1
|
Tu Z, Ma Y, Shang H, Zhao S, Xue B, Qu Y, Chen J, Li Y, Hu J, Gao F, Xu H, Xu X, Zhang X. Endocannabinoid interference blocks post-global cerebral ischemia depression through prefrontal cortico-amygdala projections. Neuropsychopharmacology 2025; 50:1063-1074. [PMID: 39582030 DOI: 10.1038/s41386-024-02029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Up to 45% of patients surviving from transient global cerebral ischemia (GCI) after cardiac arrest develop post-global cerebral ischemia depression (PGCID), but how to treat PGCID is clinically unknown. Here we find that cannabinoid type-1 receptor (CB1R) antagonists, CB1R knockout and endocannabinoid (eCB) synthesis inhibition block acute stress-induced PGCID. Application of acute stress to GCI mice increases CB1R activity from ventromedial prefrontal cortical (vmPFC) terminals synapsing with the basolateral amygdala (BLA) neurons, indicating the involvement of increased vmPFC-BLA synaptic eCB signaling in PGCID induction. This idea is supported by findings that optogenetic activation of CB1Rs in vmPFC-BLA projections mimics stress effects to induce PGCID, which is blocked by knock-down of eCB biosynthesis enzyme genes in vmPFC-BLA synapses. Interestingly, GCI mice show decreased mRNA expression of eCB degradation enzymes in vmPFCs without significant changes on mRNA expression of eCB biosynthesis and degradation enzymes in BLA cells. Thus, over-expression of eCB degradation enzymes in vmPFC cells innervating BLA neurons or activation of vmPFC-BLA projections blocks stress effects to induce PGCID. Our findings suggest that decreased eCB degradation and subsequent stress-increased eCB signaling in vmPFC-BLA circuits participate in the mechanism of PGCID, which can be treated clinically by eCB signaling interference systemically or in vmPFC-BLA circuits.
Collapse
Affiliation(s)
- Zhaoyuan Tu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Function and Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yao Ma
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Function and Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Huiping Shang
- Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Sha Zhao
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bao Xue
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Qu
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiangfan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fang Gao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Huamin Xu
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xufeng Xu
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China.
- School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Xia Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.
- Institute of Brain Function and Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Chinese Institute for Brain Research (CIBR), Beijing, China.
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Fernandes-Henriques C, Guetta Y, Sclar MG, Zhang R, Miura Y, Surrence KR, Friedman AK, Likhtik E. Infralimbic Projections to the Substantia Innominata-Ventral Pallidum Constrain Defensive Behavior during Extinction Learning. J Neurosci 2025; 45:e1001242025. [PMID: 40262898 PMCID: PMC12121716 DOI: 10.1523/jneurosci.1001-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Fear extinction is critical for decreasing fear responses to a stimulus that is no longer threatening. While it is known that the infralimbic (IL) region of the medial prefrontal cortex mediates retrieval of an extinction memory through projections to the basolateral amygdala (BLA), IL pathways contributing to extinction learning are not well understood. Given the dense projection from the IL to the substantia innominata-ventral pallidum (SI/VP), an area that processes aversive and appetitive cues, we compared how the IL→SI/VP functions in extinction compared with the IL→BLA pathway in male mice. Using retrograde tracing, we demonstrate that IL projections to the SI/VP originate from superficial [Layer (L)2/3] and deep cortical layers (L5) and that they are denser than IL projections to the BLA. Next, combining retrograde tracing with labeling for the immediate early gene cFos, we show increased activity of L5 IL→SI/VP output during extinction learning and increased activity of L2/3 IL→BLA output during extinction retrieval. Then, using in vitro recordings, we demonstrate that neurons in the IL→SI/VP pathway are more excitable during extinction learning than retrieval. Finally, using optogenetics, we inactivate the IL→SI/VP pathway and show that this increases defensive freezing during extinction learning and re-extinction, without affecting memory. Taken together, we demonstrate that the IL→SI/VP pathway is active during extinction learning, when it constrains the defensive freezing response. We propose that the IL acts as a switchboard operator, increasing IL L5 communication with the SI/VP during extinction learning and IL L2/3 communication with the BLA during extinction retrieval.
Collapse
Affiliation(s)
- Carolina Fernandes-Henriques
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Yuval Guetta
- Psychology, Hunter College, CUNY, New York 10065
| | - Mia G Sclar
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Rebecca Zhang
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Yuka Miura
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | | | - Allyson K Friedman
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Ekaterina Likhtik
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| |
Collapse
|
3
|
Ubri CE, Farrugia AM, Cohen AS. Mild Traumatic Brain Injury Impairs Fear Extinction and Network Excitability in the Infralimbic Cortex. J Neurotrauma 2025. [PMID: 40401451 DOI: 10.1089/neu.2025.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with mild TBI (concussions) representing over 80% of cases. Although often considered benign, mild TBI is associated with persistent neuropsychiatric conditions, including post-traumatic stress disorder, anxiety, and depression. A hallmark of these conditions is impaired fear extinction (FE), the process by which learned fear responses are inhibited in safe contexts. This dysfunction contributes to maladaptive fear expression and is linked to altered neurocircuitry, particularly in the infralimbic cortex (IL), a key region in FE. Despite extensive evidence of impaired FE in patients with mild TBI and animal models, the specific mechanisms underlying this deficit remain poorly understood. This study aimed to address this gap by combining cued-FE behavior, local field potential recordings, and whole-cell patch-clamp techniques to investigate how mild TBI affects IL network activity and excitability in a mouse model of TBI. Our results demonstrate that mild lateral fluid percussion injury significantly impairs FE memory, as evidenced by an elevated cued-fear response during extinction testing 10 days post-injury. Field potential recordings revealed decreased activation of the IL network in both layers II/III and V, which was consistent with the observed behavioral deficits. Further analysis of synaptic physiology revealed an imbalance in excitatory and inhibitory neurotransmission (E/I imbalance) in the IL, characterized by reduced excitatory input and enhanced inhibitory input to neurons in both layers. Moreover, intrinsic excitability was altered in IL neurons after mild TBI. This study provides novel insights into how mild TBI disrupts the neurocircuitry underlying FE, specifically by suppressing IL excitability. These results highlight the importance of understanding the mechanistic disruptions in IL activity for developing therapeutic strategies to address fear-based disorders in patients with mild TBI.
Collapse
Affiliation(s)
- Catherine E Ubri
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony M Farrugia
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Akiva S Cohen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Li Y, Pan Y, Zhao D. Understanding the neurobiology and computational mechanisms of social conformity: implications for psychiatric disorders. Biol Psychiatry 2025:S0006-3223(25)01195-3. [PMID: 40409524 DOI: 10.1016/j.biopsych.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/17/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Social conformity and psychiatric disorders share overlapping brain regions and neural pathways, arousing our interest in uncovering their potentially shared underlying neural and computational mechanisms. Critically, the dynamics of group behavior may either mitigate or exacerbate mental health conditions, highlighting the need to bridge social neuroscience and psychiatry. Our work examines how aberrant neurobiological circuits and computations influence social conformity. We propose a hierarchical computational framework, based on dynamical systems and active inference, to facilitate the interpretation of the multi-layered interplay among processes that drive social conformity. We underscore the significant implications of this hierarchical computational framework for guiding future research on psychiatry, particularly with respect to the clinical translation of interventions such as targeted pharmacotherapy and neurostimulation techniques. The interdisciplinary efforts hold the potential to propel the fields of social and clinical neuroscience forward, fostering the emergence of more efficacious and individualized therapeutic approaches tailored to psychiatric disorders characterized by aberrant social behaviors.
Collapse
Affiliation(s)
- Yutong Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Zanni G, van Dijk MT, Cagliostro MC, Sepulveda P, Pini N, Rose AL, Kesin AL, Lugo-Candelas C, Goncalves PD, MacKay AS, Iigaya K, Kulkarni P, Ferris CF, Weissman MM, Talati A, Ansorge MS, Gingrich JA. Perinatal SSRI exposure impacts innate fear circuit activation and behavior in mice and humans. Nat Commun 2025; 16:4002. [PMID: 40328752 PMCID: PMC12055977 DOI: 10.1038/s41467-025-58785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Before assuming its role in the mature brain, serotonin modulates early brain development across phylogenetically diverse species. In mice and humans, early-life SSRI exposure alters the offspring's brain structure and is associated with anxiety and depression-related behaviors beginning in puberty. However, the impact of early-life SSRI exposure on brain circuit function is unknown. To address this question, we examined how developmental SSRI exposure changes fear-related brain activation and behavior in mice and humans. SSRI-exposed mice showed increased defense responses to a predator odor, and stronger fMRI amygdala and extended fear-circuit activation. Likewise, adolescents exposed to SSRIs in utero exhibited higher anxiety and depression symptoms than unexposed adolescents and also had greater activation of the amygdala and other limbic structures when processing fearful faces. These findings demonstrate that increases in anxiety and fear-related behaviors as well as brain circuit activation following developmental SSRI exposure are conserved between mice and humans. These findings have potential implications for the clinical use of SSRIs during human pregnancy and for designing interventions that protect fetal brain development.
Collapse
Affiliation(s)
- Giulia Zanni
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Milenna T van Dijk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Martha Caffrey Cagliostro
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Pradyumna Sepulveda
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nicolò Pini
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Ariel L Rose
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Alexander L Kesin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Claudia Lugo-Candelas
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Priscila Dib Goncalves
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexandra S MacKay
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Kiyohito Iigaya
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Columbia Data Science Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Zuckerman Institute for Mind Brain, and Behavior, Columbia University, New York, NY, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Myrna M Weissman
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ardesheer Talati
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Mark S Ansorge
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| | - Jay A Gingrich
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
6
|
Cui W, Shen C, Xiong WC, Mei L. Prefrontal ErbB4-positive interneurons for avoidance. Cell Rep 2025; 44:115628. [PMID: 40310724 DOI: 10.1016/j.celrep.2025.115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/12/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025] Open
Abstract
Avoidance is a major behavior for survival. The prefrontal cortex (PFC) is known to be involved in approach-avoidance decision-making, but how PFC interneurons (INs) collaborate with excitatory neurons in this process remains unclear. Our research reveals that ErbB4+ interneurons (B4INs) increased calcium transients in avoidance behaviors of freely moving mice. B4IN inhibition or activation is required for and sufficient to induce avoidance behaviors. B4INs receive monosynaptic inputs from glutamatergic neurons in the basal forebrain (BF), whose activation and suppression induce and inhibit avoidance, respectively. By registering target neurons of B4INs, we show that most avoidance-associated neurons are under the inhibitory control of B4INs, suggesting that B4INs act by suppressing excitatory neurons to mediate avoidance behaviors. Finally, pharmacological inhibition of ErbB4 reduces avoidance behaviors, suggesting that B4IN activity depends on ErbB4 kinase activity. These results reveal a causal role for B4INs in avoidance behaviors.
Collapse
Affiliation(s)
- Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Chinese Institutes for Medical Research, Beijing, China; Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
7
|
Rajagopal SK, Polk TA. A neurally constrained computational model of context-dependent fear extinction recall and relapse. Commun Biol 2025; 8:668. [PMID: 40287569 PMCID: PMC12033332 DOI: 10.1038/s42003-025-08107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Exposure therapy, a standard treatment for anxiety disorders, relies on fear extinction. However, extinction recall is often limited to the spatial and temporal context in which extinction is learned, leading to fear relapse in new settings or after delays. Animal studies offer insights into fear extinction in humans. Computational models that integrate these findings into a neurally grounded framework, while generating testable hypotheses for humans, can bridge this gap. Current models either focus on neuron-level activity, limiting their scope, or abstract away entirely from neural mechanisms. They also often overlook the distinct contributions of cue and context in fear extinction and recall. To address these gaps, we present ConFER, a neurally constrained model of fear extinction, recall, and relapse. ConFER integrates findings from the neural fear circuit, modeling distinct pathways for cue and context processing. These pathways independently activate positive and/or negative memory engrams in the basolateral amygdala, competing to determine the fear response. ConFER simulates fear renewal and spontaneous recovery across context combinations, while generating novel, testable predictions. Notably, it predicts counterconditioning may better prevent relapse than extinction in new contexts or after delays. By mechanistically modeling fear relapse, ConFER offers insights to improve exposure therapy outcomes.
Collapse
|
8
|
Lu P, Chen D, Xia W, Chen S, Tan Z, Zhou W, Wang L. Theta oscillations between the ventromedial prefrontal cortex and amygdala support dynamic representations of threat and safety. Neuroimage 2025; 310:121164. [PMID: 40118233 DOI: 10.1016/j.neuroimage.2025.121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025] Open
Abstract
The amygdala exhibits distinct different activity patterns to threat and safety stimuli. Animal studies have demonstrated that the fear (i.e., threat) and extinction (i.e., safety) memory are encoded by the amygdala and its interaction with the ventromedial prefrontal cortex (vmPFC). Recent studies in both animals and humans suggest that the inter-regional interaction between amygdala and vmPFC can be supported by theta oscillations during fear processing. However, the mechanism by which the human vmPFC-amygdala pathway dynamically supports neural representations of the same stimulus remains elusive, as it alternatively reflects threat and safety situations. To investigate this phenomenon, we conducted intracranial EEG recordings in drug-resistant epilepsy patients (n = 8) with implanted depth electrodes who performed a fear conditioning and extinction task. This task was designed with a fixed structure whereby specific CS+ stimulus could be either safe (never paired with US) or threatening (possibly paired with US) based on an implicit rule during fear acquisition. Our findings showed that the stimulus embodying potential threat information was accompanied by increased theta activities in amygdala during both fear acquisition and early extinction. Furthermore, the learning of safety information was associated with enhanced theta-related direction from the vmPFC to the amygdala. This study provided directly electrophysiological evidence supporting the dynamic oscillatory modulation of threat and safety representations in the human amygdala-vmPFC circuit, and suggests that amygdala safety processing depends on theta inputs from the vmPFC in both fear acquisition and extinction.
Collapse
Affiliation(s)
- Pingping Lu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Chen
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenran Xia
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Si Chen
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Tan
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Zhou
- Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Liang Wang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China..
| |
Collapse
|
9
|
Subramanian R, Bauman A, Carpenter O, Cho C, Coste G, Dam A, Drake K, Ehnstrom S, Fitzgerald N, Jenkins A, Koolpe H, Liu R, Paserman T, Petersen D, Chavez DS, Rozental S, Thompson H, Tsukuda T, Zweig S, Gall M, Zupan B, Bergstrom H. An infralimbic cortex engram encoded during learning attenuates fear generalization. J Neurosci 2025; 45:e2120242025. [PMID: 40147934 PMCID: PMC12060607 DOI: 10.1523/jneurosci.2120-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Generalization allows previous experience to adaptively guide behavior when conditions change. The infralimbic (IL) subregion of the ventromedial prefrontal cortex plays a known role in generalization processes, although mechanisms remain unclear. A basic physical unit of memory storage and expression in the brain is a sparse, distributed group of neurons known as an engram. Here, we set out to determine whether an engram established during learning contributes to generalized responses in IL. Generalization was tested in male and female mice by presenting a novel, ambiguous, tone generalization stimulus following Pavlovian defensive (fear) conditioning. The first experiment was designed to test a global role for IL in generalization using chemogenetic manipulations. Results show IL regulates defensive behavior in response to ambiguous stimuli. IL silencing led to a switch in defensive state, from vigilant scanning to generalized freezing, while IL stimulation reduced freezing in favor of scanning. Leveraging activity-dependent "tagging" technology (ArcCreERT2 x eYFP system), an engram, preferentially located in IL Layer 2/3, was associated with the generalization stimulus. Remarkably, in the identical discrete location, fewer reactivated neurons were associated with the generalization stimulus at the remote timepoint (30 days) following learning. When an IL engram established during learning was selectively chemogenetically silenced, freezing increased. Conversely, IL engram stimulation reduced freezing, suggesting attenuated fear generalization. Overall, these data identify a crucial role for IL in suppressing generalized conditioned responses. Further, an IL engram formed during learning functions to later attenuate a conditioned response in the presence of ambiguous threat stimuli.Significance statement Generalization refers to the ability for organisms to use previous experience to guide behavior when environmental conditions change. Despite the immense importance of generalization in adaptive behavior, the precise brain mechanisms remain unknown. Here we identified a small population of neurons, known as an engram, in a discrete region of the frontal cortex that was associated with the expression of generalization related to a threatening situation. When these cells were turned off, generalization increased. When they were turned on, generalization decreased. Considering that over-generalization of threatening stimuli is a known fundamental dimension of both anxiety and post-traumatic stress disorders, these findings have implications not only for our understanding of intrinsic generalization processes but also highly prevalent clinical disorders.
Collapse
Affiliation(s)
- Rajani Subramanian
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Avery Bauman
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Olivia Carpenter
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Chris Cho
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Gabrielle Coste
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Ahona Dam
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Kasey Drake
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Sara Ehnstrom
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Naomi Fitzgerald
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Abigail Jenkins
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Hannah Koolpe
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Runqi Liu
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Tamar Paserman
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - David Petersen
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Diego Scala Chavez
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Stefano Rozental
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Hannah Thompson
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Tyler Tsukuda
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Sasha Zweig
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Megan Gall
- Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12603
| | - Bojana Zupan
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| | - Hadley Bergstrom
- Departments of Psychological Science, Vassar College, Poughkeepsie, New York 12603
| |
Collapse
|
10
|
Wills LJ, Schwartz B, McGuffin B, Gass JT. Combined stress and alcohol exposure: Synergistic effects on alcohol-seeking behaviors and neuroinflammation. J Pharmacol Exp Ther 2025; 392:103386. [PMID: 39908932 DOI: 10.1016/j.jpet.2025.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Posttraumatic stress disorder and alcohol use disorder are frequently co-occurring conditions that can create a synergistic effect, worsening symptoms of both disorders. This heightened comorbidity suggests a shared pathological basis rooted in maladaptive learning process that amplifies drug- and fear-related behaviors. The present study investigates the combined effects of stress and chronic alcohol exposure on alcohol-seeking behaviors and neuroinflammation in male and female rats. Additionally, we investigate the potential of metabotropic glutamate receptor type 5 (mGlu5) modulation as a therapeutic strategy for this co-occurring condition. Adult Wistar rats received restraint stress (Stress), chronic intermittent ethanol (CIE) vapor inhalation, both (Stress + CIE), or no exposure (Control). We assessed ethanol self-administration, extinction learning, reinstatement of alcohol-seeking behavior, and tumor necrosis factor-⍺ protein expression in the infralimbic (IfL) and prelimbic subregions of the prefrontal cortex. Additionally, we examined the effects of 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), a mGlu5 positive allosteric modulator, on these outcomes. Stress + CIE exposure significantly increased ethanol self-administration, impaired extinction learning, and heightened reinstatement compared with all other groups. Interestingly, CDPPB treatment improved extinction learning and reduced reinstatement in males but not females. Furthermore, Stress + CIE exposure elevated tumor necrosis factor-⍺ levels specifically in the IfL, and CDPPB normalized this effect in males only. The current study demonstrates a synergistic effect of stress and alcohol exposure on alcohol-seeking behaviors and suggests a potential role for neuroinflammation in the IfL. Our findings also highlight sex-specific therapeutic strategies targeting mGlu5 signaling to prevent relapse in individuals with comorbid posttraumatic stress disorder and alcohol use disorder. SIGNIFICANCE STATEMENT: This research demonstrates that combined stress and alcohol exposure worsen alcohol-seeking behavior in rats, potentially via neuroinflammation in the infralimbic cortex, a region known to be involved in extinction learning. Notably, metabotropic glutamate receptor type 5 modulation was able to prevent alcohol-seeking behaviors and inflammation in a sex-dependent manner. These findings pave the way for developing personalized treatments to prevent relapse in individuals with co-occurring posttraumatic stress disorder/alcohol use disorder.
Collapse
Affiliation(s)
- L J Wills
- Department of Biomedical Sciences & Mountain Home VA Medical Center, East Tennessee State University, Mountain Home, Tennessee.
| | - B Schwartz
- Department of Biomedical Sciences & Mountain Home VA Medical Center, East Tennessee State University, Mountain Home, Tennessee
| | - B McGuffin
- Department of Biomedical Sciences & Mountain Home VA Medical Center, East Tennessee State University, Mountain Home, Tennessee
| | - J T Gass
- Department of Biomedical Sciences & Mountain Home VA Medical Center, East Tennessee State University, Mountain Home, Tennessee
| |
Collapse
|
11
|
Rahaei N, Buynack LM, Kires L, Movasseghi Y, Chapman CA. Progesterone and allopregnanolone facilitate excitatory synaptic transmission in the infralimbic cortex via activation of membrane progesterone receptors. Neuroscience 2025; 567:9-17. [PMID: 39722289 DOI: 10.1016/j.neuroscience.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Estrogens and progesterone can have rapid effects on neuronal function and can modify the use of spatial navigation strategies dependent upon the prefrontal cortex, striatum, and hippocampus. Here, we assessed the effects of 17β-estradiol (E2), progesterone, and its metabolite allopregnanolone, on evoked excitatory postsynaptic potentials in the infralimbic region of the female rat prefrontal cortex. Field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of layer I were first characterized by recording responses at multiple depths between the cortical surface and the underlying white matter. Current source density analysis showed that the short-latency negative component was generated by activation of synaptic currents within layer I, and that putative polysynaptic responses were generated in layers III to V. The amplitude of evoked field EPSPs in layer I was not significantly affected by 20 min application of 17β-estradiol (10 nM), but both 100 nM progesterone and 1 µM allopregnanolone caused lasting increases in field EPSP amplitude. The effects of progesterone were not blocked by the nuclear progesterone receptor antagonist RU486 (1 µM). Both progesterone and allopregnanolone are known to activate membrane progesterone receptors, and we found that the membrane progesterone receptor agonist Org OD 02-0 facilitated EPSPs, and also occluded further increases induced by either progesterone or allopregnanolone. These results provide evidence that both progesterone and allopregnanolone facilitate synaptic responses in layer I of the infralimbic cortex by activating membrane progesterone receptors.
Collapse
Affiliation(s)
- Nima Rahaei
- Department of Psychology, Concordia University, Montreal, Canada
| | - Lauren M Buynack
- Department of Psychology, Concordia University, Montreal, Canada
| | - Lukas Kires
- Department of Psychology, Concordia University, Montreal, Canada
| | | | - C Andrew Chapman
- Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
12
|
Cao M, Zhu S, Tang E, Xue C, Li K, Yu H, Zhong T, Li T, Chen H, Deng W. Neural correlates of emotional processing in trauma-related narratives. Psychol Med 2025; 55:e33. [PMID: 39930808 PMCID: PMC12017354 DOI: 10.1017/s0033291724003398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 04/25/2025]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a mental health condition caused by the dysregulation or overgeneralization of memories related to traumatic events. Investigating the interplay between explicit narrative and implicit emotional memory contributes to a better understanding of the mechanisms underlying PTSD. METHODS This case-control study focused on two groups: unmedicated patients with PTSD and a trauma-exposed control (TEC) group who did not develop PTSD. Experiments included real-time measurements of blood oxygenation changes using functional near-infrared spectroscopy during trauma narration and processing of emotional and linguistic data through natural language processing (NLP). RESULTS Real-time fNIRS monitoring showed that PTSD patients (mean [SD] Oxy-Hb activation, 0.153 [0.084], 95% CI 0.124 to 0.182) had significantly higher brain activity in the left anterior medial prefrontal cortex (L-amPFC) within 10 s after expressing negative emotional words compared with the control group (0.047 [0.026], 95% CI 0.038 to 0.056; p < 0.001). In the control group, there was a significant time-series correlation between the use of negative emotional memory words and activation of the L-amPFC (latency 3.82 s, slope = 0.0067, peak value = 0.184, difference = 0.273; Spearman's r = 0.727, p < 0.001). In contrast, the left anterior cingulate prefrontal cortex of PTSD patients remained in a state of high activation (peak value = 0.153, difference = 0.084) with no apparent latency period. CONCLUSIONS PTSD patients display overactivity in pathways associated with rapid emotional responses and diminished regulation in cognitive processing areas. Interventions targeting these pathways may alleviate symptoms of PTSD.
Collapse
Affiliation(s)
- Minne Cao
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shengnan Zhu
- Department of Psychology and Behavioral Sciences, Zhejiang University, China
| | - Enze Tang
- Department of Psychology and Behavioral Sciences, Zhejiang University, China
| | - Chuang Xue
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kun Li
- Shandong Daizhuang Hospital, Jining, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Zhong
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain–Machine Integration, State Key Laboratory of Brain–Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain–Machine Integration, State Key Laboratory of Brain–Machine Intelligence, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Xin Q, Zheng D, Zhou T, Xu J, Ni Z, Hu H. Deconstructing the neural circuit underlying social hierarchy in mice. Neuron 2025; 113:444-459.e7. [PMID: 39662472 DOI: 10.1016/j.neuron.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Social competition determines hierarchical social status, which profoundly influences animals' behavior and health. The dorsomedial prefrontal cortex (dmPFC) plays a fundamental role in regulating social competitions, but it was unclear how the dmPFC orchestrates win- and lose-related behaviors through its downstream neural circuits. Here, through whole-brain c-Fos mapping, fiber photometry, and optogenetics- or chemogenetics-based manipulations, we identified anatomically segregated win- and lose-related neural pathways downstream of the dmPFC in mice. Specifically, layer 5 neurons projecting to the dorsal raphe nucleus (DRN) and periaqueductal gray (PAG) promote social competition, whereas layer 2/3 neurons projecting to the anterior basolateral amygdala (aBLA) suppress competition. These two neuronal populations show opposite changes in activity during effortful pushes in competition. In vivo and in vitro electrophysiology recordings revealed inhibition from the lose-related pathway to the win-related pathway. Such antagonistic interplay may represent a central principle in how the mPFC orchestrates complex behaviors through top-down control.
Collapse
Affiliation(s)
- Qiuhong Xin
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Diyang Zheng
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Tingting Zhou
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiayi Xu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China.
| |
Collapse
|
14
|
Wallsten B, Gligor AH, Gonzalez AE, Ramos JD, Baratta MV, Sorg BA. Response of parvalbumin interneurons and perineuronal nets in rat medial prefrontal cortex and lateral amygdala to stressor controllability. Brain Res 2025; 1848:149351. [PMID: 39592089 DOI: 10.1016/j.brainres.2024.149351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Behavioral control over a stressor limits the impact of the stressor being experienced and produces enduring changes that reduce the effects of future stressors. In rats, these stress-buffering effects of control (escapable stress, ES) require activation of the medial prefrontal cortex (mPFC) and prevent the typical amygdala-dependent behavioral outcomes of uncontrollable stress (inescapable stress, IS). Parvalbumin (PV) interneurons regulate output of excitatory neurons, and most mPFC PV neurons are surrounded by perineuronal nets (PNNs), which regulate firing. We exposed male rats to a single session of ES, IS, or no stress and measured c-Fos expression within PV/PNN-containing cells in mPFC subregions (prelimbic, PL; infralimbic, IL) and in the lateral amygdala. We also measured the number and intensity of PNNs. Within PL and IL PV/PNN cells, both ES and IS increased c-Fos intensity in PV/PNN, non-PV, and non-PNN cells. Within the IL, only ES increased the number of c-Fos-expressing PV/PNN-labeled cells. In the lateral amygdala, only ES increased c-Fos intensity within PV cells and PV/PNN cells. Thus, PV neurons in the IL and lateral amygdala may represent an important substrate by which behavioral control buffers against the amygdala-dependent behavioral outcomes typically observed after uncontrollable stress.
Collapse
Affiliation(s)
- Brittani Wallsten
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States
| | - Abigail H Gligor
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States
| | - Angela E Gonzalez
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States; Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Program in Neuroscience, Washington State University, Vancouver, WA 98686, United States
| | - Jonathan D Ramos
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, United States
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States; Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Program in Neuroscience, Washington State University, Vancouver, WA 98686, United States.
| |
Collapse
|
15
|
Tian X, Russo SJ, Li L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci Bull 2025; 41:272-288. [PMID: 39120643 PMCID: PMC11794861 DOI: 10.1007/s12264-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024] Open
Abstract
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Long Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Lipshutz A, Saltz V, Anderson KR, Manganaro A, Dumitriu D. A localized tracing technique to explore intra-amygdala functional and structural correlates of individual variability in behavioral response. Front Mol Neurosci 2025; 18:1347539. [PMID: 39916773 PMCID: PMC11794228 DOI: 10.3389/fnmol.2025.1347539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction The neurobiological basis for individual variability in behavioral responses to stimuli remains poorly understood. Probing the neural substrates that underlie individual variability in stress responses may open the door for preventive approaches that use biological markers to identify at-risk populations. New developments of viral neuronal tracing tools have led to a recent increase in studies on long range circuits and their functional role in stress responses and social behavior. While these studies are necessary to untangle largescale connectivity, most social behaviors are mediated and fine-tuned by local subregional circuitry. Methods In order to probe this local, interregional connectivity, we present a new combination of a neuronal tracing system with immediate early gene immunohistochemistry for examining structural and functional connectivity within the same animal. Specifically, we combine a retrograde transsynaptic rabies tracing system with cFos colocalization immediately after an acute stressor to elucidate local structural and stress-activated connectivity within the amygdala complex in female and male mice. Results and discussion We show how specific structural and functional connections can predict individual variability along a spectrum of social approach/avoidance following acute social defeat stress. We demonstrate how our robust method can be used to elucidate structural and functional differences in local connectivity that mediate individual variability in behavioral response.
Collapse
Affiliation(s)
- Allie Lipshutz
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Victoria Saltz
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
- Zuckerman Institute, Columbia University, New York, NY, United States
| | - Kristin R. Anderson
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Alessia Manganaro
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - Dani Dumitriu
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University, New York, NY, United States
- Division for Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
- Zuckerman Institute, Columbia University, New York, NY, United States
| |
Collapse
|
17
|
Judd JM, Peay DN, Kim JL, Smith EA, Donnay ME, Miller J, Klein JP, Nagy EK, Acuña AM, Olive MF, Conrad CD. Inhibition of prefrontal glutamatergic neuron activity during the recovery period following chronic stress disrupts fear memory in male rats: potential role of the infralimbic cortex. Learn Mem 2025; 32:a053957. [PMID: 39824647 PMCID: PMC11801481 DOI: 10.1101/lm.053957.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/14/2024] [Indexed: 01/20/2025]
Abstract
Chronic stress typically leads to deficits in fear extinction. However, when a delay occurs from the end of chronic stress and the start of fear conditioning (a "recovery"), rats show improved context-cue discrimination, compared to recently stressed rats or nonstressed rats. The infralimbic cortex (IL) is important for fear extinction and undergoes neuronal remodeling after chronic stress ends, which could drive improved context-cue discrimination. Here, glutamatergic IL neurons of Sprague-Dawley male rats were targeted for inhibition using inhibitory designer receptors exclusively activated by designer drugs (DREADDs) and daily injections of clozapine N-oxide (CNO) during a 21-day recovery period from chronic stress. Histological verification confirmed DREADDs in the IL with some spread to nearby medial prefrontal cortex (PFC) regions. CNO administration was then discontinued before fear conditioning started and behavioral testing thereafter so that behavioral assessments occurred without neuronal inhibition. Fear conditioning involved presenting male rats with three tone-foot shock pairings on 1 day, which was followed by 2 days of 15 tone-alone extinction sessions. Daily and repeated inhibition of mainly IL neurons during the 21-day recovery period did not disrupt fear learning or fear extinction in all groups (controls, stressed rats without a recovery, and stressed rats with a recovery). However, chronically stressed rats given a recovery and with DREADD activation showed impaired spontaneous recovery, indicating a failure to form a tone-foot shock association. The findings show that daily inhibition of mainly IL neurons prior to fear conditioning and extinction depends upon the changes that occur during the recovery period following the end of chronic stress.
Collapse
Affiliation(s)
- Jessica M Judd
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Dylan N Peay
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Jinah L Kim
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Elliot A Smith
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Megan E Donnay
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Joel Miller
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Jean-Paul Klein
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Erin K Nagy
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Amanda M Acuña
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
18
|
Mavrych V, Riyas F, Bolgova O. The Role of Basolateral Amygdala and Medial Prefrontal Cortex in Fear: A Systematic Review. Cureus 2025; 17:e78198. [PMID: 40026920 PMCID: PMC11870299 DOI: 10.7759/cureus.78198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Fear is a primary adaptive response to potential threats. It triggers a complex cascade of physiological, cognitive, and behavioral changes that prepare an organism to cope with dangerous situations. The basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) are both linked to adaptation, the generation of strong emotions, and decision-making. In this systematic review, we aimed to analyze recent studies of the connections between the BLA and mPFC in the context of their neuroanatomy, cellular composition, micro-circuitry, and involvement in fear. Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, our search strategy involved scouring articles from PubMed (National Center for Biotechnology Information, Bethesda, Maryland), Google Scholar (Google, Mountain View, CA), and Science Direct (Elsevier, Amsterdam, Netherlands) databases covering the last decade (2014-2024). Thirty-two rigorously evaluated studies formed the essence of our review. Review findings revealed complex bidirectional connectivity between BLA and mPFC, with distinct roles for different subregions. The rostral BLA primarily projects to the prelimbic cortex, while the caudal BLA connects with the infralimbic cortex. These circuits show specialized cellular composition, with BLA containing principal excitatory neurons and GABAergic interneurons, while mPFC exhibits layer-specific synaptic connections. Fear processing involves dynamic interactions between these regions, with the prelimbic cortex promoting fear expression and the infralimbic cortex facilitating extinction. The analysis showed that astrocytic signaling and N-methyl-D-aspartate (NMDA) receptor activation are essential in the process of both fear memory formation and its extinction. There was evidence that dysregulation of specific circuits is associated with the pathophysiology of several other psychiatric disorders, such as post-traumatic stress disorder (PTSD), anxiety disorders, and schizophrenia. This review clarifies that the BLA-mPFC circuitry is critical in perceiving fear and its regulation. The results highlight the importance of the interactions between brain regions and the types of cells in each region to respond appropriately to fear and its extinction. Uncovering such type of dysregulation further helps to understand the mechanisms of fear-associated disorders and may suggest further treatment options. Future research should focus on cellular plasticity mechanisms, translational applications, and the influence of individual factors on fear processing to develop more effective treatments for psychiatric conditions involving fear dysregulation.
Collapse
Affiliation(s)
- Volodymyr Mavrych
- Anatomy and Genetics, Alfaisal University College of Medicine, Riyadh, SAU
| | - Fathima Riyas
- Anatomy and Genetics, Alfaisal University College of Medicine, Riyadh, SAU
| | - Olena Bolgova
- Anatomy and Genetics, Alfaisal University College of Medicine, Riyadh, SAU
| |
Collapse
|
19
|
Bailey TW, Speigel JH, Mayer J, Korzus E. The Neuronal Hypofunction of Subdivisions of the Prefrontal Cortex Shows Differential Effects on Contingency Judgment Learning to Gauge Fear Responses. Neurosci Insights 2024; 19:26331055241305378. [PMID: 39655247 PMCID: PMC11626657 DOI: 10.1177/26331055241305378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/18/2024] [Indexed: 12/12/2024] Open
Abstract
Previous studies have indicated that the infralimbic (IL) and prelimbic (PL) subdivisions of the medial prefrontal cortex (mPFC) serve as critical modulators of fear suppression and expression. Although significant research has been conducted on the extinction of conditioned fear, the mechanisms underlying contextual fear discrimination learning, a form of contingency judgment learning, remain inadequately understood. Our investigation aimed to explore the influence of epigenetic regulation associated with cyclic AMP-response element binding protein (CREB)-dependent long-term memory encoding within the IL and PL on contextual fear discrimination. Our prior and current findings illustrate that epigenetic hypofunction induced by a CREB-Binding Protein (CBP) mutant, which is deficient in histone acetyltransferase activity (CBPΔHAT), within the mPFC leads to compromised contextual fear discrimination while not affecting contextual fear conditioning in these mutants. Unexpectedly, the effect was not noticeable when the hypofunction was constrained to the infralimbic (IL) area; however, the hypofunction of the prelimbic (PL) network led to considerable impairment in fear discrimination. The findings indicate that learning fear discrimination involves differential encoding across the specialized networks of the mPFC. These data suggest that the IL network is not essential for encoding during the acquisition and discrimination of fear or that the PL network may compensate for the IL's inability to encode new information. Furthermore, these results emphasize the importance of histone acetylation in the mPFC as a crucial physiological mechanism for learning contingency judgment.
Collapse
Affiliation(s)
- Tyler W Bailey
- Neuroscience Program, University of California, Riverside, USA
| | - John H Speigel
- Neuroscience Program, University of California, Riverside, USA
| | | | - Edward Korzus
- Neuroscience Program, University of California, Riverside, USA
- Department of Psychology, University of California, USA
| |
Collapse
|
20
|
Chioino A, Sandi C. The Emerging Role of Brain Mitochondria in Fear and Anxiety. Curr Top Behav Neurosci 2024. [PMID: 39505817 DOI: 10.1007/7854_2024_537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The functional complexity of brain circuits underlies the broad spectrum of behaviors, cognitive functions, and their associated disorders. Mitochondria, traditionally known for their role in cellular energy metabolism, are increasingly recognized as central to brain function and behavior. This review examines how mitochondria are pivotal in linking cellular energy processes with the functioning of neural circuits that govern fear and anxiety. Following an introductory section in which we summarize current knowledge about fear and anxiety neural circuits, we provide a brief summary of mitochondria fundamental roles (e.g., from energy production and calcium buffering to their involvement in reactive oxygen species (ROS) generation, mitochondrial dynamics, and signaling), particularly emphasizing their contribution to synaptic plasticity, neurodevelopment, and stress response mechanisms. The review's core focuses on the current state of knowledge regarding how mitochondrial function and dysfunction impact the neural substrates of fear and anxiety. Furthermore, we explore the implications of mitochondrial alterations in the context of posttraumatic stress disorder (PTSD) and anxiety disorders, underscoring the potential of mitochondrial pathways as new therapeutic targets. Integrating insights from genetic, biochemical, neurobiological, behavioral, and clinical studies, we propose a model in which mitochondrial function is critical for regulating the neural circuits that underpin fear and anxiety behaviors, highlighting how mitochondrial dysfunction can lead to their pathological manifestations. This integration emphasizes the potential for developing novel treatments targeting the biological roots of fear, anxiety, and related disorders. By merging mitochondrial biology with behavioral and circuit neuroscience, we enrich our neurobiological understanding of fear and anxiety, uncovering promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandro Chioino
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
21
|
Subramanian R, Bauman A, Carpenter O, Cho C, Coste G, Dam A, Drake K, Ehnstrom S, Fitzgerald N, Jenkins A, Koolpe H, Liu R, Paserman T, Petersen D, Chavez DS, Rozental S, Thompson H, Tsukuda T, Zweig S, Gall M, Zupan B, Bergstrom H. An infralimbic cortex neuronal ensemble encoded during learning attenuates fear generalization expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608308. [PMID: 39229064 PMCID: PMC11370439 DOI: 10.1101/2024.08.18.608308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Generalization allows previous experience to adaptively guide behavior when conditions change. The infralimbic (IL) subregion of the ventral medial prefrontal cortex plays a known role in generalization processes, although mechanisms remain unclear. A basic physical unit of memory storage and expression in the brain are sparse, distributed groups of neurons known as ensembles (i.e., the engram). Here, we set out to determine whether neuronal ensembles established in the IL during learning contribute to generalized responses. Generalization was tested in male and female mice by presenting a novel, ambiguous, tone generalization stimulus following Pavlovian defensive (fear) conditioning. The first experiment was designed to test a role for IL in generalization using chemogenetic manipulations. Results show IL regulates defensive behavior in response to ambiguous stimuli. IL silencing led to a switch in defensive state, from vigilant scanning to generalized freezing, while IL stimulation reduced freezing in favor of scanning. Leveraging activity-dependent "tagging" technology (ArcCreERT2 × eYFP system), a neuronal ensemble, preferentially located in IL Layer 2/3, was associated with the generalization stimulus. Remarkably, in the identical discrete location, fewer reactivated neurons were associated with the generalization stimulus at the remote timepoint (30 days) following learning. When an IL neuronal ensemble established during learning was selectively chemogenetically silenced, generalization increased. Conversely, IL neuronal ensemble stimulation reduced generalization. Overall, these data identify a crucial role for IL in suppressing generalized responses. Further, an IL neuronal ensemble, formed during learning, functions to later attenuate the expression of generalization in the presence of ambiguous threat stimuli.
Collapse
Affiliation(s)
- Rajani Subramanian
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Avery Bauman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Olivia Carpenter
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Chris Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Gabrielle Coste
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Ahona Dam
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Kasey Drake
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sara Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Naomi Fitzgerald
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Abigail Jenkins
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Koolpe
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Runqi Liu
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tamar Paserman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - David Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Diego Scala Chavez
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Stefano Rozental
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tyler Tsukuda
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sasha Zweig
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Megan Gall
- Department of Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Bojana Zupan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hadley Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| |
Collapse
|
22
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
23
|
Hartsock MJ, Levy CT, Navarro MJ, Saddoris MP, Spencer RL. Circadian Rhythms in Conditioned Threat Extinction Reflect Time-of-Day Differences in Ventromedial Prefrontal Cortex Neural Processing. J Neurosci 2024; 44:e0878242024. [PMID: 39251355 PMCID: PMC11426375 DOI: 10.1523/jneurosci.0878-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Circadian rhythms in conditioned threat extinction emerge from a tissue-level circadian timekeeper, or local clock, in the ventromedial prefrontal cortex (vmPFC). Yet it remains unclear how this local clock contributes to extinction-dependent adaptations. Here we used single-unit and local field potential analyses to interrogate neural activity in the male rat vmPFC during repeated extinction sessions at different times of day. In association with superior recall of a remote extinction memory during the circadian active phase, vmPFC putative principal neurons exhibited phasic firing that was amplified for cue presentations and diminished at transitions in freezing behavior. Coupling of vmPFC gamma amplitude to the phase of low-frequency oscillations was greater during freezing than mobility, and this difference was augmented during the active phase, highlighting a time-of-day dependence in the organization of freezing- versus mobility-associated cell assemblies. Additionally, a greater proportion of vmPFC neurons were phase-locked to low-frequency oscillations during the active phase, consistent with heightened neural excitability at this time of day. Our results suggest that daily fluctuations in vmPFC excitability precipitate enhanced neural recruitment into extinction-based cell assemblies during the active phase, providing a potential mechanism by which the vmPFC local clock modulates circuit and behavioral plasticity during conditioned threat extinction.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Catherine T Levy
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Maria J Navarro
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Michael P Saddoris
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| |
Collapse
|
24
|
Vazquez K, Parsons RG. Sex differences in contextual fear expression are associated with altered medial prefrontal cortex activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611834. [PMID: 39314297 PMCID: PMC11419059 DOI: 10.1101/2024.09.07.611834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Understanding the neural basis of fear expression in rodents has implications for understanding pathological fear responses that characterize posttraumatic stress disorder. Even though posttraumatic stress disorder is more common in females, little is known about the neural circuit interactions supporting fear expression in female rodents. In this study, we were interested in determining whether neural activity associated with the expression of contextual fear differed between males and females within the projections from the medial prefrontal cortex to the ventrolateral periaqueductal gray, and in the medial prefrontal cortex in neurons that do not project to the periaqueductal gray. We infused a viral retrograde tracer into the ventrolateral periaqueductal gray in male and female rats and trained them in a contextual fear conditioning task. The following day rats were re-exposed to the conditioning context and were sacrificed shortly thereafter. Neural activity was measured using EGR1 immunofluorescence. The behavioral results showed that males exhibited higher levels of freezing during the context test than females. Male rats that underwent training and testing showed an increase in the proportion of viral infected cells that express EGR1 in the PL compared to rats that had only received context exposure. Trained female rats were not different than controls, however a direct comparison between sexes was not different. In cells not labeled by the tracer, males showed higher levels of fear-induced EGR1 expression in the prelimbic cortex than females. Conversely, females showed higher levels of EGR1 expression in the infralimbic cortex following testing as compared to males. These results suggest that sex differences in the expression of contextual fear may involve differences in the relative activity levels of the prelimbic and infralimbic cortex.
Collapse
Affiliation(s)
- Katherine Vazquez
- Stony Brook University, Department of Psychology, 100 Nicolls Rd., Stony Brook, NY, 11794
| | - Ryan G Parsons
- Stony Brook University, Department of Psychology, 100 Nicolls Rd., Stony Brook, NY, 11794
| |
Collapse
|
25
|
Smith HC, Yu Z, Iyer L, Marvar PJ. Sex-Dependent Effects of Angiotensin Type 2 Receptor-Expressing Medial Prefrontal Cortex Interneurons in Fear Extinction Learning. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100340. [PMID: 39140003 PMCID: PMC11321323 DOI: 10.1016/j.bpsgos.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 08/15/2024] Open
Abstract
Background The renin-angiotensin system has been identified as a potential therapeutic target for posttraumatic stress disorder, although its mechanisms are not well understood. Brain angiotensin type 2 receptors (AT2Rs) are a subtype of angiotensin II receptors located in stress and anxiety-related regions, including the medial prefrontal cortex (mPFC), but their function and mechanism in the mPFC remain unexplored. Therefore, we used a combination of imaging, cre/lox, and behavioral methods to investigate mPFC-AT2R-expressing neurons in fear and stess related behavior. Methods To characterize mPFC-AT2R-expressing neurons in the mPFC, AT2R-Cre/tdTomato male and female mice were used for immunohistochemistry. mPFC brain sections were stained with glutamatergic or interneuron markers, and density of AT2R+ cells and colocalization with each marker were quantified. To assess fear-related behaviors in AT2R-flox mice, we selectively deleted AT2R from mPFC neurons using a Cre-expressing adeno-associated virus. Mice then underwent Pavlovian auditory fear conditioning, elevated plus maze, and open field testing. Results Immunohistochemistry results revealed that AT2R was densely expressed throughout the mPFC and primarily expressed in somatostatin interneurons in a sex-dependent manner. Following fear conditioning, mPFC-AT2R Cre-lox deletion impaired extinction and increased exploratory behavior in female but not male mice, while locomotion was unaltered by mPFC-AT2R deletion in both sexes. Conclusions These results identify mPFC-AT2R+ neurons as a novel subgroup of somatostatin interneurons and reveal their role in regulating fear learning in a sex-dependent manner, potentially offering insights into novel therapeutic targets for posttraumatic stress disorder.
Collapse
Affiliation(s)
- Hannah C. Smith
- Department of Neuroscience, George Washington University, Washington, DC
| | - Zhe Yu
- Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
| | - Laxmi Iyer
- Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
| | - Paul J. Marvar
- Department of Neuroscience, George Washington University, Washington, DC
- Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
- Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC
| |
Collapse
|
26
|
Barabás B, Reéb Z, Papp OI, Hájos N. Functionally linked amygdala and prefrontal cortical regions are innervated by both single and double projecting cholinergic neurons. Front Cell Neurosci 2024; 18:1426153. [PMID: 39049824 PMCID: PMC11266109 DOI: 10.3389/fncel.2024.1426153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Cholinergic cells have been proposed to innervate simultaneously those cortical areas that are mutually interconnected with each other. To test this hypothesis, we investigated the cholinergic innervation of functionally linked amygdala and prefrontal cortical regions. First, using tracing experiments, we determined that cholinergic cells located in distinct basal forebrain (BF) areas projected to the different nuclei of the basolateral amygdala (BLA). Specifically, cholinergic cells in the ventral pallidum/substantia innominata (VP/SI) innervated the basal nucleus (BA), while the horizontal limb of the diagonal band of Broca (HDB) projected to its basomedial nucleus (BMA). In addition, cholinergic neurons in these two BF areas gave rise to overlapping innervation in the medial prefrontal cortex (mPFC), yet their axons segregated in the dorsal and ventral regions of the PFC. Using retrograde-anterograde viral tracing, we demonstrated that a portion of mPFC-projecting cholinergic neurons also innervated the BLA, especially the BA. By injecting retrograde tracers into the mPFC and BA, we found that 28% of retrogradely labeled cholinergic cells were double labeled, which typically located in the VP/SI. In addition, we found that vesicular glutamate transporter type 3 (VGLUT3)-expressing neurons within the VP/SI were also cholinergic and projected to the mPFC and BA, implicating that a part of the cholinergic afferents may release glutamate. In contrast, we uncovered that GABA is unlikely to be a co-transmitter molecule in HDB and VP/SI cholinergic neurons in adult mice. The dual innervation strategy, i.e., the existence of cholinergic cell populations with single as well as simultaneous projections to the BLA and mPFC, provides the possibility for both synchronous and independent control of the operation in these cortical areas, a structural arrangement that may maximize computational support for functionally linked regions. The presence of VGLUT3 in a portion of cholinergic afferents suggests more complex functional effects of cholinergic system in cortical structures.
Collapse
Affiliation(s)
- Bence Barabás
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Zsófia Reéb
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya I. Papp
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hájos
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
27
|
Ge MJ, Chen G, Zhang ZQ, Yu ZH, Shen JX, Pan C, Han F, Xu H, Zhu XL, Lu YP. Chronic restraint stress induces depression-like behaviors and alterations in the afferent projections of medial prefrontal cortex from multiple brain regions in mice. Brain Res Bull 2024; 213:110981. [PMID: 38777132 DOI: 10.1016/j.brainresbull.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The medial prefrontal cortex (mPFC) forms output pathways through projection neurons, inversely receiving adjacent and long-range inputs from other brain regions. However, how afferent neurons of mPFC are affected by chronic stress needs to be clarified. In this study, the effects of chronic restraint stress (CRS) on the distribution density of mPFC dendrites/dendritic spines and the projections from the cortex and subcortical brain regions to the mPFC were investigated. METHODS In the present study, C57BL/6 J transgenic (Thy1-YFP-H) mice were subjected to CRS to establish an animal model of depression. The infralimbic (IL) of mPFC was selected as the injection site of retrograde AAV using stereotactic technique. The effects of CRS on dendrites/dendritic spines and afferent neurons of the mPFC IL were investigaed by quantitatively assessing the distribution density of green fluorescent (YFP) positive dendrites/dendritic spines and red fluorescent (retrograde AAV recombinant protein) positive neurons, respectively. RESULTS The results revealed that retrograde tracing virus labeled neurons were widely distributed in ipsilateral and contralateral cingulate cortex (Cg1), second cingulate cortex (Cg2), prelimbic cortex (PrL), infralimbic cortex, medial orbital cortex (MO), and dorsal peduncular cortex (DP). The effects of CRS on the distribution density of mPFC red fluorescence positive neurons exhibited regional differences, ranging from rostral to caudal or from top to bottom. Simultaneously, CRS resulted a decrease in the distribution density of basal, proximal and distal dendrites, as well as an increase in the loss of dendritic spines of the distal dendrites in the IL of mPFC. Furthermore, varying degrees of red retrograde tracing virus fluorescence signals were observed in other cortices, amygdala, hippocampus, septum/basal forebrain, hypothalamus, thalamus, mesencephalon, and brainstem in both ipsilateral and contralateral brain. CRS significantly reduced the distribution density of red fluorescence positive neurons in other cortices, hippocampus, septum/basal forebrain, hypothalamus, and thalamus. Conversely, CRS significantly increased the distribution density of red fluorescence positive neurons in amygdala. CONCLUSION Our results suggest a possible mechanism that CRS leads to disturbances in synaptic plasticity by affecting multiple inputs to the mPFC, which is characterized by a decrease in the distribution density of dendrites/dendritic spines in the IL of mPFC and a reduction in input neurons of multiple cortices to the IL of mPFC as well as an increase in input neurons of amygdala to the IL of mPFC, ultimately causing depression-like behaviors.
Collapse
Affiliation(s)
- Ming-Jun Ge
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Geng Chen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Zhen-Qiang Zhang
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Zong-Hao Yu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Jun-Xian Shen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Chuan Pan
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Fei Han
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Hui Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Anhui College of Traditional Chinese Medicine, No. 18 Wuxiashan West Road, Wuhu 241002, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Department of Anatomy, Wannan Medical College, No. 22 Wenchang West Road, Wuhu 241002, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China.
| |
Collapse
|
28
|
Avgana H, Toledano RS, Akirav I. Examining the Role of Oxytocinergic Signaling and Neuroinflammatory Markers in the Therapeutic Effects of MDMA in a Rat Model for PTSD. Pharmaceuticals (Basel) 2024; 17:846. [PMID: 39065697 PMCID: PMC11279644 DOI: 10.3390/ph17070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
MDMA-assisted psychotherapy has shown potential as an effective treatment for post-traumatic stress disorder (PTSD). Preclinical studies involving rodents have demonstrated that MDMA can facilitate the extinction of fear memories. It has been noted that MDMA impacts oxytocin neurons and pro-inflammatory cytokines. Thus, the aim of this study was to explore the role of oxytocinergic signaling and neuroinflammatory markers in the therapeutic effects of MDMA. To achieve this, male rats were subjected to a model of PTSD involving exposure to shock and situational reminders. MDMA was microinjected into the medial prefrontal cortex (mPFC) before extinction training, followed by behavioral tests assessing activity levels, anxiety, and social function. Our findings indicate that MDMA treatment facilitated fear extinction and mitigated the shock-induced increase in freezing, as well as deficits in social behavior. Shock exposure led to altered expression of the gene coding for OXT-R and neuroinflammation in the mPFC and basolateral amygdala (BLA), which were restored by MDMA treatment. Importantly, the OXT-R antagonist L-368,899 prevented MDMA's therapeutic effects on extinction and freezing behavior. In conclusion, MDMA's therapeutic effects in the PTSD model are associated with alterations in OXT-R expression and neuroinflammation, and MDMA's effects on extinction and anxiety may be mediated by oxytocinergic signaling.
Collapse
Affiliation(s)
- Haron Avgana
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Roni Shira Toledano
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
29
|
Zamorina TA, Ivashkina OI, Toropova KA, Anokhin KV. Inhibition of Protein Synthesis Attenuates Formation of Traumatic Memory and Normalizes Fear-Induced c-Fos Expression in a Mouse Model of Posttraumatic Stress Disorder. Int J Mol Sci 2024; 25:6544. [PMID: 38928250 PMCID: PMC11204086 DOI: 10.3390/ijms25126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating psychosomatic condition characterized by impairment of brain fear circuits and persistence of exceptionally strong associative memories resistant to extinction. In this study, we investigated the neural and behavioral consequences of inhibiting protein synthesis, a process known to suppress the formation of conventional aversive memories, in an established PTSD animal model based on contextual fear conditioning in mice. Control animals were subjected to the conventional fear conditioning task. Utilizing c-Fos neural activity mapping, we found that the retrieval of PTSD and normal aversive memories produced activation of an overlapping set of brain structures. However, several specific areas, such as the infralimbic cortex and the paraventricular thalamic nucleus, showed an increase in the PTSD group compared to the normal aversive memory group. Administration of protein synthesis inhibitor before PTSD induction disrupted the formation of traumatic memories, resulting in behavior that matched the behavior of mice with usual aversive memory. Concomitant with this behavioral shift was a normalization of brain c-Fos activation pattern matching the one observed in usual fear memory. Our findings demonstrate that inhibiting protein synthesis during traumatic experiences significantly impairs the development of PTSD in a mouse model. These data provide insights into the neural underpinnings of protein synthesis-dependent traumatic memory formation and open prospects for the development of new therapeutic strategies for PTSD prevention.
Collapse
Affiliation(s)
- Tatyana A. Zamorina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Faculty of Biology, Department of Higher Nervous Activity, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Olga I. Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Laboratory of Neuronal Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ksenia A. Toropova
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Laboratory of Neuronal Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Konstantin V. Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.A.Z.); (O.I.I.); (K.A.T.)
- Laboratory of Neuronal Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
30
|
Werle I, Nascimento LMM, Dos Santos ALA, Soares LA, Dos Santos RG, Hallak JEC, Bertoglio LJ. Ayahuasca-enhanced extinction of fear behaviour: Role of infralimbic cortex 5-HT 2A and 5-HT 1A receptors. Br J Pharmacol 2024; 181:1671-1689. [PMID: 38320596 DOI: 10.1111/bph.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Ayahuasca (AYA) is a botanical psychedelic with promising results in observational and small clinical trials for depression, trauma and drug use disorders. Its psychoactive effects primarily stem from N,N-dimethyltryptamine (DMT). However, there is a lack of research on how and where AYA acts in the brain. This study addressed these questions by examining the extinction of aversive memories in AYA-treated rats. EXPERIMENTAL APPROACH We focused on the 5-HT1A and 5-HT2A receptors, as DMT exhibits a high affinity for both of them, along with the infralimbic cortex in which activity and plasticity play crucial roles in regulating the mnemonic process under analysis. KEY RESULTS A single oral treatment with AYA containing 0.3 mg·kg-1 of DMT increased the within-session extinction of contextual freezing behaviour without affecting its recall. This protocol, when repeated twice on consecutive days, enhanced extinction recall. These effects were consistent for both 1- and 21-day-old memories in males and females. AYA effects on fear extinction were independent of changes in anxiety and general exploratory activity: AYA- and vehicle-treated animals showed no differences when tested in the elevated plus-maze. The 5-HT2A receptor antagonist MDL-11,939 and the 5-HT1A receptor antagonist WAY-100635 infused into the infralimbic cortex respectively blocked within- and between-session fear extinction effects resulting from repeated oral administration of AYA. CONCLUSION AND IMPLICATIONS Our findings highlight complementary mechanisms by which AYA facilitates the behavioural suppression of aversive memories in the rat infralimbic cortex. These results suggest potential beneficial effects of AYA or DMT in stress-related disorders.
Collapse
MESH Headings
- Animals
- Fear/drug effects
- Fear/physiology
- Male
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Extinction, Psychological/drug effects
- Rats
- Banisteriopsis/chemistry
- Hallucinogens/pharmacology
- Hallucinogens/administration & dosage
- Rats, Sprague-Dawley
- Behavior, Animal/drug effects
- Pyridines/pharmacology
Collapse
Affiliation(s)
- Isabel Werle
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Laura M M Nascimento
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aymee L A Dos Santos
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luciane A Soares
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rafael G Dos Santos
- Departamento de Neurociências e Comportamento, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Jaime E C Hallak
- Departamento de Neurociências e Comportamento, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
31
|
Qiu W, Yue X, Huang H, Ge L, Lu W, Cao Z, Rao Y, Tan X, Wang Y, Wu J, Chen Y, Qiu S, Li G. Structural characteristics of amygdala subregions in type 2 diabetes mellitus. Behav Brain Res 2024; 466:114992. [PMID: 38599250 DOI: 10.1016/j.bbr.2024.114992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM) patients often suffer from depressive symptoms, which seriously affect cooperation in treatment and nursing. The amygdala plays a significant role in depression. This study aims to explore the microstructural alterations of the amygdala in T2DM and to investigate the relationship between the alterations and depressive symptoms. Fifty T2DM and 50 healthy controls were included. Firstly, the volumes of subcortical regions and subregions of amygdala were calculated by FreeSurfer. Covariance analysis (ANCOVA) was conducted between the two groups with covariates of age, sex, and estimated total intracranial volume to explore the differences in volume of subcortical regions and subregions of amygdala. Furthermore, the structural covariance within the amygdala subregions was performed. Moreover, we investigate the correlation between depressive symptoms and the volume of subcortical regions and amygdala subregions in T2DM. We observed a reduction in the volume of the bilateral cortico-amygdaloid transition area, left basal nucleus, bilateral accessory basal nucleus, left anterior amygdaloid area of amygdala, the left thalamus and left hippocampus in T2DM. T2DM patients showed decreased structural covariance connectivity between left paralaminar nucleus and the right central nucleus. Moreover, there was a negative correlation between self-rating depression scale scores and the volume of the bilateral cortico-amygdaloid transition area in T2DM. This study reveals extensive structural alterations in the amygdala subregions of T2DM patients. The reduction in the volume of the bilateral cortico-amygdaloid transition area may be a promising imaging marker for early recognition of depressive symptoms in T2DM.
Collapse
Affiliation(s)
- Wenbin Qiu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Xiaomei Yue
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Haoming Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China; Critical Care Unit, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510405, PR China
| | - Limin Ge
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Weiye Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Zidong Cao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Yawen Rao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Yan Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Jinjian Wu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China.
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Hong J, Choi K, Fuccillo MV, Chung S, Weber F. Infralimbic activity during REM sleep facilitates fear extinction memory. Curr Biol 2024; 34:2247-2255.e5. [PMID: 38714199 PMCID: PMC11111341 DOI: 10.1016/j.cub.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyuhyun Choi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Li H, Kawatake-Kuno A, Inaba H, Miyake Y, Itoh Y, Ueki T, Oishi N, Murai T, Suzuki T, Uchida S. Discrete prefrontal neuronal circuits determine repeated stress-induced behavioral phenotypes in male mice. Neuron 2024; 112:786-804.e8. [PMID: 38228137 DOI: 10.1016/j.neuron.2023.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Chronic stress is a major risk factor for psychiatric disorders, including depression. Although depression is a highly heterogeneous syndrome, it remains unclear how chronic stress drives individual differences in behavioral responses. In this study, we developed a subtyping-based approach wherein stressed male mice were divided into four subtypes based on their behavioral patterns of social interaction deficits and anhedonia, the core symptoms of psychiatric disorders. We identified three prefrontal cortical neuronal projections that regulate repeated stress-induced behavioral phenotypes. Among them, the medial prefrontal cortex (mPFC)→anterior paraventricular thalamus (aPVT) pathway determines the specific behavioral subtype that exhibits both social deficits and anhedonia. Additionally, we identified the circuit-level molecular mechanism underlying this subtype: KDM5C-mediated epigenetic repression of Shisa2 transcription in aPVT projectors in the mPFC led to social deficits and anhedonia. Thus, we provide a set of biological aspects at the cellular, molecular, and epigenetic levels that determine distinctive stress-induced behavioral phenotypes.
Collapse
Affiliation(s)
- Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuka Miyake
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan; Kyoto University Medical Science and Business Liaison Organization, Medical Innovation Center, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
34
|
Felix-Ortiz AC, Terrell JM, Gonzalez C, Msengi HD, Boggan MB, Ramos AR, Magalhães G, Burgos-Robles A. Prefrontal Regulation of Safety Learning during Ethologically Relevant Thermal Threat. eNeuro 2024; 11:ENEURO.0140-23.2024. [PMID: 38272673 PMCID: PMC10903390 DOI: 10.1523/eneuro.0140-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Learning and adaptation during sources of threat and safety are critical mechanisms for survival. The prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) have been broadly implicated in the processing of threat and safety. However, how these regions regulate threat and safety during naturalistic conditions involving thermal challenge still remains elusive. To examine this issue, we developed a novel paradigm in which adult mice learned that a particular zone that was identified with visuospatial cues was associated with either a noxious cold temperature ("threat zone") or a pleasant warm temperature ("safety zone"). This led to the rapid development of avoidance behavior when the zone was paired with cold threat or approach behavior when the zone was paired with warm safety. During a long-term test without further thermal reinforcement, mice continued to exhibit robust avoidance or approach to the zone of interest, indicating that enduring spatial-based memories were formed to represent the thermal threat and thermal safety zones. Optogenetic experiments revealed that neural activity in PL and IL was not essential for establishing the memory for the threat zone. However, PL and IL activity bidirectionally regulated memory formation for the safety zone. While IL activity promoted safety memory during normal conditions, PL activity suppressed safety memory especially after a stress pretreatment. Therefore, a working model is proposed in which balanced activity between PL and IL is favorable for safety memory formation, whereas unbalanced activity between these brain regions is detrimental for safety memory after stress.
Collapse
Affiliation(s)
- Ada C Felix-Ortiz
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jaelyn M Terrell
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Carolina Gonzalez
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Hope D Msengi
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Miranda B Boggan
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Angelica R Ramos
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Gabrielle Magalhães
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
| | - Anthony Burgos-Robles
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
35
|
Shimoda R, Amaya Y, Okamoto M, Soya S, Soya M, Koizumi H, Nakamura K, Hiraga T, Torma F, Soya H. Accelerated Fear Extinction by Regular Light-Intensity Exercise: A Possible Role of Hippocampal BDNF-TrkB Signaling. Med Sci Sports Exerc 2024; 56:221-229. [PMID: 38214538 DOI: 10.1249/mss.0000000000003312] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
PURPOSE Growing concern exists worldwide about stress-related mental disorders, such as posttraumatic stress disorder (PTSD), often linked to hippocampal dysfunctions. Recognizing this connection, regular light-intensity exercise (LIE)-such as yoga, walking, or slow jogging-may offer a solution. Easily accessible even to vulnerable individuals, LIE has been found to enhance hippocampus-based cognitive functions through the stimulation of neurotrophic factors like brain-derived neurotrophic factor (BDNF). A prior study that demonstrated BDNF's role in extinguishing original fear memory further leads us to propose that a consistent LIE training might drive fear extinction learning, offering potential therapeutic benefits through BDNF signaling. METHODS Eleven-week-old Wistar rats underwent 4 wk of training under conditions of sedentary, LIE, or moderate-intensity exercise (MOE) after contextual or auditory fear conditioning. Subsequently, fear extinction tests were performed. We then administered intraperitoneal (i.p.) ANA-12, a selective antagonist of tropomyosin receptor kinase B (TrkB), or a vehicle to explore the role of BDNF signaling in exercise-induced fear extinction among the LIE rats. Following the regular exercise training, further fear extinction tests were conducted, and hippocampal protein analysis was performed using Western blotting. RESULTS Both LIE and MOE over 4 wk accelerated hippocampus-associated contextual fear extinction compared with sedentary. In addition, 4 wk of LIE with i.p. administered vehicle increased hippocampal BDNF and TrkB protein levels. In contrast, i.p. ANA-12 administration fully blocked the LIE-enhanced protein levels and its effect on contextual fear extinction. CONCLUSIONS Our findings reveal that LIE regimen promotes fear extinction learning, at least partially tied to hippocampal BDNF-TrkB signaling. This suggests that even regular light exercise could alleviate the excessive fear response in anxiety disorders and PTSD, providing hope for those affected.
Collapse
Affiliation(s)
- Ryo Shimoda
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, JAPAN
| | - Yuki Amaya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, JAPAN
| | | | - Shingo Soya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, JAPAN
| | - Mariko Soya
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JAPAN
| | - Hikaru Koizumi
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, JAPAN
| | - Kengo Nakamura
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, JAPAN
| | - Taichi Hiraga
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, JAPAN
| | | | | |
Collapse
|
36
|
Cai Y, Ge J, Pan ZZ. The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats. Front Neurosci 2024; 18:1331864. [PMID: 38327845 PMCID: PMC10847313 DOI: 10.3389/fnins.2024.1331864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Brain circuits between medial prefrontal cortex (mPFC) and amygdala have been implicated in cortical control of emotion, especially anxiety. Studies in recent years focus on differential roles of subregions of mPFC and amygdala, and reciprocal pathways between mPFC and amygdala in regulation of emotional behaviors. It has been shown that, while the projection from ventral mPFC to basomedial amygdala has an anxiolytic effect, the reciprocal projections between dorsal mPFC (dmPFC) and basolateral amygdala (BLA) are generally involved in an anxiogenic effect in various conditions with increased anxiety. However, the function of the projection from dmPFC to BLA in regulation of general emotional behaviors under normal conditions remains unclear. In this study, we used optogenetic analysis to identify how this dmPFC-BLA pathway regulates various emotional behaviors in normal rats. We found that optogenetic stimulation of the dmPFC-BLA pathway promoted a behavioral state of negative emotion, increasing anxiety-like and depressive-like behaviors and producing aversive behavior of place avoidance. Conversely, optogenetic inhibition of this pathway produced opposite effects, reducing anxiety-like and depressive-like behaviors, and inducing behaviors of place preference of reward. These findings suggest that activity of the dmPFC-BLA pathway is sufficient to drive a negative emotion state and the mPFC-amygdala circuit is tonically active in cortical regulation of emotional behaviors.
Collapse
Affiliation(s)
| | | | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
37
|
Shen XY, Zhang J, Huang HZ, Li SD, Zhou L, Wu SP, Tang C, Huang X, Liu ZQ, Guo ZY, Li X, Man HY, Lu YM, Zhu LQ, Liu D. The interaction of Synapsin 2a and Synaptogyrin-3 regulates fear extinction in mice. J Clin Invest 2024; 134:e172802. [PMID: 38175724 PMCID: PMC10866652 DOI: 10.1172/jci172802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
The mechanisms behind a lack of efficient fear extinction in some individuals are unclear. Here, by employing a principal components analysis-based approach, we differentiated the mice into extinction-resistant and susceptible groups. We determined that elevated synapsin 2a (Syn2a) in the infralimbic cortex (IL) to basolateral amygdala (BLA) circuit disrupted presynaptic orchestration, leading to an excitatory/inhibitory imbalance in the BLA region and causing extinction resistance. Overexpression or silencing of Syn2a levels in IL neurons replicated or alleviated behavioral, electrophysiological, and biochemical phenotypes in resistant mice. We further identified that the proline-rich domain H in the C-terminus of Syn2a was indispensable for the interaction with synaptogyrin-3 (Syngr3) and demonstrated that disrupting this interaction restored extinction impairments. Molecular docking revealed that ritonavir, an FDA-approved HIV drug, could disrupt Syn2a-Syngr3 binding and rescue fear extinction behavior in Syn2a-elevated mice. In summary, the aberrant elevation of Syn2a expression and its interaction with Syngr3 at the presynaptic site were crucial in fear extinction resistance, suggesting a potential therapeutic avenue for related disorders.
Collapse
Affiliation(s)
- Xi-Ya Shen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shao-Dan Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi-Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Tang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi-Yuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiang Li
- Department of Neurosurgery and
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - You-Ming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
38
|
Heifets BD, Olson DE. Therapeutic mechanisms of psychedelics and entactogens. Neuropsychopharmacology 2024; 49:104-118. [PMID: 37488282 PMCID: PMC10700553 DOI: 10.1038/s41386-023-01666-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Recent clinical and preclinical evidence suggests that psychedelics and entactogens may produce both rapid and sustained therapeutic effects across several indications. Currently, there is a disconnect between how these compounds are used in the clinic and how they are studied in preclinical species, which has led to a gap in our mechanistic understanding of how these compounds might positively impact mental health. Human studies have emphasized extra-pharmacological factors that could modulate psychedelic-induced therapeutic responses including set, setting, and integration-factors that are poorly modelled in current animal experiments. In contrast, animal studies have focused on changes in neuronal activation and structural plasticity-outcomes that are challenging to measure in humans. Here, we describe several hypotheses that might explain how psychedelics rescue neuropsychiatric disease symptoms, and we propose ways to bridge the gap between human and rodent studies. Given the diverse pharmacological profiles of psychedelics and entactogens, we suggest that their rapid and sustained therapeutic mechanisms of action might best be described by the collection of circuits that they modulate rather than their actions at any single molecular target. Thus, approaches focusing on selective circuit modulation of behavioral phenotypes might prove more fruitful than target-based methods for identifying novel compounds with rapid and sustained therapeutic effects similar to psychedelics and entactogens.
Collapse
Affiliation(s)
- Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - David E Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, 95616, USA.
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
- Center for Neuroscience, University of California, Davis, Davis, CA, 95618, USA.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
39
|
Lonnberg A, Logrip ML, Kuznetsov A. Mechanisms of alcohol influence on fear conditioning: a computational model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573310. [PMID: 38260700 PMCID: PMC10802259 DOI: 10.1101/2023.12.30.573310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A connection between stress-related illnesses and alcohol use disorders is extensively documented. Fear conditioning is a standard procedure used to study stress learning and links it to the activation of amygdala circuitry. However, the connection between the changes in amygdala circuit and function induced by alcohol and fear conditioning is not well established. We introduce a computational model to test the mechanistic relationship between amygdala functional and circuit adaptations during fear conditioning and the impact of acute vs. repeated alcohol exposure. In accordance with experiments, both acute and prior repeated alcohol decreases speed and robustness of fear extinction in our simulations. The model predicts that, first, the delay in fear extinction in alcohol is mostly induced by greater activation of the basolateral amygdala (BLA) after fear acquisition due to alcohol-induced modulation of synaptic weights. Second, both acute and prior repeated alcohol shifts the amygdala network away from the robust extinction regime by inhibiting the activity in the central amygdala (CeA). Third, our model predicts that fear memories formed in acute or after chronic alcohol are more connected to the context. Thus, the model suggests how circuit changes induced by alcohol may affect fear behaviors and provides a framework for investigating the involvement of multiple neuromodulators in this neuroadaptive process.
Collapse
Affiliation(s)
- Adam Lonnberg
- University of Evansville, Department of Mathematics, Indianapolis, Indiana, USA
| | - Marian L. Logrip
- Indiana University-Purdue University, Department of Psychology, Indianapolis, Indiana, USA
| | - Alexey Kuznetsov
- Indiana University-Purdue University, Department of Mathematical Sciences, Indianapolis, Indiana, USA
| |
Collapse
|
40
|
Ng K, Pollock M, Escobedo A, Bachman B, Miyazaki N, Bartlett EL, Sangha S. Suppressing fear in the presence of a safety cue requires infralimbic cortical signaling to central amygdala. Neuropsychopharmacology 2024; 49:359-367. [PMID: 37188848 PMCID: PMC10724163 DOI: 10.1038/s41386-023-01598-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Stressful events can have lasting and impactful effects on behavior, especially by disrupting normal regulation of fear and reward processing. Accurate discrimination among environmental cues predicting threat, safety or reward adaptively guides behavior. Post-traumatic stress disorder (PTSD) represents a condition in which maladaptive fear persists in response to explicit safety-predictive cues that coincide with previously learned threat cues, but without threat being present. Since both the infralimbic cortex (IL) and amygdala have each been shown to be important for fear regulation to safety cues, we tested the necessity of specific IL projections to the basolateral amygdala (BLA) or central amygdala (CeA) during safety recall. Male Long Evans rats were used since prior work showed female Long Evans rats did not acquire the safety discrimination task used in this study. Here, we show the infralimbic projection to the central amygdala was necessary for suppressing fear cue-induced freezing in the presence of a learned safety cue, and the projection to the basolateral amygdala was not. The loss of discriminative fear regulation seen specifically during IL->CeA inhibition is similar to the behavioral disruption seen in PTSD individuals that fail to regulate fear in the presence of a safety cue.
Collapse
Affiliation(s)
- Ka Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Pollock
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Abraham Escobedo
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Brent Bachman
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nanami Miyazaki
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Edward L Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
41
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
42
|
Salinas-Hernández XI, Zafiri D, Sigurdsson T, Duvarci S. Functional architecture of dopamine neurons driving fear extinction learning. Neuron 2023; 111:3854-3870.e5. [PMID: 37741275 DOI: 10.1016/j.neuron.2023.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The ability to extinguish fear responses to stimuli that no longer predict danger is critical for adaptive behavior and increases the likelihood of survival. During fear extinction, dopamine (DA) neurons signal the absence of the expected aversive outcome, and this extinction prediction error (EPE) signal is crucial for initiating and driving extinction learning. However, the neural circuits underlying the EPE signal have remained elusive. Here, we investigate the input-output circuitry of EPE-encoding DA neurons in male mice. By employing projection-specific fiber photometry and optogenetics, we demonstrate that these neurons project to a restricted subregion of the nucleus accumbens. Comprehensive anatomical analyses, as well as projection-specific chemogenetic manipulations combined with recordings of DA biosensors, further uncover the dorsal raphe as one key input structure critical for generating the EPE signal. Together, our results reveal for the first time the functional architecture of EPE-encoding DA neurons crucial for driving fear extinction learning.
Collapse
Affiliation(s)
- Ximena I Salinas-Hernández
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Daphne Zafiri
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
43
|
Haubrich J, Nader K. Network-level changes in the brain underlie fear memory strength. eLife 2023; 12:RP88172. [PMID: 38047914 PMCID: PMC10695559 DOI: 10.7554/elife.88172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
The strength of a fear memory significantly influences whether it drives adaptive or maladaptive behavior in the future. Yet, how mild and strong fear memories differ in underlying biology is not well understood. We hypothesized that this distinction may not be exclusively the result of changes within specific brain regions, but rather the outcome of collective changes in connectivity across multiple regions within the neural network. To test this, rats were fear conditioned in protocols of varying intensities to generate mild or strong memories. Neuronal activation driven by recall was measured using c-fos immunohistochemistry in 12 brain regions implicated in fear learning and memory. The interregional coordinated brain activity was computed and graph-based functional networks were generated to compare how mild and strong fear memories differ at the systems level. Our results show that mild fear recall is supported by a well-connected brain network with small-world properties in which the amygdala is well-positioned to be modulated by other regions. In contrast, this connectivity is disrupted in strong fear memories and the amygdala is isolated from other regions. These findings indicate that the neural systems underlying mild and strong fear memories differ, with implications for understanding and treating disorders of fear dysregulation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill UniversityMontréalCanada
- Department of Neurophysiology, Ruhr-University BochumBochumGermany
| | - Karim Nader
- Department of Psychology, McGill UniversityMontréalCanada
| |
Collapse
|
44
|
Zimmermann KS, Richardson R, Baker KD. Developmental changes in functional connectivity between the prefrontal cortex and amygdala following fear extinction. Neurobiol Learn Mem 2023; 205:107847. [PMID: 37865263 DOI: 10.1016/j.nlm.2023.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The amygdala and prefrontal cortex (PFC) undergo dramatic changes in structure, function, and regional connectivity in early life, ultimately stabilizing in early adulthood. Pathways between these two structures underlie many forms of emotional learning, including the extinction of conditioned fear. Here we sought to characterize changes in extinction-related medial PFC (mPFC) → amygdala functional connectivity across development that might explain adolescent impairments in extinction. The retrograde tracer Fluorogold was infused into the amygdala of postnatal day (P)22-23 (juvenile), P31-32 (adolescent), or ≥ P69 (adult) rats, which were then exposed to fear conditioning and extinction training. Brains were collected following extinction or context exposure and processed for expression of pMAPK (as a marker of learning-dependent plasticity) in prelimbic (PL) and infralimbic (IL) amygdala-projecting neurons. Consistent with previous findings, amygdala-projecting mPFC neurons were located primarily in layers (L)II/III and V of the mPFC. We noted that mPFC LII/III projected predominantly to the ipsilateral basolateral amygdala, whereas LV projected bilaterally and targeted multiple amygdalar nuclei. Extinction was not associated with changes in extinction-related plasticity in the PL-amygdala pathways in any age group. No changes were seen in LII/III of the IL, but extinction-related plasticity in LV amygdala-projecting IL neurons decreased linearly across development. These findings suggest that extinction-related functional connectivity between the IL and the amygdala undergoes fundamental changes across development that may contribute to alterations in fear suppression across development.
Collapse
Affiliation(s)
- K S Zimmermann
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia
| | - R Richardson
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia
| | - K D Baker
- School of Psychology, UNSW Sydney, New South Wales 2052, Australia.
| |
Collapse
|
45
|
Brockway ET, Simon S, Drew MR. Ventral hippocampal projections to infralimbic cortex and basolateral amygdala are differentially activated by contextual fear and extinction recall. Neurobiol Learn Mem 2023; 205:107832. [PMID: 37757953 PMCID: PMC10919432 DOI: 10.1016/j.nlm.2023.107832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Fear and extinction learning are thought to generate distinct and competing memory representations in the hippocampus. How these memory representations modulate the expression of appropriate behavioral responses remains unclear. To investigate this question, we used cholera toxin B subunit to retrolabel ventral hippocampal (vHPC) neurons projecting to the infralimbic cortex (IL) and basolateral amygdala (BLA) and then quantified c-Fos immediate early gene activity within these populations following expression of either contextual fear recall or contextual fear extinction recall. Fear recall was associated with increased c-Fos expression in vHPC projections to the BLA, whereas extinction recall was associated with increased activity in vHPC projections to IL. A control experiment was performed to confirm that the apparent shift in projection neuron activity was associated with extinction learning rather than mere context exposure. Overall, results indicate that hippocampal contextual fear and extinction memory representations differentially activate vHPC projections to IL and BLA. These findings suggest that hippocampal memory representations orchestrate appropriate behavioral responses through selective activation of projection pathways.
Collapse
Affiliation(s)
- Emma T Brockway
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Sarah Simon
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
46
|
Sepahvand T, Nazari N, Qin T, Rajani V, Yuan Q. Olfactory threat extinction in the piriform cortex: An age-dependent employment of NMDA receptor-dependent long-term depression. Proc Natl Acad Sci U S A 2023; 120:e2309986120. [PMID: 37878718 PMCID: PMC10622944 DOI: 10.1073/pnas.2309986120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Extinction of threat memory is a measure of behavioral flexibility. In the absence of additional reinforcement, the extinction of learned behaviors allows animals and humans to adapt to their changing environment. Extinction mechanisms and their therapeutic implications for maladaptive learning have been extensively studied. However, how aging affects extinction learning is much less understood. Using a rat model of olfactory threat extinction, we show that the extinction of olfactory threat memory is impaired in aged Sprague-Darley rats. Following extinction training, long-term depression (LTD) in the piriform cortex (PC) was inducible ex vivo in aged rats and was NMDA receptor (NMDAR)-independent. On the other hand, adult rats acquired successful olfactory threat extinction, and LTD was not inducible following extinction training. Neuronal cFos activation in the posterior PC correlated with learning and extinction performance in rats. NMDAR blockade either systemically or locally in the PC during extinction training prevented successful extinction in adult rats, following which NMDAR-dependent LTD became inducible ex vivo. This suggests that extinction learning employs NMDAR-dependent LTD mechanisms in the PC of adult rats, thus occluding further LTD induction ex vivo. The rescue of olfactory threat extinction in aged rats by D-cycloserine, a partial NMDAR agonist, suggests that the impairment in olfactory threat extinction of aged animals may relate to NMDAR hypofunctioning and a lack of NMDAR-dependent LTD. These findings are consistent with an age-related switch from NMDAR-dependent to NMDAR-independent LTD in the PC. Optimizing NMDAR function in sensory cortices may improve learning and flexible behavior in the aged population.
Collapse
Affiliation(s)
- Tayebeh Sepahvand
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Negar Nazari
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Tian Qin
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Vishaal Rajani
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| |
Collapse
|
47
|
Rich MT, Worobey SJ, Mankame S, Pang ZP, Swinford-Jackson SE, Pierce RC. Sex-dependent fear memory impairment in cocaine-sired rat offspring. SCIENCE ADVANCES 2023; 9:eadf6039. [PMID: 37851809 PMCID: PMC10584337 DOI: 10.1126/sciadv.adf6039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Cocaine self-administration by male rats results in neuronal and behavioral alterations in offspring, including responses to cocaine. Given the high degree of overlap between the brain systems underlying the pathological responses to cocaine and stress, we examined whether sire cocaine taking would influence fear-associated behavioral effects in drug-naïve adult male and female progeny. Sire cocaine exposure had no effect on contextual fear conditioning or its extinction in either male or female offspring. During cued fear conditioning, freezing behavior was enhanced in female, but not male, cocaine-sired progeny. In contrast, male cocaine-sired progeny exhibited enhanced expression of cue-conditioned fear during extinction. Long-term potentiation (LTP) was robust in the basolateral amygdala (BLA), which encodes fear conditioning, of female offspring but was completely absent in male offspring of cocaine-exposed sires. Collectively, these results indicate that cued fear memory is enhanced in the male progeny of cocaine exposed sires, which also have BLA synaptic plasticity deficits.
Collapse
Affiliation(s)
- Matthew T. Rich
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ 08854 USA
| | - Samantha J. Worobey
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ 08854 USA
| | - Sharvari Mankame
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ 08854 USA
| | - Zhiping P. Pang
- Child Health Institute and Department of Neuroscience & Cell Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - R. Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
48
|
Totty MS, Tuna T, Ramanathan KR, Jin J, Peters SE, Maren S. Thalamic nucleus reuniens coordinates prefrontal-hippocampal synchrony to suppress extinguished fear. Nat Commun 2023; 14:6565. [PMID: 37848425 PMCID: PMC10582091 DOI: 10.1038/s41467-023-42315-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Traumatic events result in vivid and enduring fear memories. Suppressing the retrieval of these memories is central to behavioral therapies for pathological fear. The medial prefrontal cortex (mPFC) and hippocampus (HPC) have been implicated in retrieval suppression, but how mPFC-HPC activity is coordinated during extinction retrieval is unclear. Here we show that after extinction training, coherent theta oscillations (6-9 Hz) in the HPC and mPFC are correlated with the suppression of conditioned freezing in male and female rats. Inactivation of the nucleus reuniens (RE), a thalamic hub interconnecting the mPFC and HPC, reduces extinction-related Fos expression in both the mPFC and HPC, dampens mPFC-HPC theta coherence, and impairs extinction retrieval. Conversely, theta-paced optogenetic stimulation of RE augments fear suppression and reduces relapse of extinguished fear. Collectively, these results demonstrate a role for RE in coordinating mPFC-HPC interactions to suppress fear memories after extinction.
Collapse
Affiliation(s)
- Michael S Totty
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Tuğçe Tuna
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Karthik R Ramanathan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Jingji Jin
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Shaun E Peters
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
49
|
Gunduz-Cinar O, Castillo LI, Xia M, Van Leer E, Brockway ET, Pollack GA, Yasmin F, Bukalo O, Limoges A, Oreizi-Esfahani S, Kondev V, Báldi R, Dong A, Harvey-White J, Cinar R, Kunos G, Li Y, Zweifel LS, Patel S, Holmes A. A cortico-amygdala neural substrate for endocannabinoid modulation of fear extinction. Neuron 2023; 111:3053-3067.e10. [PMID: 37480845 PMCID: PMC10592324 DOI: 10.1016/j.neuron.2023.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Preclinical and clinical studies implicate endocannabinoids (eCBs) in fear extinction, but the underlying neural circuit basis of these actions is unclear. Here, we employed in vivo optogenetics, eCB biosensor imaging, ex vivo electrophysiology, and CRISPR-Cas9 gene editing in mice to examine whether basolateral amygdala (BLA)-projecting medial prefrontal cortex (mPFC) neurons represent a neural substrate for the effects of eCBs on extinction. We found that photoexcitation of mPFC axons in BLA during extinction mobilizes BLA eCBs. eCB biosensor imaging showed that eCBs exhibit a dynamic stimulus-specific pattern of activity at mPFC→BLA neurons that tracks extinction learning. Furthermore, using CRISPR-Cas9-mediated gene editing, we demonstrated that extinction memory formation involves eCB activity at cannabinoid CB1 receptors expressed at vmPFC→BLA synapses. Our findings reveal the temporal characteristics and a neural circuit basis of eCBs' effects on fear extinction and inform efforts to target the eCB system as a therapeutic approach in extinction-deficient neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Maya Xia
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Elise Van Leer
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Emma T Brockway
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Gabrielle A Pollack
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Aaron Limoges
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita Báldi
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Judy Harvey-White
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Adhikari A. Endocannabinoids modulate fear extinction controlled by a cortical-amygdala projection. Neuron 2023; 111:2948-2950. [PMID: 37797579 DOI: 10.1016/j.neuron.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
The projection from the medial prefrontal cortex to the amygdala is a key node in fear extinction. In this issue of Neuron, Gunduz-Cinar et al.1 show that extinction induction by this projection requires recruitment of endocannabinoids (eCBs) in the amygdala.
Collapse
Affiliation(s)
- Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|