling strategies, as these significantly impact the accuracy and reproducibility of analytical outcomes.
Collapse
Affiliation(s)
| | - Marco Meola
- DATABIOMIX, Zürcherstrasse 39D, Schlieren 8952, Zürich, Switzerland
| | | | | | - Noam Shani
- Agroscope, Schwarzenburgstrasse 161, Bern 3003, Switzerland
| | | | | | | |
Collapse
|
5
|
Decadt H, Díaz-Muñoz C, Vermote L, Pradal I, De Vuyst L, Weckx S. Long-read metagenomics gives a more accurate insight into the microbiota of long-ripened gouda cheeses. Front Microbiol 2025; 16:1543079. [PMID: 40196035 PMCID: PMC11973332 DOI: 10.3389/fmicb.2025.1543079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Metagenomic studies of the Gouda cheese microbiota and starter cultures are scarce. During the present study, short-read metagenomic sequencing (Illumina) was applied on 89 Gouda cheese and processed milk samples, which have been investigated before concerning their metabolite and taxonomic composition, the latter applying amplicon-based, high-throughput sequencing (HTS) of the full-length 16S rRNA gene. Selected samples were additionally investigated using long-read metagenomic sequencing (Oxford Nanopore Technologies, ONT). Whereas the species identified by amplicon-based HTS and metagenomic sequencing were identical, the relative abundances of the major species differed significantly. Lactococcus cremoris was more abundant in the metagenomics-based taxonomic analysis compared to the amplicon-based one, whereas the opposite was true for the non-starter lactic acid bacteria (NSLAB). This discrepancy was related to a higher fragmentation of the lactococcal DNA compared with the DNA of other species when applying ONT. Possibly, a higher fragmentation was linked with a higher percentage of dead or metabolically inactive cells, suggesting that full-length 16S rRNA gene amplicon-based HTS might give a more accurate view on active cells. Further, fungi were not abundantly present in the Gouda cheeses examined, whereas about 2% of the metagenomic sequence reads was related to phages, with higher relative abundances in the cheese rinds and long-ripened cheeses. Intraspecies differences found by short-read metagenomic sequencing were in agreement with the amplicon sequence variants obtained previously, confirming the ability of full-length 16S rRNA gene amplicon-based HTS to reach a taxonomic assignment below species level. Metagenome-assembled genomes (MAGs) were retrieved for 15 species, among which the starter cultures Lc. cremoris and Lactococcus lactis and the NSLAB Lacticaseibacillus paracasei, Loigolactobacillus rennini, and Tetragenococcus halophilus, although obtaining MAGs from Lc. cremoris and Lc. lactis was more challenging because of a high intraspecies diversity and high similarity between these species. Long-read metagenomic sequencing could not improve the retrieval of lactococcal MAGs, but, overall, MAGs obtained by long-read metagenomic sequencing solely were superior compared with those obtained by short-read metagenomic sequencing solely, reaching a high-quality draft status of the genomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Zhang H, Zhang H, Du H, Zhang Y, Zhang M, Yu X, Xu Y. Unraveling the multiple interactions between phages, microbes and flavor in the fermentation of strong-flavor Baijiu. BIORESOUR BIOPROCESS 2025; 12:14. [PMID: 40042720 PMCID: PMC11883080 DOI: 10.1186/s40643-025-00852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
The fermentation process of strong-flavor Baijiu represents a complex and unique ecosystem, characterized by the involvement of various microorganisms that drive intricate biochemical reactions, ultimately contributing to the distinct flavor profile of the Baijiu. Viruses may affect the succession of microorganisms and thus affect the style and quality of the product. However, the interaction between viruses and microorganisms during the fermentation of Baijiu is still unclear. Here we combined viral metagenomics and amplicon sequencing, physicochemical analysis, and GC-MS detection with temporal sampling to study the dynamics of viral and microbial communities, physicochemical properties, and flavor compounds during strong-flavor Baijiu fermentation. Viral metagenomic analysis revealed 513 viral operational taxonomic units (vOTUs), encompassing 34 viral families. Principal coordinates analysis (PCoA) demonstrated significant differences in vOTUs at different fermentation stages. Notably, the microbial community exhibited distinct succession patterns at various fermentation stages; it changed rapidly during the initial five days, with similarities observed between days 10 and 20. Volatile profile analysis identified 38 flavor components in fermented grains, comprising 16 ester compounds, 11 alcohols, and 8 acids, with the majority formed between days 10 and 30. The Spearman's rank correlation analysis revealed that Peduoviridae exhibited a negative correlation with Gluconobacter. Genomoviridae showed a negative correlation with Issatchenkia, Penicillium, and Monascus. These findings highlight the potential for complex interactions between viruses and microbial communities during Baijiu fermentation, underscoring the importance of considering viral communities in studies of the microbial ecology of fermented foods.
Collapse
Affiliation(s)
- Huadong Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122, Jiangsu, China
| | - Hongxia Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, Shanxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122, Jiangsu, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122, Jiangsu, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
7
|
Neviani E, Gatti M, Gardini F, Levante A. Microbiota of Cheese Ecosystems: A Perspective on Cheesemaking. Foods 2025; 14:830. [PMID: 40077532 PMCID: PMC11899173 DOI: 10.3390/foods14050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
This review contributes to the knowledge on the complex and adaptive microbial ecosystems within cheese, emphasizing their critical role in determining cheese quality, flavor, and safety. This review synthesizes the current knowledge on the microbial interactions and the dynamics of lactic acid bacteria (LAB), encompassing both starter (SLAB) and non-starter (NSLAB) strains, which are pivotal to the curd fermentation and ripening processes. The adaptability of these microbial consortia to environmental and technological stressors is explored, highlighting their contributions to acidification, proteolysis, and the development of distinctive organoleptic characteristics. Historical and technological perspectives on cheesemaking are also discussed, detailing the impact of milk treatment, starter culture selection, and post-renneting procedures on microbial activity and biochemical transformations. This review underscores the importance of microbial diversity and cooperative interactions in fostering ecosystem resilience and metabolic functionality, and it addresses the challenges in mimicking the technological performance of natural starters using selected cultures. By understanding the ecological roles and interactions of cheese microbiota, this review aims to guide improvements in cheese production practices. Additionally, these insights could spark the development of innovative strategies for microbial community management.
Collapse
Affiliation(s)
- Erasmo Neviani
- International Dairy Federation—Italian Committee, 20135 Milano, Italy;
| | - Monica Gatti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Alessia Levante
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
8
|
Bartošová-Sojková P, Butenko A, Richtová J, Fiala I, Oborník M, Lukeš J. Inside the Host: Understanding the Evolutionary Trajectories of Intracellular Parasitism. Annu Rev Microbiol 2024; 78:39-59. [PMID: 38684082 DOI: 10.1146/annurev-micro-041222-025305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review explores the origins of intracellular parasitism, an intriguing facet of symbiosis, where one organism harms its host, potentially becoming deadly. We focus on three distantly related groups of single-celled eukaryotes, namely Kinetoplastea, Holomycota, and Apicomplexa, which contain multiple species-rich lineages of intracellular parasites. Using comparative analysis of morphological, physiological, and molecular features of kinetoplastids, microsporidians, and sporozoans, as well as their closest free-living relatives, we reveal the evolutionary trajectories and adaptations that enabled the transition to intracellular parasitism. Intracellular parasites have evolved various efficient mechanisms for host acquisition and exploitation, allowing them to thrive in a variety of hosts. Each group has developed unique features related to the parasitic lifestyle, involving dedicated protein families associated with host cell invasion, survival, and exit. Indeed, parallel evolution has led to distinct lineages of intracellular parasites employing diverse traits and approaches to achieve similar outcomes.
Collapse
Affiliation(s)
- Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Ivan Fiala
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Julius Lukeš
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| |
Collapse
|
9
|
Somerville V, Thierer N, Schmidt RS, Roetschi A, Braillard L, Haueter M, Berthoud H, Shani N, von Ah U, Mazel F, Engel P. Genomic and phenotypic imprints of microbial domestication on cheese starter cultures. Nat Commun 2024; 15:8642. [PMID: 39366947 PMCID: PMC11452379 DOI: 10.1038/s41467-024-52687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
Domestication - the artificial selection of wild species to obtain variants with traits of human interest - was integral to the rise of complex societies. The oversupply of food was probably associated with the formalization of food preservation strategies through microbial fermentation. While considerable literature exists on the antiquity of fermented food, only few eukaryotic microbes have been studied so far for signs of domestication, less is known for bacteria. Here, we tested if cheese starter cultures harbour typical hallmarks of domestication by characterising over 100 community samples and over 100 individual strains isolated from historical and modern traditional Swiss cheese starter cultures. We find that cheese starter cultures have low genetic diversity both at the species and strain-level and maintained stable phenotypic traits. Molecular clock dating further suggests that the evolutionary origin of the bacteria approximately coincided with the first archaeological records of cheese making. Finally, we find evidence for ongoing genome decay and pseudogenization via transposon insertion related to a reduction of their niche breadth. Future work documenting the prevalence of these hallmarks across diverse fermented food systems and geographic regions will be key to unveiling the joint history of humanity with fermented food microbes.
Collapse
Affiliation(s)
- Vincent Somerville
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
- Agroscope, Liebefeld, Switzerland.
- Université Laval, Quebec, Canada.
- McGill, Montréal, Canada.
| | | | | | | | | | | | | | | | | | - Florent Mazel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Gapp C, Dijamentiuk A, Mangavel C, Callon C, Theil S, Revol-Junelles AM, Chassard C, Borges F. Serial fermentation in milk generates functionally diverse community lineages with different degrees of structure stabilization. mSystems 2024; 9:e0044524. [PMID: 39041801 PMCID: PMC11334471 DOI: 10.1128/msystems.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Microbial communities offer considerable potential for tackling environmental challenges by improving the functioning of ecosystems. Top-down community engineering is a promising strategy that could be used to obtain communities of desired function. However, the ecological factors that control the balance between community shaping and propagation are not well understood. Dairy backslopping, which consists of using part of the previous production to inoculate a new one, can be used as a model engineering approach to investigate community dynamics during serial propagations. In this study, 26 raw milk samples were serially propagated 6 times each, giving rise to 26 community lineages. Bacterial community structures were analyzed by metabarcoding, and acidification was recorded by pH monitoring. The results revealed that different types of community lineages could be obtained in terms of taxonomic composition and dynamics. Five lineages reached a repeatable community structure in a few propagation steps, with little variation between the final generations, giving rise to stable acidification kinetics. Moreover, these stabilized communities presented a high variability of structure and diverse acidification properties between community lineages. Besides, the other lineages were characterized by different levels of dynamics leading to parallel or divergent trajectories. The functional properties and dynamics of the communities were mainly related to the relative abundance and the taxonomic composition of lactic acid bacteria within the communities. These findings highlight that short-term schemes of serial fermentation can produce communities with a wide range of dynamics and that the balance between community shaping and propagation is intimately linked to community structure. IMPORTANCE Microbiome applications require approaches for shaping and propagating microbial communities. Shaping allows the selection of communities with desired taxonomic and functional properties, while propagation allows the production of the biomass required to inoculate the engineered communities in the target ecosystem. In top-down community engineering, where communities are obtained from a pool of mixed microorganisms by acting on environmental variables, a major challenge is to master the balance between shaping and propagation. However, the ecological factors that favor high dynamics of community structure and, conversely, those that favor stability during propagation are not well understood. In this work, short-term dairy backslopping was used to investigate the key role of the taxonomic composition and structure of bacterial communities on their dynamics. The results obtained open up interesting prospects for the biotechnological use of microbiomes, particularly in the field of dairy fermentation, to diversify approaches for injecting microbial biodiversity into cheesemaking processes.
Collapse
Affiliation(s)
- Chloé Gapp
- Université de Lorraine, LIBio, Nancy, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | | | | | - Cécile Callon
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | - Sébastien Theil
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | | | - Christophe Chassard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | | |
Collapse
|
11
|
Lutin J, Dufrene F, Guyot P, Palme R, Achilleos C, Bouton Y, Buchin S. Microbial composition and viability of natural whey starters used in PDO Comté cheese-making. Food Microbiol 2024; 121:104521. [PMID: 38637083 DOI: 10.1016/j.fm.2024.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Natural whey starters (NWS) are cultures with undefined multiple-strains species commonly used to speed up the fermentation process of cheeses. The aim of this study was to explore the diversity and the viability of Comté cheese NWS microbiota. Culture-dependent methods, i.e. plate counting and genotypic characterization, and culture-independent methods, i.e. qPCR, viability-qPCR, fluorescence microscopy and DNA metabarcoding, were combined to analyze thirty-six NWS collected in six Comté cheese factories at two seasons. Our results highlighted that NWS were dominated by Streptococcus thermophilus (ST) and thermophilic lactobacilli. These species showed a diversity of strains based on Rep-PCR. The dominance of Lactobacillus helveticus (LH) over Lactobacillus delbrueckii (LD) varied depending on the factory and the season. This highlighted two types of NWS: the type-ST/LD (LD > LH) and the type-ST/LH (LD < LH). The microbial composition varied depending on cheese factory. One factory was distinguished by its level of culturable microbial groups (ST, enterococci and yeast) and its fungi diversity. The approaches used to estimate the viability showed that most NWS cells were viable. Further investigations are needed to understand the microbial diversity of these NWS.
Collapse
Affiliation(s)
- Jade Lutin
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bât. INRAE, F-39800, Poligny, France
| | - Franck Dufrene
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| | - Philippe Guyot
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bât. INRAE, F-39800, Poligny, France
| | - Romain Palme
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| | - Christine Achilleos
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| | - Yvette Bouton
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bât. INRAE, F-39800, Poligny, France.
| | - Solange Buchin
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| |
Collapse
|
12
|
Paillet T, Lamy-Besnier Q, Figueroa C, Petit MA, Dugat-Bony E. Dynamics of the viral community on the surface of a French smear-ripened cheese during maturation and persistence across production years. mSystems 2024; 9:e0020124. [PMID: 38860825 PMCID: PMC11265279 DOI: 10.1128/msystems.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
The surface of smear-ripened cheeses constitutes a dynamic microbial ecosystem resulting from the successive development of different microbial groups such as lactic acid bacteria, fungi, and ripening bacteria. Recent studies indicate that a viral community, mainly composed of bacteriophages, also represents a common and substantial part of the cheese microbiome. However, the composition of this community, its temporal variations, and associations between bacteriophages and their hosts remain poorly characterized. Here, we studied a French smear-ripened cheese by both viral metagenomics and 16S metabarcoding approaches to assess both the succession of phages and bacterial communities on the cheese surface during cheese ripening and their temporal variations in ready-to-eat cheeses over the years of production. We observed a clear transition of the phage community structure during ripening with a decreased relative abundance of viral species (vOTUs) associated with Lactococcus phages, which were replaced by vOTUs associated with phages infecting ripening bacteria such as Brevibacterium, Glutamicibacter, Pseudoalteromonas, and Vibrio. The dynamics of the phage community was strongly associated with bacterial successions observed on the cheese surface. Finally, while some variations in the distribution of phages were observed in ready-to-eat cheeses produced at different dates spanning more than 4 years of production, the most abundant phages were detected throughout. This result revealed the long-term persistence of the dominant phages in the cheese production environment. Together, these findings offer novel perspectives on the ecology of bacteriophages in smear-ripened cheese and emphasize the significance of incorporating bacteriophages in the microbial ecology studies of fermented foods.IMPORTANCEThe succession of diverse microbial populations is critical for ensuring the production of high-quality cheese. We observed a temporal succession of phages on the surface of a smear-ripened cheese, with new phage communities showing up when ripening bacteria start covering this surface. Interestingly, the final phage community of this cheese is also consistent over large periods of time, as the same bacteriophages were found in cheese products from the same manufacturer made over 4 years. This research highlights the importance of considering these bacteriophages when studying the microbial life of fermented foods like cheese.
Collapse
Affiliation(s)
- Thomas Paillet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Quentin Lamy-Besnier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Clarisse Figueroa
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Eric Dugat-Bony
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| |
Collapse
|
13
|
Ma J, Qian C, Hu Q, Zhang J, Gu G, Liang X, Zhang L. The bacteriome-coupled phage communities continuously contract and shift to orchestrate the traditional rice vinegar fermentation. Food Res Int 2024; 184:114244. [PMID: 38609223 DOI: 10.1016/j.foodres.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Amounts of microbiome studies have uncovered the microbial communities of traditional food fermentations, while in which the phageome development with time is poorly understood. Here, we conducted a study to decipher both phageome and bacteriome of the traditional rice vinegar fermentation. The vinegar phageomes showed significant differences in the alpha diversity, network density and clustering coefficient over time. Peduoviridae had the highest relative abundance. Moreover, the phageome negatively correlated to the cognate bacteriome in alpha diversity, and undergone constantly contracting and shifting across the temporal scale. Nevertheless, 257 core virial clusters (VCs) persistently occurred with time whatever the significant impacts imposed by the varied physiochemical properties. Glycoside hydrolase (GH) and glycosyltransferase (GT) families genes displayed the higher abundances across all samples. Intriguingly, diversely structuring of toxin-antitoxin systems (TAs) and CRISPR-Cas arrays were frequently harbored by phage genomes. Their divergent organization and encoding attributes underlie the multiple biological roles in modulation of network and/or contest of phage community as well as bacterial host community. This phageome-wide mapping will fuel the current insights of phage community ecology in other traditional fermented ecosystems that are challenging to decipher.
Collapse
Affiliation(s)
- Jiawen Ma
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Chenggong Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Qijie Hu
- Huzhou Institute of Food and Drug Control, Huzhou, Zhejiang Province 313002, China
| | - Jianping Zhang
- Haining Yufeng Brewing Co., Ltd, Haining, Zhejiang Province 314408, China
| | - Guizhang Gu
- Huzhou Institute of Food and Drug Control, Huzhou, Zhejiang Province 313002, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China.
| | - Lei Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
14
|
Dai W, Du H, Zhou Q, Li S, Wang Y, Hou J, Guo C, Yang Q, Li C, Xie S, Li SC, Wu R. Metabolic profiles outperform the microbiota in assessing the response of vaginal microenvironments to the changed state of HPV infection. NPJ Biofilms Microbiomes 2024; 10:26. [PMID: 38509123 PMCID: PMC10954630 DOI: 10.1038/s41522-024-00500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
There is a deficiency in population-based studies investigating the impact of HPV infection on vaginal microenvironment, which influences the risk of persistent HPV infection. This prospective study aimed to unravel the dynamics of vaginal microbiota (VM) and vaginal metabolome in reaction to the changed state of HPV infection. Our results propose that the vaginal metabolome may be a superior indicator to VM when assessing the impact of altered HPV state on the vaginal microenvironment.
Collapse
Affiliation(s)
- Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Sumei Li
- Department of Pharmacology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Jun Hou
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Chunlei Guo
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Shouxia Xie
- Department of Pharmacology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China.
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China.
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China.
| |
Collapse
|
15
|
White K, Eraclio G, McDonnell B, Bottacini F, Lugli GA, Ventura M, Volontè F, Dal Bello F, Mahony J, van Sinderen D. A multifaceted investigation of lactococcal strain diversity in undefined mesophilic starter cultures. Appl Environ Microbiol 2024; 90:e0215223. [PMID: 38334291 PMCID: PMC10952461 DOI: 10.1128/aem.02152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
The dairy fermentation industry relies on the activity of lactic acid bacteria in robust starter cultures to accomplish milk acidification. Maintenance of the composition of these starter cultures, whether defined or undefined, is essential to ensure consistent and high-quality fermentation end products. To date, limited information exists regarding the microbial composition of undefined starter culture systems. Here, we describe a culture-based analysis combined with a metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, we describe a qPCR-based genotype detection assay, which is capable of discerning nine distinct lactococcal genotypes to characterize these undefined starter cultures, and which can be applied to monitor compositional changes in an undefined starter culture during a fermentation. IMPORTANCE This study reports on the development of a combined culture-based analysis and metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, a novel qPCR-based genotype detection assay, capable of discerning nine distinct lactococcal genotypes (based on lactococcal cell wall polysaccharide biosynthesis gene clusters), was used to monitor compositional changes in an undefined starter culture following phage attack. These analytical approaches facilitate a multifaceted assessment of starter culture compositional stability during milk fermentation, which has become an important QC aspect due to the increasing demand for consistent and high-quality dairy products.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Brian McDonnell
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Gabriele Andrea Lugli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics,University of Parma, Parma, Italy
| | - Marco Ventura
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics,University of Parma, Parma, Italy
| | | | | | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Martini S, Sola L, Cattivelli A, Cristofolini M, Pizzamiglio V, Tagliazucchi D, Solieri L. Cultivable microbial diversity, peptide profiles, and bio-functional properties in Parmigiano Reggiano cheese. Front Microbiol 2024; 15:1342180. [PMID: 38567075 PMCID: PMC10985727 DOI: 10.3389/fmicb.2024.1342180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Lactic acid bacteria (LAB) communities shape the sensorial and functional properties of artisanal hard-cooked and long-ripened cheeses made with raw bovine milk like Parmigiano Reggiano (PR) cheese. While patterns of microbial evolution have been well studied in PR cheese, there is a lack of information about how this microbial diversity affects the metabolic and functional properties of PR cheese. Methods To fill this information gap, we characterized the cultivable fraction of natural whey starter (NWS) and PR cheeses at different ripening times, both at the species and strain level, and investigated the possible correlation between microbial composition and the evolution of peptide profiles over cheese ripening. Results and discussion The results showed that NWS was a complex community of several biotypes belonging to a few species, namely, Streptococcus thermophilus, Lactobacillus helveticus, and Lactobacillus delbrueckii subsp. lactis. A new species-specific PCR assay was successful in discriminating the cheese-associated species Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Lacticaseibacillus zeae. Based on the resolved patterns of species and biotype distribution, Lcb. paracasei and Lcb. zeae were most frequently isolated after 24 and 30 months of ripening, while the number of biotypes was inversely related to the ripening time. Peptidomics analysis revealed more than 520 peptides in cheese samples. To the best of our knowledge, this is the most comprehensive survey of peptides in PR cheese. Most of them were from β-caseins, which represent the best substrate for LAB cell-envelope proteases. The abundance of peptides from β-casein 38-88 region continuously increased during ripening. Remarkably, this region contains precursors for the anti-hypertensive lactotripeptides VPP and IPP, as well as for β-casomorphins. We found that the ripening time strongly affects bioactive peptide profiles and that the occurrence of Lcb. zeae species is positively linked to the incidence of eight anti-hypertensive peptides. This result highlighted how the presence of specific LAB species is likely a pivotal factor in determining PR functional properties.
Collapse
Affiliation(s)
- Serena Martini
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Laura Sola
- Microbial Biotechnologies and Fermentation Technologies, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Cattivelli
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Marianna Cristofolini
- Lactic Acid Bacteria and Yeast Biotechnology, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | - Davide Tagliazucchi
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Lisa Solieri
- Lactic Acid Bacteria and Yeast Biotechnology, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
17
|
Kiraz D, Özcan A, Yibar A, Dertli E. Genetic diversity and phylogenetic relationships of Streptococcus thermophilus isolates from traditional Turkish yogurt: multilocus sequence typing (MLST). Arch Microbiol 2024; 206:121. [PMID: 38400998 DOI: 10.1007/s00203-024-03850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/26/2024]
Abstract
Yogurt, a globally consumed fermented dairy product, is recognized for its taste and potential health benefits attributed to probiotic bacteria, particularly Streptococcus thermophilus. In this study, we employed Multilocus Sequence Typing (MLST) to investigate the genetic diversity and phylogenetic relationships of 13 S. thermophilus isolates from traditional Turkish yogurt samples. We also assessed potential correlations between genetic traits and geographic origins. The isolates were identified as S. thermophilus using VITEK® MALDI-TOF MS, ribotyping, and 16S rRNA analysis methods. MLST analysis revealed 13 different sequence types (STs), with seven new STs for Turkey. The most prevalent STs were ST/83 (n = 3), ST/135 (n = 2), and ST/134 (n = 2). eBURST analysis showed that these isolates mainly were singletons (n = 7) defined as sequence types (STs) that cannot be assigned to any group and differ at two or more alleles from every other ST in the sample. This information suggests that the isolates under study were genetically distinct from the other isolates in the dataset, highlighting their unique genetic profiles within the population. Genetic diversity analysis of ten housekeeping genes revealed polymorphism, with some genes showing higher allelic variation than others. Tajima's D values suggested that selection pressures differed among these genes, with some being more conserved, likely due to their vital functions. Phylogenetic analysis revealed distinct genetic diversity between Turkish isolates and European and Asian counterparts. These findings demonstrate the genetic diversity of S. thermophilus isolates in Turkish yogurt and highlight their unique evolutionary patterns. This research contributes to our understanding of local microbial diversity associated with yogurt production in Turkey and holds the potential for identifyic strains with enhanced functional attributes.
Collapse
Affiliation(s)
- Deniz Kiraz
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey.
| | - Ali Özcan
- Animal Originated Foodstuffs Department, Central Research Institute of Food and Feed Control, Bursa, Turkey
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey
| | - Artun Yibar
- Food Hygiene and Technology Department, Faculty of Veterinary Medicine, Uludağ University, Bursa, Turkey
| | - Enes Dertli
- Faculty of Chemistry and Metallurgy, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
18
|
Cardin M, Cardazzo B, Coton M, Carraro L, Lucchini R, Novelli E, Coton E, Mounier J. Ecological diversity and associated volatilome of typical mountain Caciotta cheese from Italy. Int J Food Microbiol 2024; 411:110523. [PMID: 38134579 DOI: 10.1016/j.ijfoodmicro.2023.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Traditional products are particularly appreciated by consumers and among these products, cheese is a major contributor to the Italian mountainous area economics. In this study, shotgun metagenomics and volatilomics were used to understand the biotic and abiotic factors contributing to mountain Caciotta cheese typicity and diversity. Results showed that the origin of cheese played a significant role; however, curd cooking temperature, pH, salt concentration and water activity also had an impact. Viral communities exhibited higher biodiversity and discriminated cheese origins in terms of production farms. Among the most dominant bacteria, Streptococcus thermophilus showed higher intraspecific diversity and closer relationship to production farm when compared to Lactobacillus delbrueckii. However, despite a few cases in which the starter culture was phylogenetically separated from the most dominant strains sequenced in the cheese, starter cultures and dominant cheese strains clustered together suggesting substantial starter colonization in mountain Caciotta cheese. The Caciotta cheese volatilome contained prominent levels of alcohols and ketones, accompanied by lower proportions of terpenes. Volatile profile not only demonstrated a noticeable association with production farm but also significant differences in the relative abundances of enzymes connected to flavor development. Moreover, correlations of different non-homologous isofunctional enzymes highlighted specific contributions to the typical flavor of mountain Caciotta cheese. Overall, this study provides a deeper understanding of the factors shaping typical mountain Caciotta cheese, and the potential of metagenomics for characterizing and potentially authenticating food products.
Collapse
Affiliation(s)
- Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy; Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy.
| | - Monika Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Rosaria Lucchini
- Italian Health Authority and Research Organization for Animal Health and Food Safety (Istituto zooprofilattico sperimentale delle Venezie), Viale Università 10, 35020 Legnaro, PD, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
19
|
Pastuszka A, Rousseau GM, Somerville V, Levesque S, Fiset JP, Goulet A, Doyon Y, Moineau S. Dairy phages escape CRISPR defence of Streptococcus thermophilus via the anti-CRISPR AcrIIA3. Int J Food Microbiol 2023; 407:110414. [PMID: 37778080 DOI: 10.1016/j.ijfoodmicro.2023.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Bacterial community collapse due to phage infection is a major risk in cheese making processes. As virulent phages are ubiquitous and diverse in milk fermentation factories, the use of phage-resistant lactic acid bacteria (LAB) is essential to obtain high-quality fermented dairy products. The LAB species Streptococcus thermophilus contains two type II-A CRISPR-Cas systems (CRISPR1 and CRISPR3) that can effectively protect against phage infection. However, virulent streptococcal phages carrying anti-CRISPR proteins (ACR) that block the activity of CRISPR-Cas systems have emerged in yogurt and cheese environments. For example, phages carrying AcrIIA5 can impede both CRISPR1 and CRISPR3 systems, while AcrIIA6 stops only CRISPR1. Here, we explore the activity and diversity of a third streptococcal phage anti-CRISPR protein, namely AcrIIA3. We were able to demonstrate that AcrIIA3 is efficiently active against the CRISPR3-Cas system of S. thermophilus. We used AlphaFold2 to infer the structure of AcrIIA3 and we predicted that this new family of functional ACR in virulent streptococcal phages has a new α-helical fold, with no previously identified structural homologs. Because ACR proteins are being explored as modulators in genome editing applications, we also tested AcrIIA3 against SpCas9. We found that AcrIIA3 could block SpCas9 in bacteria but not in human cells. Understanding the diversity and functioning of anti-defence mechanisms will be of importance in the design of long-term stable starter cultures.
Collapse
Affiliation(s)
- Adeline Pastuszka
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, Canada
| | - Vincent Somerville
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, Canada; Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland; Agroscope, Bern, Switzerland
| | - Sébastien Levesque
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, QC, Canada; Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Jean-Philippe Fiset
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, QC, Canada; Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Adeline Goulet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS UMR7255, Aix-Marseille Université, Marseille, France
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, QC, Canada; Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada; Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, QC, Canada.
| |
Collapse
|
20
|
Hirano R, Nishita I, Nakai R, Bito A, Sasabe R, Kurihara S. Development of culture methods capable of culturing a wide range of predominant species of intestinal bacteria. Front Cell Infect Microbiol 2023; 13:1056866. [PMID: 37520440 PMCID: PMC10374021 DOI: 10.3389/fcimb.2023.1056866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, with the development of non-cultivation approaches, it has become evident that intestinal bacteria have a significant impact on human health. However, because one-third of the genes cannot be annotated, it is difficult to elucidate the function of all intestinal bacteria by in silico analysis, and it is necessary to study the intestinal bacteria by culturing them. In addition, various media recommended for each individual bacterium have been used for culturing intestinal bacteria; however, the preparation of each medium is complex. To simultaneously culture many bacteria and compare bacterial phenotypes under the same conditions, a medium capable of culturing a wide range of bacteria is needed. In this study, we developed GAM + blood medium (GB medium), which consists of Gifu anaerobic medium containing 5% (v/v) horse blood; it is easy to prepare and it allowed the successful cultivation of 85% of the available predominant species in the human intestinal microbiota.
Collapse
Affiliation(s)
- Rika Hirano
- Host Microbe Interaction Research Laboratory, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Izumi Nishita
- Host Microbe Interaction Research Laboratory, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
| | - Riho Nakai
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Ayaka Bito
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Ryunosuke Sasabe
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Shin Kurihara
- Host Microbe Interaction Research Laboratory, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| |
Collapse
|
21
|
Srinivas M, O’Sullivan O, Cotter PD, van Sinderen D, Kenny JG. The Application of Metagenomics to Study Microbial Communities and Develop Desirable Traits in Fermented Foods. Foods 2022; 11:3297. [PMID: 37431045 PMCID: PMC9601669 DOI: 10.3390/foods11203297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities present within fermented foods are diverse and dynamic, producing a variety of metabolites responsible for the fermentation processes, imparting characteristic organoleptic qualities and health-promoting traits, and maintaining microbiological safety of fermented foods. In this context, it is crucial to study these microbial communities to characterise fermented foods and the production processes involved. High Throughput Sequencing (HTS)-based methods such as metagenomics enable microbial community studies through amplicon and shotgun sequencing approaches. As the field constantly develops, sequencing technologies are becoming more accessible, affordable and accurate with a further shift from short read to long read sequencing being observed. Metagenomics is enjoying wide-spread application in fermented food studies and in recent years is also being employed in concert with synthetic biology techniques to help tackle problems with the large amounts of waste generated in the food sector. This review presents an introduction to current sequencing technologies and the benefits of their application in fermented foods.
Collapse
Affiliation(s)
- Meghana Srinivas
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - Orla O’Sullivan
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - John G. Kenny
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
22
|
Sola L, Quadu E, Bortolazzo E, Bertoldi L, Randazzo CL, Pizzamiglio V, Solieri L. Insights on the bacterial composition of Parmigiano Reggiano Natural Whey Starter by a culture-dependent and 16S rRNA metabarcoding portrait. Sci Rep 2022; 12:17322. [PMID: 36243881 PMCID: PMC9569347 DOI: 10.1038/s41598-022-22207-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
Natural whey starters (NWS) are undefined bacterial communities produced daily from whey of the previous cheese-making round, by application of high temperature. As a result, in any dairy plant, NWS are continuously evolving, undefined mixtures of several strains and/or species of lactic acid bacteria, whose composition and performance strongly depend on the selective pressure acting during incubation. While NWS is critical to assure consistency to cheese-making process, little is known about the composition, functional features, and plant-to-plant fluctuations. Here, we integrated 16S rRNA metabarcoding and culture-dependent methods to profile bacterial communities of 10 NWS sampled in the production area of Parmigiano Reggiano cheese. 16S rRNA metabarcoding analysis revealed two main NWS community types, namely NWS type-H and NWS type-D. Lactobacillus helveticus was more abundant in NWS type-H, whilst Lactobacillus delbrueckii/St. thermophilus in NWS type-D, respectively. Based on the prediction of metagenome functions, NWS type-H samples were enriched in functional pathways related to galactose catabolism and purine metabolism, while NWS type-D in pathways related to aromatic and branched chain amino acid biosynthesis, which are flavor compound precursors. Culture-dependent approaches revealed low cultivability of individual colonies as axenic cultures and high genetic diversity in the pool of cultivable survivors. Co-culturing experiments showed that fermentative performance decreases by reducing the bacterial complexity of inoculum, suggesting that biotic interactions and cross-feeding relationships could take place in NWS communities, assuring phenotypic robustness. Even though our data cannot directly predict these ecological interactions, this study provides the basis for experiments targeted at understanding how selective regime affects composition, bacterial interaction, and fermentative performance in NWS.
Collapse
Affiliation(s)
- Laura Sola
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Emanuele Quadu
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Elena Bortolazzo
- grid.423913.eCentro Ricerche Produzioni Animali, 42121 Reggio Emilia, Italy
| | | | - Cinzia L. Randazzo
- grid.8158.40000 0004 1757 1969Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy ,ProBioEtna Srl, 95123 Catania, Italy
| | - Valentina Pizzamiglio
- grid.433295.aConsorzio del Formaggio Parmigiano Reggiano, 42124 Reggio Emilia, Italy
| | - Lisa Solieri
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy ,NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
23
|
Liang F, Ban S, Huang H, Che F, Wu Q, Xu Y. Predicting the effect of climatic factors on diversity of flavor compounds in Daqu fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Qian C, Ma J, Liang J, Zhang L, Liang X. Comprehensive deciphering prophages in genus Acetobacter on the ecology, genomic features, toxin–antitoxin system, and linkage with CRISPR-Cas system. Front Microbiol 2022; 13:951030. [PMID: 35983328 PMCID: PMC9379143 DOI: 10.3389/fmicb.2022.951030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acetobacter is the predominant microbe in vinegar production, particularly in those natural fermentations that are achieved by complex microbial communities. Co-evolution of prophages with Acetobacter, including integration, release, and dissemination, heavily affects the genome stability and production performance of industrial strains. However, little has been discussed yet about prophages in Acetobacter. Here, prophage prediction analysis using 148 available genomes from 34 Acetobacter species was carried out. In addition, the type II toxin–antitoxin systems (TAs) and CRISPR-Cas systems encoded by prophages or the chromosome were analyzed. Totally, 12,000 prophage fragments were found, of which 350 putatively active prophages were identified in 86.5% of the selected genomes. Most of the active prophages (83.4%) belonged to the order Caudovirales dominated by the families Siphoviridae and Myroviridae prophages (71.4%). Notably, Acetobacter strains survived in complex environments that frequently carried multiple prophages compared with that in restricted habits. Acetobacter prophages showed high genome diversity and horizontal gene transfer across different bacterial species by genomic feature characterization, average nucleotide identity (ANI), and gene structure visualization analyses. About 31.14% of prophages carry type II TAS, suggesting its important role in addiction, bacterial defense, and growth-associated bioprocesses to prophages and hosts. Intriguingly, the genes coding for Cse1, Cse2, Cse3, Cse4, and Cas5e involved in type I-E and Csy4 involved in type I-F CRISPR arrays were firstly found in two prophages. Type II-C CRISPR-Cas system existed only in Acetobacter aceti, while the other Acetobacter species harbored the intact or eroded type I CRISPR-Cas systems. Totally, the results of this study provide fundamental clues for future studies on the role of prophages in the cell physiology and environmental behavior of Acetobacter.
Collapse
|
25
|
Paillet T, Lossouarn J, Figueroa C, Midoux C, Rué O, Petit MA, Dugat-Bony E. Virulent Phages Isolated from a Smear-Ripened Cheese Are Also Detected in Reservoirs of the Cheese Factory. Viruses 2022; 14:1620. [PMID: 35893685 PMCID: PMC9331655 DOI: 10.3390/v14081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Smear-ripened cheeses host complex microbial communities that play a crucial role in the ripening process. Although bacteriophages have been frequently isolated from dairy products, their diversity and ecological role in such this type of cheese remain underexplored. In order to fill this gap, the main objective of this study was to isolate and characterize bacteriophages from the rind of a smear-ripened cheese. Thus, viral particles extracted from the cheese rind were tested through a spot assay against a collection of bacteria isolated from the same cheese and identified by sequencing the full-length small subunit ribosomal RNA gene. In total, five virulent bacteriophages infecting Brevibacterium aurantiacum, Glutamicibacter arilaitensis, Leuconostoc falkenbergense and Psychrobacter aquimaris species were obtained. All exhibit a narrow host range, being only able to infect a few cheese-rind isolates within the same species. The complete genome of each phage was sequenced using both Nanopore and Illumina technologies, assembled and annotated. A sequence comparison with known phages revealed that four of them may represent at least new genera. The distribution of the five virulent phages into the dairy-plant environment was also investigated by PCR, and three potential reservoirs were identified. This work provides new knowledge on the cheese rind viral community and an overview of the distribution of phages within a cheese factory.
Collapse
Affiliation(s)
- Thomas Paillet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France; (T.P.); (C.F.)
| | - Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France; (J.L.); (M.-A.P.)
| | - Clarisse Figueroa
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France; (T.P.); (C.F.)
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350 Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, PROSE, 92761 Antony, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France; (C.M.); (O.R.)
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350 Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France; (J.L.); (M.-A.P.)
| | - Eric Dugat-Bony
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France; (T.P.); (C.F.)
| |
Collapse
|
26
|
Shani N, Oberhaensli S, Berthoud H, Schmidt RS, Bachmann HP. Antimicrobial Susceptibility of Lactobacillus delbrueckii subsp. lactis from Milk Products and Other Habitats. Foods 2021; 10:foods10123145. [PMID: 34945696 PMCID: PMC8701367 DOI: 10.3390/foods10123145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
As components of many cheese starter cultures, strains of Lactobacillus delbrueckii subsp. lactis (LDL) must be tested for their antimicrobial susceptibility to avoid the potential horizontal transfer of antibiotic resistance (ABR) determinants in the human body or in the environment. To this end, a phenotypic test, as well as a screening for antibiotic resistance genes (ARGs) in genome sequences, is commonly performed. Historically, microbiological cutoffs (MCs), which are used to classify strains as either 'sensitive' or 'resistant' based on the minimal inhibitory concentrations (MICs) of a range of clinically-relevant antibiotics, have been defined for the whole group of the obligate homofermentative lactobacilli, which includes LDL among many other species. This often leads to inaccuracies in the appreciation of the ABR status of tested LDL strains and to false positive results. To define more accurate MCs for LDL, we analyzed the MIC profiles of strains originating from various habitats by using the broth microdilution method. These strains' genomes were sequenced and used to complement our analysis involving a search for ARGs, as well as to assess the phylogenetic proximity between strains. Of LDL strains, 52.1% displayed MICs that were higher than the defined MCs for kanamycin, 9.9% for chloramphenicol, and 5.6% for tetracycline, but no ARG was conclusively detected. On the other hand, all strains displayed MICs below the defined MCs for ampicillin, gentamycin, erythromycin, and clindamycin. Considering our results, we propose the adaptation of the MCs for six of the tested clinically-relevant antibiotics to improve the accuracy of phenotypic antibiotic testing.
Collapse
Affiliation(s)
- Noam Shani
- Competence Division Methods Development and Analytics, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland;
- Correspondence:
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland;
| | - Hélène Berthoud
- Competence Division Methods Development and Analytics, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland;
| | - Remo S. Schmidt
- Research Division Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; (R.S.S.); (H.-P.B.)
| | - Hans-Peter Bachmann
- Research Division Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; (R.S.S.); (H.-P.B.)
| |
Collapse
|