1
|
Jia M, Zhang J, Feng J, Zhuang Y, Xu Z, Yuan L, Luo J, Hong L, Xia J, Wu H, Chen X, Chen M. Epidemiological and genomic insights of mcr-1-positive colistin-resistant Klebsiella pneumoniae species complex strains from wastewater treatment plants in Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126146. [PMID: 40158675 DOI: 10.1016/j.envpol.2025.126146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
The emergence of mcr-1-positive Klebsiella pneumoniae species complex (MP-KpSC) poses a significant threat to public health due to its resistance to last-resort antibiotics like colistin. This study aimed to investigate the prevalence, genomic characteristics, and transmission features of MP-KpSC in wastewater treatment plants (WWTPs) in Shanghai, China. A total of 13 (0.36 %) MP-KpSC isolates were identified, including 12 K. pneumoniae and 1 K. quasipneumoniae subsp. similipneumoniae (Kqps). Nine multidrug-resistant (MDR) MP-KpSC and 3 extensively drug-resistant (XDR) MP-KpSC strains were identified. Twenty-two resistance determinants were present in over 30 % of the strains, with the most prevalent being mcr-1 (100 %), floR (84.62 %), mphA (69.23 %), and tet(A) (69.23 %). MP-KpSC exhibited 11 sequence types, 4 plasmid types, 6 mcr-1-flanked regions, 4 clonal groups, and diverse serotypes. In 53.85 % of strains, transposons were identified within the mcr-1-flanked regions. One strain contained both mcr-8.2 and mcr-1 gene. Notably, the mcr-1 gene was identified for the first time in Kqps and was located on the conjugative IncP1 plasmid, with ISApl1 elements upstream of it. Worryingly, two carbapenem- and colistin-resistant XDR MP-KpSC stains, and three possible hypervirulence (hv) were found in MDR MP-KpSC strains. Moreover, multiple virulence genes and mcr-1, on the same contig with IS679 insert element. The evolutionary trajectories of these strains among WWTPs-human-animals were unveiled in Shanghai. The study reveals that WWTPs serve as critical environmental reservoirs for MP-KpSC, highlighting the potential transmission risks posed by XDR and hv strains to both humans and aquatic ecosystems. These findings advocate for the implementation of active surveillance targeting WWTPs to curb the spread of MP-KpSC.
Collapse
Affiliation(s)
- Min Jia
- Shanghai Municipal Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jing Zhang
- Shanghai Municipal Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lingyue Yuan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Liang Hong
- Shanghai Municipal Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jiahui Xia
- Shanghai Municipal Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
2
|
Zhao L, Li Y, Yang Q, Li R, Li H, Xu Y. Water-saving irrigation suppresses on soil-crop pathogenicity: Insight on the co-host of virulence factors and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138607. [PMID: 40367777 DOI: 10.1016/j.jhazmat.2025.138607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/24/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
Water-saving irrigation is increasingly being prioritized in agricultural production activities to conserve water resources and increase crop productivity. Yet, how water-saving irrigation affects soil-crop pathogenic, primarily involving in the prevalence of virulence factors (VFs) and antibiotic resistance genes (ARGs), remains unclear. Here we investigated the variations in the abundance of VFs and ARGs in the soil-crop system under different irrigation intensities, and explored the underlying mechanisms on suppressing the dissemination of ARGs and VFs. The results showed that irrigation intensities (50 %, 75 % and 100 % irrigation water, hereafter IW50, IW75 and IW100) did not significantly affect soil VFs and ARGs abundance, but was closely associated with their occurrences in roots and leaves. Water-saving irrigation (IW 50 and IW75) clearly reduced the proliferation of VFs and ARGs in crops, especially TEP, PhoP, basS, and evgS genes decreased by more than 80 % compared to recommended irrigation usage (IW100). And, the co-hosts largely contributed to the reduction of VFs and ARGs abundance. The network analysis demonstrated that the increase in negative interactions between co-hosts and non-cohosts after water-saving irrigation resulted in the decrease of co-hosts colonization. Further, the decline in H2O-O2, carbon and nitrogen metabolic functional genes indicated that water-saving irrigation can inhibit the microbial ability to utilize those resources, thus decreasing VFs and ARGs proliferation. Finally, we determined that IW75 was most beneficial for VFs and ARGs reduction and tomato production. The outcome deepened the understanding of suppression on the spread of VFs and ARGs by water-saving irrigation, thereby providing valuable guidance for sustainable water-efficient agricultural practices.
Collapse
Affiliation(s)
- Lizhi Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuhui Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qifan Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Ruolan Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
3
|
Pfeifer NM, Weber M, Wiegand E, Barth SA, Berens C, Menge C. Escherichia coli resistant to the highest priority critically important fluoroquinolone or 3rd and 4th generation cephalosporin antibiotics persist in pigsties. Appl Environ Microbiol 2025:e0138624. [PMID: 40338087 DOI: 10.1128/aem.01386-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
Antimicrobial resistance threatens human and animal health, with antimicrobial usage being a key driver of selection, transmission, and spread of resistant bacteria. Livestock represents a potential reservoir for human transmission, leading authorities to restrict veterinary usage of fluoroquinolones and certain cephalosporins. However, growing evidence indicates that the corresponding resistance determinants can be retained even in the drugs' absence. To obtain data on the magnitude and dynamics of this phenomenon in pig farming, we quantitatively and qualitatively assessed fluoroquinolone- and cephalosporin-resistant Escherichia coli in Thuringian pigsties practicing a closed management system to minimize the impact of externally introduced strains. Pooled fecal samples from consecutive fattening runs at one conventional and two organic farms and from 25 piglet groups from another conventional farm were collected over 16 months and screened for E. coli on plates containing enrofloxacin, ceftiofur, or cefquinome. Resistant bacteria were isolated on all farms; their counts varied strongly but were generally higher in piglets and declined with increasing animal age. Phylogenetic comparison of 393 isolates was performed via multiple-locus variable number tandem repeat analysis (MLVA) to follow strain dynamics and persistence. The isolates displayed large phylogenetic heterogeneity, featuring 52 different MLVA patterns. Still, conserved MLVA patterns indicated long-term persistence of specific strains in each farm's environment. This suggests that resistant strains appear well-adapted to the particular farm and its management practices, implying that, beyond restricting usage, further measures, including, e.g., consideration of the type of resistance as well as its persistence and transmission dynamics, will be indispensable to reduce the antimicrobial resistance load in pork production.IMPORTANCEAntimicrobial resistance (AMR) represents a global threat to human and animal health, with animals considered a reservoir for transmission of AMR to humans. Because antimicrobial usage is a driver for resistance, one approach to decrease the AMR burden is to reduce its usage. However, this can, but does not necessarily, lead to lower AMR prevalence. German and EU legislation restrict the use of fluoroquinolones and certain cephalosporins, substance classes designated as highest priority critically important antimicrobials for human medicine, in animal husbandry. Longitudinal sampling of organic and conventional farms in Thuringia for resistance to these antibiotic classes revealed that certain resistant Escherichia coli strains can persist in the farm environment over extended time periods. These strains displayed farm specificity, indicating adaptation to the particular farm and its management practices, so that their elimination might be difficult, requiring either procedures acting generally against Enterobacterales or targeted action against the specific strains.
Collapse
Affiliation(s)
- Nicola M Pfeifer
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Michael Weber
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Elisabeth Wiegand
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
4
|
Fuzi M. The fitness connection of antibiotic resistance. Front Microbiol 2025; 16:1556656. [PMID: 40276228 PMCID: PMC12020126 DOI: 10.3389/fmicb.2025.1556656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
More than three decades ago multidrug-resistant (MDR) clones of the pathogens: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Clostridioides difficile, Enterococcus faecium, Pseudomonas aeruginosa and Acinetobacter baumannii have started to disseminate across wide geographical areas. A characteristic feature of all these MDR lineages is the carriage of some mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV which besides conferring resistance to fluoroquinolones are associated with a fitness benefit. Several lines of evidence strongly suggest that extra fitness conferred by these mutations facilitated the dissemination of the international MDR lineages. MDR pathogens require extra energy to cover the fitness cost conferred by the excess antibiotic resistance gene cargo. However, extra energy generated by upgraded metabolic activity was demonstrated to increase the uptake of antibiotics enhancing susceptibility. Accordingly, MDR bacteria need additional positive fitness schemes which, similarly to the QRDR advantage, will not compromise resistance. Some of these, not clone-specific effects are large genomes, the carriage of low-cost plasmids, the transfer of plasmid genes to the chromosome, the application of weak promoters in integrons and various techniques for the economic control of the activity of the integrase enzyme including a highly sophisticated system in A. baumannii. These impacts - among others - will confer a fitness advantage promoting the spread of MDR pathogens. However, even the potential of extra fitness generated by the combined effect of various schemes is not without limit and virulence-related genes or less relevant antibiotic resistance gene cargoes will often be sacrificed to permit the acquisition of high-priority resistance determinants. Accordingly major MDR clone strains are usually less virulent than susceptible isolates. In summary, a fitness approach to the research of antibiotic resistance is very useful since the fitness status of MDR bacteria seem to profoundly impact the capacity to disseminate in the healthcare setting.
Collapse
Affiliation(s)
- Miklos Fuzi
- Independent Researcher, Seattle, WA, United States
| |
Collapse
|
5
|
Zhao L, Xu J, Liu S, Du J, Jia X, Wang Z, Ge L, Cui K, Ga Y, Li X, Xia X. Inosine monophosphate overcomes the coexisting resistance of mcr-1 and bla NDM-1 in Escherichia coli. J Adv Res 2025:S2090-1232(25)00203-6. [PMID: 40139526 DOI: 10.1016/j.jare.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION The rise of antibiotic-resistant bacteria, particularly those harboring mcr-1 and blaNDM-1, threatens public health by reducing the efficacy of colistin and carbapenems. Recently, the co-spread of mcr-1 and blaNDM-1 has been reported, and the emergence of dual-resistant Enterobacteriaceae severely exacerbates antimicrobial resistance. OBJECTIVES This study aims to investigate the impact of mcr-1 and blaNDM-1 expression on metabolism in Escherichia coli and to identify potential antimicrobial agents capable of overcoming the resistance conferred by these genes. METHODS We employed non-targeted metabolomics to profile the metabolic perturbations of E. coli strains harboring mcr-1 and blaNDM-1. The bactericidal effects of the differential metabolite, inosine monophosphate (IMP), were assessed both in vitro using time-killing assays and in vivo using a mouse infection model. The antimicrobial mechanism of IMP was elucidated through transcriptomic analysis and biochemical approaches. RESULTS Metabolic profiling revealed significant alterations in the purine pathway, with IMP demonstrating potent bactericidal activity against E. coli strains carrying both resistance genes. IMP increased membrane permeability, disrupted proton motive force, reduced ATP levels, induced oxidative damage by promoting reactive oxygen species and inhibiting bacterial antioxidant defenses, and improved the survival rate of infected mice. CONCLUSION Our findings suggest that IMP could be a promising candidate for combating mcr-1 and blaNDM-1-mediated resistance and provide a novel approach for discovering antimicrobial agents against colistin- and carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Liang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Saiwa Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Du
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xixi Jia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhinan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lirui Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kexin Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Ga
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Zhang H, Xiao X, Wang C, Zhao Y, Chen B, Ji X, Gu L, Wang J, Wang Z, Liu Y. DNA Polymerase IV dinB Favors the Adaptive Fitness of mcr-carrying Bacteria Through a Negative Feedback Regulatory Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411994. [PMID: 39887566 PMCID: PMC11948064 DOI: 10.1002/advs.202411994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Indexed: 02/01/2025]
Abstract
The plasmid-borne resistance gene mcr drastically undermines the effectiveness of colistin, posing a substantial threat to public health. Although several key plasmid elements that balance mcr-1 persistence and bacterial growth are identified, the regulatory interactions between mcr-1 and host bacteria remain poorly understood. Using a genome-wide CRISPRi crRNA library, it is identified that DNA polymerase IV, dinB, is essential for controlling the fitness cost associated with mcr-1 in Escherichia coli. The absence of dinB operon enhances mcr-1-mediated colistin resistance but simultaneously compromises bacterial growth and competitiveness. Meanwhile, dinB deficiency mitigates inflammatory response in RAW267.4 cells and enhances bacterial colonization in murine tissues. Further investigation reveals that mcr-1 actively upregulates dinB expression, with the increased reactive oxygen species induced by mcr-1 being crucial for this activation. These findings suggest that dinB modulates mcr expression and bacterial fitness via a negative feedback regulatory mechanism. Leveraging this regulatory relationship, a Toxin-Intein is engineered under the control of dinB promoter to selectively target and kill mcr-positive E. coli both in vitro and in vivo. Overall, the work uncovers a novel adaptive mechanism underlying mcr persistence and provides a precise antimicrobial strategy to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Haijie Zhang
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhou225009China
| | - Xia Xiao
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Chenlong Wang
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Yurong Zhao
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Bo Chen
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Xinyuan Ji
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Lina Gu
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Jie Wang
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Zhiqiang Wang
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhou225009China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009China
| | - Yuan Liu
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhou225009China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009China
| |
Collapse
|
7
|
Garcias B, Monteith W, Vidal A, Aguirre L, Pascoe B, Kobras CM, Hitchings MD, Sheppard SK, Martin M, Darwich L. Characterization of antibiotic determinants and heavy metal resistance genes in Escherichia coli from pigs in Catalonia. Microb Genom 2025; 11:001371. [PMID: 40131333 PMCID: PMC11937225 DOI: 10.1099/mgen.0.001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/13/2025] [Indexed: 03/26/2025] Open
Abstract
More antibiotics are administered to livestock animals than to treat human infections. Industrialization, large animal densities and early weaning mean pigs are exposed to more antibiotics than any other livestock animal. Consequently, antimicrobial resistance (AMR) is common among commensal and pathogenic bacteria. Heavy metals (HMs) are also often used as feed additives for growth promotion and infection prevention alongside antimicrobials, and increased exposure to copper, zinc and cadmium can further encourage AMR through co-selection. In this study, we sequenced an archived collection of 112 Escherichia coli isolates from pigs in Catalonia using short- and long-read sequencing methods to detect AMR and HM tolerance genes. The most common AMR genes were mdfA (84.8%), aph(3″)-Ib (52.7%), bla TEM-1B (45.6%) and aph(6)-Id (45.6%). Genes relevant to public health, such as the extended-spectrum β-lactamases (15.4%), bla CTX-M type or bla SHV, or mobile colistin resistance (mcr) genes (13.4%), such as mcr-1, were also found. HM tolerance genes were present in almost every genome but were rarely located in plasmids, and, in most cases, AMR and HM tolerance genes were not located on the same plasmids. Of the genes predicted to increase tolerance to HMs, only those with activity to mercury were co-located on plasmids alongside other AMR determinants. However, mercury is rarely used in pig farming and does not support a scenario where AMR and HM genes are co-selected. Finally, we identified the exclusive association between mcr-4 and ColE10 plasmid, which may help target interventions to curtail its spread among pig Escherichia coli.
Collapse
Affiliation(s)
- Biel Garcias
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - William Monteith
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Anna Vidal
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Laia Aguirre
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Carolin M. Kobras
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Marga Martin
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| | - Laila Darwich
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain
| |
Collapse
|
8
|
Zhang Q. Structural insights into the advancements of mobile colistin resistance enzymes. Microbiol Res 2025; 291:127983. [PMID: 39612773 DOI: 10.1016/j.micres.2024.127983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
The plasmid-encoded mobile colistin resistance enzyme (MCR) is challenging the clinical efficacy of colistin as a last-resort antibiotic against multidrug-resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A, and its catalytic domain in the periplasm has been elucidated. To date, there are many works on the catalytic domain and function of this enzyme class. However, the roles of unreported soluble or inter-membrane domains remain undefined, which might cause an inaccurate or even incorrect understanding of substrate recognition and binding. In this review, MCR-1 is first compared and analyzed from the perspective of the full-length alpha-fold MCR-1. Specifically, some disputed issues, especially in its architecture and catalytic mechanism are discussed independently. Meanwhile, the structure-based insights into MCRs variants, their evolutions, and the balance between colistin-resistance and survival costs, are also critically analyzed. Importantly, by comparing it with the full-length MCR-1, several potential pockets for drug design have been re-identified. Finally, recent advancements in inhibitors targeting MCR-1 are also in-depth summarized. These details offer a new perspective on MCRs and serve as a valuable foundation for drug development.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong.
| |
Collapse
|
9
|
Schumann A, Gaballa A, Wiedmann M. The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0019323. [PMID: 39382292 DOI: 10.1128/mmbr.00193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Zhang Q. Bacteria carrying mobile colistin resistance genes and their control measures, an updated review. Arch Microbiol 2024; 206:462. [PMID: 39516398 DOI: 10.1007/s00203-024-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The plasmid encoded mobile colistin resistance (MCRs) enzyme poses a significant challenge to the clinical efficacy of colistin, which is frequently employed as a last resort antibiotic for treating infections caused by multidrug resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A of the outer membrane of gram-negative bacteria, thereby facilitating the acquired colistin resistance. This review aims to summarize and critically discuss recent advancements in the distribution and pathogenesis of mcr-positive bacteria, as well as the various control measures available for treating these infections. In addition, the ecology of mcr genes, colistin-resistance mechanism, co-existence with other antibiotic resistant genes, and their impact on clinical treatment are also analyzed to address the colistin resistance crisis. These insights provide a comprehensive perspective on MCRs and serve as a valuable reference for future therapeutic approaches to effectively combat mcr-positive bacterial infections.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
11
|
Garcias B, Flores MA, Fernández M, Monteith W, Pascoe B, Sheppard SK, Martín M, Cortey M, Darwich L. Global Variation in Escherichia coli mcr-1 Genes and Plasmids from Animal and Human Genomes Following Colistin Usage Restrictions in Livestock. Antibiotics (Basel) 2024; 13:759. [PMID: 39200059 PMCID: PMC11350921 DOI: 10.3390/antibiotics13080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance (AMR) is a significant global health threat, with multidrug-resistant (MDR) bacterial clones becoming a major concern. Polymyxins, especially colistin, have reemerged as last-resort treatments for MDR Gram-negative infections. However, colistin use in livestock has spread mobile colistin resistance (mcr) genes, notably mcr-1, impacting human health. In consequence, its livestock use was banned in 2017, originating a natural experiment to study bacterial adaptation. The aim of this work was to analyse the changes in the mcr-1 genetic background after colistin restriction across the world. This study analyses 3163 Escherichia coli genomes with the mcr-1 gene from human and livestock hosts, mainly from Asia (n = 2621) and Europe (n = 359). Genetic characterisation identifies IncI2 (40.4%), IncX4 (26.7%), and multidrug-resistant IncHI2 (18.8%) as the most common plasmids carrying mcr-1. There were differences in plasmids between continents, with IncX4 (56.6%) being the most common in Europe, while IncI2 (44.8%) was predominant in Asia. Promoter variants related to reduced fitness costs and ISApl1 showed a distinct pattern of association that appears to be associated with adaptation to colistin restriction, which differed between continents. Thus, after the colistin ban, Europe saw a shift to specialised mcr-1 plasmids as IncX4, while ISApl1 decreased in Asia due to changes in the prevalence of the distinct promoter variants. These analyses illustrate the evolution of mcr-1 adaptation following colistin use restrictions and the need for region-specific strategies against AMR following colistin restrictions.
Collapse
Affiliation(s)
- Biel Garcias
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Mayra Alejandra Flores
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Mercedes Fernández
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - William Monteith
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Samuel K. Sheppard
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Marga Martín
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Martí Cortey
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Laila Darwich
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
12
|
Liu Z, Zhao Q, Xu C, Song H. Compensatory evolution of chromosomes and plasmids counteracts the plasmid fitness cost. Ecol Evol 2024; 14:e70121. [PMID: 39170056 PMCID: PMC11336059 DOI: 10.1002/ece3.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Plasmids incur a fitness cost that has the potential to restrict the dissemination of resistance in bacterial pathogens. However, bacteria can overcome this disadvantage by compensatory evolution to maintain their resistance. Compensatory evolution can occur via both chromosomes and plasmids, but there are a few reviews regarding this topic, and most of them focus on plasmids. In this review, we provide a comprehensive overview of the currently reported mechanisms underlying compensatory evolution on chromosomes and plasmids, elucidate key targets regulating plasmid fitness cost, and discuss future challenges in this field. We found that compensatory evolution on chromosomes primarily arises from mutations in transcriptional regulatory factors, whereas compensatory evolution of plasmids predominantly involves three pathways: plasmid copy number regulation, conjugation transfer efficiency, and expression of antimicrobial resistance (AMR) genes. Furthermore, the importance of reasonable selection of research subjects and effective integration of diverse advanced research methods is also emphasized in our future study on compensatory mechanisms. Overall, this review establishes a theoretical framework that aims to provide innovative ideas for minimizing the emergence and spread of AMR genes.
Collapse
Affiliation(s)
- Ziyi Liu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Qiuyun Zhao
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Chenggang Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
13
|
Fernández-García M. Understanding the evolutionary potential of mcr-1: growing evidence on costless colistin resistance. THE LANCET. MICROBE 2024; 5:100888. [PMID: 38870983 DOI: 10.1016/s2666-5247(24)00111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Miguel Fernández-García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia and Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid 28660, Spain.
| |
Collapse
|
14
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
15
|
Cooper AL, Wong A, Tamber S, Blais BW, Carrillo CD. Analysis of Antimicrobial Resistance in Bacterial Pathogens Recovered from Food and Human Sources: Insights from 639,087 Bacterial Whole-Genome Sequences in the NCBI Pathogen Detection Database. Microorganisms 2024; 12:709. [PMID: 38674654 PMCID: PMC11051753 DOI: 10.3390/microorganisms12040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the role of foods in the emergence and spread of antimicrobial resistance necessitates the initial documentation of antibiotic resistance genes within bacterial species found in foods. Here, the NCBI Pathogen Detection database was used to query antimicrobial resistance gene prevalence in foodborne and human clinical bacterial isolates. Of the 1,843,630 sequence entries, 639,087 (34.7%) were assigned to foodborne or human clinical sources with 147,788 (23.14%) from food and 427,614 (76.88%) from humans. The majority of foodborne isolates were either Salmonella (47.88%), Campylobacter (23.03%), Escherichia (11.79%), or Listeria (11.3%), and the remaining 6% belonged to 20 other genera. Most foodborne isolates were from meat/poultry (95,251 or 64.45%), followed by multi-product mixed food sources (29,892 or 20.23%) and fish/seafood (6503 or 4.4%); however, the most prominent isolation source varied depending on the genus/species. Resistance gene carriage also varied depending on isolation source and genus/species. Of note, Klebsiella pneumoniae and Enterobacter spp. carried larger proportions of the quinolone resistance gene qnrS and some clinically relevant beta-lactam resistance genes in comparison to Salmonella and Escherichia coli. The prevalence of mec in S. aureus did not significantly differ between meat/poultry and multi-product sources relative to clinical sources, whereas this resistance was rare in isolates from dairy sources. The proportion of biocide resistance in Bacillus and Escherichia was significantly higher in clinical isolates compared to many foodborne sources but significantly lower in clinical Listeria compared to foodborne Listeria. This work exposes the gaps in current publicly available sequence data repositories, which are largely composed of clinical isolates and are biased towards specific highly abundant pathogenic species. We also highlight the importance of requiring and curating metadata on sequence submission to not only ensure correct information and data interpretation but also foster efficient analysis, sharing, and collaboration. To effectively monitor resistance carriage in food production, additional work on sequencing and characterizing AMR carriage in common commensal foodborne bacteria is critical.
Collapse
Affiliation(s)
- Ashley L. Cooper
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A0K9, Canada;
| | - Burton W. Blais
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Catherine D. Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON K1A 0C6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
16
|
Qi W, Jonker MJ, Katsavelis D, de Leeuw W, Wortel M, Ter Kuile BH. The Effect of the Stringent Response and Oxidative Stress Response on Fitness Costs of De Novo Acquisition of Antibiotic Resistance. Int J Mol Sci 2024; 25:2582. [PMID: 38473832 DOI: 10.3390/ijms25052582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Resistance evolution during exposure to non-lethal levels of antibiotics is influenced by various stress responses of bacteria which are known to affect growth rate. Here, we aim to disentangle how the interplay between resistance development and associated fitness costs is affected by stress responses. We performed de novo resistance evolution of wild-type strains and single-gene knockout strains in stress response pathways using four different antibiotics. Throughout resistance development, the increase in minimum inhibitory concentration (MIC) is accompanied by a gradual decrease in growth rate, most pronounced in amoxicillin or kanamycin. By measuring biomass yield on glucose and whole-genome sequences at intermediate and final time points, we identified two patterns of how the stress responses affect the correlation between MIC and growth rate. First, single-gene knockout E. coli strains associated with reactive oxygen species (ROS) acquire resistance faster, and mutations related to antibiotic permeability and pumping out occur earlier. This increases the metabolic burden of resistant bacteria. Second, the ΔrelA knockout strain, which has reduced (p)ppGpp synthesis, is restricted in its stringent response, leading to diminished growth rates. The ROS-related mutagenesis and the stringent response increase metabolic burdens during resistance development, causing lower growth rates and higher fitness costs.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Drosos Katsavelis
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike Wortel
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
17
|
Garcias B, Martin M, Darwich L. Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Diarrheic and Healthy Weaned Pigs in Catalonia. Animals (Basel) 2024; 14:487. [PMID: 38338129 PMCID: PMC10854747 DOI: 10.3390/ani14030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Postweaning diarrhea (PWD) is a multifactorial concern in the swine industry that leads to high antibiotic consumption, usually without testing susceptibility, increasing the risk of the selection of Escherichia coli-resistant strains. In this study, 251 E. coli strains isolated from fecal samples of diarrheic (n = 148) and apparently healthy piglets (n = 103) in farms in Catalonia were tested against their susceptibility to fourteen different antimicrobials. The phenotypic antimicrobial resistance (AMR) testing revealed high levels of AMR, with 41.4% of the isolates presenting a multidrug-resistant (MDR) profile. More specifically, resistance to class D (prudence) antimicrobials such as erythromycin (99.6%), amoxicillin (95.2%), streptomycin (91.6%), tetracycline (88.8%), lincospectin (64.5%), and sulfamethoxazole/trimethoprim (60%) was very high, as well as to class C (caution) antimicrobials such as florfenicol (45%). A special concern was observed for antimicrobial category B (restrict), like quinolones and colistin, that both presented a high rate of resistance. Colistin use was substantially reduced in Spain, but resistance is still present in weaned pigs, presenting a MIC90 of 4 μg/mL. This suggests that reducing antibiotic use is not enough to eliminate this AMR. Finally, it was found that piglets suffering diarrhea were more commonly carriers of MDR strains than the healthy ones (49.3% vs. 35%, p = 0.031). Therefore, given the high rates of resistance to the most commonly used antimicrobials, especially in diseased pigs, a new non-antibiotic-based approach should be implemented for the management of PWD.
Collapse
Affiliation(s)
| | - Marga Martin
- Department Sanitat i Anatomia Animals, Veterinary School, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Spain;
| | - Laila Darwich
- Department Sanitat i Anatomia Animals, Veterinary School, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Spain;
| |
Collapse
|
18
|
Diebold PJ, Rhee MW, Shi Q, Trung NV, Umrani F, Ahmed S, Kulkarni V, Deshpande P, Alexander M, Thi Hoa N, Christakis NA, Iqbal NT, Ali SA, Mathad JS, Brito IL. Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide. Nat Commun 2023; 14:7366. [PMID: 37963868 PMCID: PMC10645880 DOI: 10.1038/s41467-023-42998-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
The acquisition of antimicrobial resistance (AR) genes has rendered important pathogens nearly or fully unresponsive to antibiotics. It has been suggested that pathogens acquire AR traits from the gut microbiota, which collectively serve as a global reservoir for AR genes conferring resistance to all classes of antibiotics. However, only a subset of AR genes confers resistance to clinically relevant antibiotics, and, although these AR gene profiles are well-characterized for common pathogens, less is known about their taxonomic associations and transfer potential within diverse members of the gut microbiota. We examined a collection of 14,850 human metagenomes and 1666 environmental metagenomes from 33 countries, in addition to nearly 600,000 isolate genomes, to gain insight into the global prevalence and taxonomic range of clinically relevant AR genes. We find that several of the most concerning AR genes, such as those encoding the cephalosporinase CTX-M and carbapenemases KPC, IMP, NDM, and VIM, remain taxonomically restricted to Proteobacteria. Even cfiA, the most common carbapenemase gene within the human gut microbiome, remains tightly restricted to Bacteroides, despite being found on a mobilizable plasmid. We confirmed these findings in gut microbiome samples from India, Honduras, Pakistan, and Vietnam, using a high-sensitivity single-cell fusion PCR approach. Focusing on a set of genes encoding carbapenemases and cephalosporinases, thus far restricted to Bacteroides species, we find that few mutations are required for efficacy in a different phylum, raising the question of why these genes have not spread more widely. Overall, these data suggest that globally prevalent, clinically relevant AR genes have not yet established themselves across diverse commensal gut microbiota.
Collapse
Affiliation(s)
- Peter J Diebold
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew W Rhee
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nguyen Vinh Trung
- Oxford University Clinical Research Unit (OUCRU) in Ho Chi Minh City, Ho Chi Minh city, Viet Nam
| | | | | | - Vandana Kulkarni
- Johns Hopkins University Clinical Trials Unit, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | - Prasad Deshpande
- Johns Hopkins University Clinical Trials Unit, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | - Mallika Alexander
- Johns Hopkins University Clinical Trials Unit, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit (OUCRU) in Ho Chi Minh City, Ho Chi Minh city, Viet Nam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Microbiology Department and Center for Tropical Medicine Research, Ngoc Thach University of Medicine, Ho Chi Minh city, Vietnam
| | | | | | | | | | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|