1
|
El-Sayed NS, Khalil NA, Saleh SR, Aly RG, Basta M. The Possible Neuroprotective Effect of Caffeic Acid on Cognitive Changes and Anxiety-Like Behavior Occurring in Young Rats Fed on High-Fat Diet and Exposed to Chronic Stress: Role of β-Catenin/GSK-3B Pathway. J Mol Neurosci 2024; 74:61. [PMID: 38954245 DOI: 10.1007/s12031-024-02232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Lifestyle influences physical and cognitive development during the period of adolescence greatly. The most important of these lifestyle factors are diet and stress. Therefore, the aim of this study was to investigate the impact of high fat diet (HFD) and chronic mild stress on cognitive function and anxiety-like behaviors in young rats and to study the role of caffeic acid as a potential treatment for anxiety and cognitive dysfunction. Forty rats were assigned into 4 groups: control, HFD, HFD + stress, and caffeic acid-treated group. Rats were sacrificed after neurobehavioral testing. We detected memory impairment and anxiety-like behavior in rats which were more exaggerated in stressed rats. Alongside the behavioral changes, there were biochemical and histological changes. HFD and/or stress decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and induced oxidative and inflammatory changes in the hippocampus. In addition, they suppressed Wnt/β-catenin pathway which was associated with activation of glycogen synthase kinase 3β (GSK3β). HFD and stress increased arginase 1 and inducible nitric oxide synthase (iNOS) levels as well. These disturbances were found to be aggravated in stressed rats than HFD group. However, caffeic acid was able to reverse these deteriorations leading to memory improvement and ameliorating anxiety-like behavior. So, the current study highlights an important neuroprotective role for caffeic acid that may guard against induction of cognitive dysfunction and anxiety disorders in adolescents who are exposed to HFD and/or stress.
Collapse
Affiliation(s)
- Norhan S El-Sayed
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Nehal Adel Khalil
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Baghdad St., Moharam Bek, Alexandria, 21511, Egypt
- Bioscreening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Baghdad St., Moharam Bek, Alexandria, 21511, Egypt
| | - Rania G Aly
- Department of pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Marianne Basta
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
2
|
Hu X, Sun Z, Wang W, Xiao G, Yu Q, Chi L, Liu H. Dexmedetomidine attenuates isoflurane-induced neuroapoptosis through the miR-137/GSK-3β pathway in the developing rat hippocampus. Heliyon 2024; 10:e31372. [PMID: 38813218 PMCID: PMC11133896 DOI: 10.1016/j.heliyon.2024.e31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Long-term isoflurane inhalation has been reported to induce hippocampal apoptosis in young animals, whereas dexmedetomidine (DEX) can reduce isoflurane-induced neuronal apoptosis. The neuroprotective effect of miR-137 has been reported before, however, the effect of on isoflurane triggered neuronal apoptosis, and whether miR-137 is involved in the neuroprotection of DEX remain unclear. To investigate these doubts, we established an isoflurane exposure model in postnatal day 7 (P7) Sprague‒Dawley rats and the PC12 cells, containing a control group (CON), isoflurane group (ISO), DEX group (DEX) and DEX pretreatment group (DEX + ISO). We first confirmed that DEX attenuates isoflurane-induced hippocampal apoptosis. And we found DEX increased miR-137 and attenuated GSK-3β levels in the DEX and DEX + ISO groups in the hippocampus and PC12 cells. In addition, the regulative relationship of miR-137 and GSK-3β was confirmed using the TargetScan tool and dual-luciferase reporter assay. Moreover, miR-137 overexpression inhibited GSK-3β and increased its downstream gene β-catenin, whereas knockdown of miR-137 changed the GSK-3β and β-catenin expression oppositely. Upregulation of miR-137 increased the apoptosis-related genes and decreased the anti-apoptosis gene; however, knockdown of miR-137 produced the opposite results. This study suggested that DEX attenuated isoflurane-induced neuroapoptosis by upregulating the miR-137 mediated GSK-3β/β-catenin pathway in the developing rat hippocampus.
Collapse
Affiliation(s)
- Xueyuan Hu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zihan Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenjing Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Gong Xiao
- Animal Husbandry Development Promotion Center of Pingyi County, Linyi, 273300, China
| | - Quanlin Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liang Chi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
3
|
Hu Z, Li Y, Zhang L, Jiang Y, Long C, Yang Q, Yang M. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: state of the art review. Front Immunol 2024; 15:1250884. [PMID: 38482018 PMCID: PMC10933078 DOI: 10.3389/fimmu.2024.1250884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Fibroblast-like synoviocytes (FLS) are important components of the synovial membrane. They can contribute to joint damage through crosstalk with inflammatory cells and direct actions on tissue damage pathways in rheumatoid arthritis (RA). Recent evidence suggests that, compared with FLS in normal synovial tissue, FLS in RA synovial tissue exhibits significant differences in metabolism. Recent metabolomic studies have demonstrated that metabolic changes, including those in glucose, lipid, and amino acid metabolism, exist before synovitis onset. These changes may be a result of increased biosynthesis and energy requirements during the early phases of the disease. Activated T cells and some cytokines contribute to the conversion of FLS into cells with metabolic abnormalities and pro-inflammatory phenotypes. This conversion may be one of the potential mechanisms behind altered FLS metabolism. Targeting metabolism can inhibit FLS proliferation, providing relief to patients with RA. In this review, we aimed to summarize the evidence of metabolic changes in FLS in RA, analyze the mechanisms of these metabolic alterations, and assess their effect on RA phenotype. Finally, we aimed to summarize the advances and challenges faced in targeting FLS metabolism as a promising therapeutic strategy for RA in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Lalrinawma TSK, Sangma JT, Renthlei Z, Trivedi AK. Restraint stress-induced effects on learning, memory, cognition, and expression of transcripts in different brain regions of mice. Mol Biol Rep 2024; 51:278. [PMID: 38319482 DOI: 10.1007/s11033-024-09224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Stress is one of the prevalent factors influencing cognition. Several studies examined the effect of mild or chronic stress on cognition. However, most of these studies are limited to a few behavioral tests or the expression of selected RNA/proteins markers in a selected brain region. METHODS This study examined the effect of restraint stress on learning, memory, cognition, and expression of transcripts in key learning centers. Male mice were divided into three groups (n = 6/group)-control group, stress group (adult stressed group; S), and F1 group (parental stressed group). Stress group mice were subjected to physical restraint stress for 2 h before light offset for 2 weeks. The F1 group comprised adult male mice born of stressed parents. All animals were subjected to different tests and were sacrificed at the end. Transcription levels of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (TrkB), Growth Associated Protein 43 (Gap-43), Neurogranin (Ng), cAMP Response Element-Binding Protein (Creb), Glycogen synthase kinase-3β (Gsk3β), Interleukine-1 (IL-1) and Tumour necrosis factor-α (Tnf-α) were studied. RESULTS Results show that both adult and parental stress negatively affect learning, memory and cognition, as reflected by taking longer time to achieve the task or showing reduced exploratory behavior. Expression of Bdnf, TrkB, Gsk3β and Ng was downregulated, while IL-1 and Tnf-α were upregulated in the brain's cortex, thalamus, and hippocampus region of stressed mice. These effects seem to be relatively less severe in the offspring of stressed parents. CONCLUSIONS The findings suggest that physical restraint stress can alter learning, memory, cognition, and expression of transcripts in key learning centers of brain.
Collapse
Affiliation(s)
| | - James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
5
|
Yaribeygi H, Maleki M, Sathyapalan T, Rizzo M, Sahebkar A. Cognitive Benefits of Sodium-Glucose Co-Transporters-2 Inhibitors in the Diabetic Milieu. Curr Med Chem 2024; 31:138-151. [PMID: 36733247 DOI: 10.2174/0929867330666230202163513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 02/04/2023]
Abstract
Patients with diabetes are at higher risk of cognitive impairment and memory loss than the normal population. Thus, using hypoglycemic agents to improve brain function is important for diabetic patients. Sodium-glucose cotransporters-2 inhibitors (SGLT2i) are a class of therapeutic agents used in the management of diabetes that has some pharmacologic effects enabling them to fight against the onset and progress of memory deficits. Although the exact mediating pathways are not well understood, emerging evidence suggests that SGLT2 inhibition is associated with improved brain function. This study reviewed the possible mechanisms and provided evidence suggesting SGLT2 inhibitors could ameliorate cognitive deficits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Fang S, Wu Z, Guo Y, Zhu W, Wan C, Yuan N, Chen J, Hao W, Mo X, Guo X, Fan L, Li X, Chen J. Roles of microglia in adult hippocampal neurogenesis in depression and their therapeutics. Front Immunol 2023; 14:1193053. [PMID: 37881439 PMCID: PMC10597707 DOI: 10.3389/fimmu.2023.1193053] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Adult hippocampal neurogenesis generates functional neurons from neural progenitor cells in the hippocampal dentate gyrus (DG) to complement and repair neurons and neural circuits, thus benefiting the treatment of depression. Increasing evidence has shown that aberrant microglial activity can disrupt the appropriate formation and development of functional properties of neurogenesis, which will play a crucial role in the occurrence and development of depression. However, the mechanisms of the crosstalk between microglia and adult hippocampal neurogenesis in depression are not yet fully understood. Therefore, in this review, we first introduce recent discoveries regarding the roles of microglia and adult hippocampal neurogenesis in the etiology of depression. Then, we systematically discuss the possible mechanisms of how microglia regulate adult hippocampal neurogenesis in depression according to recent studies, which involve toll-like receptors, microglial polarization, fractalkine-C-X3-C motif chemokine receptor 1, hypothalamic-pituitary-adrenal axis, cytokines, brain-derived neurotrophic factor, and the microbiota-gut-brain axis, etc. In addition, we summarize the promising drugs that could improve the adult hippocampal neurogenesis by regulating the microglia. These findings will help us understand the complicated pathological mechanisms of depression and shed light on the development of new treatment strategies for this disease.
Collapse
Affiliation(s)
- Shaoyi Fang
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhibin Wu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yali Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wenjun Zhu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunmiao Wan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Shenzhen People’s Hospital, 2Clinical Medical College, Jinan University, Shenzhen, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenzhi Hao
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaowei Mo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lili Fan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Maiese K. Clinical Depression, the Mechanistic Target of Rapamycin (mTOR), and Forkhead Transcription Factors (FoxOs). Curr Neurovasc Res 2023; 20:429-433. [PMID: 37767959 DOI: 10.2174/1567202620999230928124725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
|
8
|
Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. Brain insulin signaling and cognition: Possible links. EXCLI JOURNAL 2023; 22:237-249. [PMID: 36998706 PMCID: PMC10043452 DOI: 10.17179/excli2023-5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Poor cognitive ability is a consequence of a wide variety of neurobehavioral disorders and is a growing health problem, especially among the elderly and patients with diabetes. The precise underlying cause of this complication is not well-defined. However, recent studies have highlighted the possible role of insulin hormone signaling in brain tissue. Insulin is a metabolic peptide integral to whole body energy homeostasis; it does, however, have extrametabolic impacts, such as upon neuronal circuits. Therefore, it has been suggested that insulin signaling may modify cognitive ability by yet unknown pathways. In the current review, we discuss the cognitive role of brain insulin signaling and consider the possible links between brain insulin signaling and cognitive ability.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- *To whom correspondence should be addressed: Habib Yaribeygi, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran, E-mail:
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Luo TT, Wu YJ, Yin Q, Chen WG, Zuo J. The Involvement of Glucose and Lipid Metabolism Alteration in Rheumatoid Arthritis and Its Clinical Implication. J Inflamm Res 2023; 16:1837-1852. [PMID: 37131409 PMCID: PMC10149064 DOI: 10.2147/jir.s398291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Obviously, immune cells like T cells and macrophages play a major role in rheumatoid arthritis (RA). On one hand, the breakdown of immune homeostasis directly induces systemic inflammation; on the other hand, these cells initiate and perpetuate synovitis and tissue damages through the interaction with fibroblast-like synoviocytes (FLS). In recent years, the pathological link between metabolic disorders and immune imbalance has received increasing attention. High energy demand of immune cells leads to the accumulation of metabolic byproducts and inflammatory mediators. They act on various metabolism-sensitive signal pathways as well as relevant transcription factors, such as HIF-1α, and STATs. These molecular events will impact RA-related effectors like circulating immune cells and joint-resident cells in return, allowing the continuous progression of systemic inflammation, arthritic manifestations, and life-threatening complications. In other words, metabolic complications are secondary pathological factors for the progression of RA. Therefore, the status of energy metabolism may be an important indicator to evaluate RA severity, and in-depth explorations of the mechanisms underlying the mystery of how RA-related metabolic disorders develop will provide useful clues to further clarify the etiology of RA, and inspire the discovery of new anti-rheumatic targets. This article reviews the latest research progress on the interactions between immune and metabolism systems in the context of RA. Great importance is attached to the changes in certain pathways controlling both immune and metabolism functions during RA progression.
Collapse
Affiliation(s)
- Ting-Ting Luo
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Jian Zuo
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Correspondence: Jian Zuo, Email
| |
Collapse
|
10
|
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. FRONT BIOSCI-LANDMRK 2021; 26:614-627. [PMID: 34590471 PMCID: PMC8756734 DOI: 10.52586/4971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Introduction: Dementia and cognitive loss impact a significant proportion of the global population and present almost insurmountable challenges for treatment since they stem from multifactorial etiologies. Innovative avenues for treatment are highly warranted. Methods and results: Novel work with biological clock genes that oversee circadian rhythm may meet this critical need by focusing upon the pathways of the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the wingless Wnt pathway. These pathways are complex in nature, intimately associated with autophagy that can maintain circadian rhythm, and have an intricate relationship that can lead to beneficial outcomes that may offer neuroprotection, metabolic homeostasis, and prevention of cognitive loss. However, biological clocks and alterations in circadian rhythm also have the potential to lead to devastating effects involving tumorigenesis in conjunction with pathways involving Wnt that oversee angiogenesis and stem cell proliferation. Conclusions: Current work with biological clocks and circadian rhythm pathways provide exciting possibilities for the treating dementia and cognitive loss, but also provide powerful arguments to further comprehend the intimate and complex relationship among these pathways to fully potentiate desired clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
11
|
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou W, Sun X, Wu M. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3619-3641. [PMID: 34447243 PMCID: PMC8384151 DOI: 10.2147/dddt.s310686] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Icariin is a biologically active substance in Epimedii herba that is used for the treatment of neurologic disorders. However, a comprehensive analysis of the molecular mechanisms of icariin is lacking. In this review, we present a brief history of the use of icariin for medicinal purposes; describe the active chemical components of Epimedii herba; and examine the evidence from experimental studies that have uncovered molecular targets of icariin in different diseases. We also constructed a protein–protein interaction network and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses to predict the therapeutic actions of icariin in nervous system diseases including Alzheimer disease, Parkinson disease, ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic paraplegias. The results of our analyses can guide future studies on the application of icariin to the treatment of neurologic disorders.
Collapse
Affiliation(s)
- Shuangqiu Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jiarui Ma
- Provincial Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Yanqi Zeng
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuxuan Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Wenjuan Zhou
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xiaohe Sun
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11:1002. [PMID: 34356626 PMCID: PMC8301848 DOI: 10.3390/biom11071002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative disorders affect fifteen percent of the world's population and pose a significant financial burden to all nations. Cognitive impairment is the seventh leading cause of death throughout the globe. Given the enormous challenges to treat cognitive disorders, such as Alzheimer's disease, and the inability to markedly limit disease progression, circadian clock gene pathways offer an exciting strategy to address cognitive loss. Alterations in circadian clock genes can result in age-related motor deficits, affect treatment regimens with neurodegenerative disorders, and lead to the onset and progression of dementia. Interestingly, circadian pathways hold an intricate relationship with autophagy, the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), and the trophic factor erythropoietin. Autophagy induction is necessary to maintain circadian rhythm homeostasis and limit cortical neurodegenerative disease, but requires a fine balance in biological activity to foster proper circadian clock gene regulation that is intimately dependent upon mTOR, SIRT1, FoxOs, and growth factor expression. Circadian rhythm mechanisms offer innovative prospects for the development of new avenues to comprehend the underlying mechanisms of cognitive loss and forge ahead with new therapeutics for dementia that can offer effective clinical treatments.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
13
|
Samson F, He W, Sripathi SR, Patrick AT, Madu J, Chung H, Frost MC, Jee D, Gutsaeva DR, Jahng WJ. Dual Switch Mechanism of Erythropoietin as an Antiapoptotic and Pro-Angiogenic Determinant in the Retina. ACS OMEGA 2020; 5:21113-21126. [PMID: 32875248 PMCID: PMC7450639 DOI: 10.1021/acsomega.0c02763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 05/07/2023]
Abstract
Constant or intense light degenerates the retina and retinal pigment epithelial cells. Light generates reactive oxygen species and nitric oxide leading to initial reactions of retinal degeneration. Apoptosis is the primary mechanism of abnormal death of photoreceptors, retinal ganglion cells, or retinal pigment epithelium (RPE) in degenerative retinal diseases, including diabetic retinopathy and age-related macular degeneration. The current study evaluated the function of erythropoietin (EPO) on angiogenesis and apoptosis in the retina and RPE under oxidative stress. We determined the pro-angiogenic and antiapoptotic mechanism of EPO under stress conditions using a conditional EPO knockdown model using siRNA, EPO addition, proteomics, immunocytochemistry, and bioinformatic analysis. Our studies verified that EPO protected retinal cells from light-, hypoxia-, hyperoxia-, and hydrogen peroxide-induced apoptosis through caspase inhibition, whereas up-regulated angiogenic reactions through vascular endothelial growth factor (VEGF) and angiotensin pathway. We demonstrated that the EPO expression in the retina and subsequent serine/threonine/tyrosine kinase phosphorylations might be linked to oxidative stress response tightly to determining angiogenesis and apoptosis. Neuroprotective roles of EPO may involve the balance between antiapoptotic and pro-angiogenic signaling molecules, including BCL-xL, c-FOS, caspase-3, nitric oxide, angiotensin, and VEGF receptor. Our data indicate a new therapeutic application of EPO toward retinal degeneration based on the dual roles in apoptosis and angiogenesis at the molecular level under oxidative stress.
Collapse
Affiliation(s)
| | - Weilue He
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton 49931, United States
| | - Srinivas R. Sripathi
- Department
of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ambrose Teru Patrick
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Joshua Madu
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Hyewon Chung
- Department
of Ophthalmology, School of Medicine, Konkuk
University, Seoul 05030, Korea
| | - Megan C. Frost
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton 49931, United States
| | - Donghyun Jee
- Division
of Vitreous and Retina, Department of Ophthalmology, St. Vincent’s
Hospital, College of Medicine, The Catholic
University of Korea, Suwon 16247, Korea
| | - Diana R. Gutsaeva
- Department
of Ophthalmology, Augusta University, Augusta, Georgia 30912, United States
| | - Wan Jin Jahng
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| |
Collapse
|
14
|
Characterizing the psychiatric drug responses of Reddit users from a socialomics perspective. J Informetr 2020. [DOI: 10.1016/j.joi.2020.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Xu L, Nan J, Lan Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front Neural Circuits 2020; 14:37. [PMID: 32694984 PMCID: PMC7338554 DOI: 10.3389/fncir.2020.00037] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
The comorbidity of depression and addiction has become a serious public health issue, and the relationship between these two disorders and their potential mechanisms has attracted extensive attention. Numerous studies have suggested that depression and addiction share common mechanisms and anatomical pathways. The nucleus accumbens (NAc) has long been considered a key brain region for regulating many behaviors, especially those related to depression and addiction. In this review article, we focus on the association between addiction and depression, highlighting the potential mediating role of the NAc in this comorbidity via the regulation of changes in the neural circuits and molecular signaling. To clarify the mechanisms underlying this association, we summarize evidence from overlapping reward neurocircuitry, the resemblance of cellular and molecular mechanisms, and common treatments. Understanding the interplay between these disorders should help guide clinical comorbidity prevention and the search for a new target for comorbidity treatment.
Collapse
Affiliation(s)
- Le Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| |
Collapse
|
16
|
Fan X, Zhao Z, Wang D, Xiao J. Glycogen synthase kinase-3 as a key regulator of cognitive function. Acta Biochim Biophys Sin (Shanghai) 2020; 52:219-230. [PMID: 32147679 DOI: 10.1093/abbs/gmz156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved and multifunctional serine/threonine protein kinase widely distributed in eukaryotic cells. GSK-3 is originally thought to be an enzyme that regulates glycogen synthesis. It was subsequently found that GSK-3 influences many critical cellular functions, such as cell structure, neural plasticity, gene expression, and neuronal survival. Recently, GSK-3 has been found to be associated with cognition, and its dysregulation leads to cognitive impairments in many diseases, including Alzheimer's disease, diabetes, depression, Parkinson's disease, and others. In this review, we summarized the current knowledge about the structure of GSK-3, the regulation of GSK-3 activity, and its role in cognitive function and cognitive-related disease.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zhenyu Zhao
- Department of Anesthesiology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410000, China
| | - Deming Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Ji Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
17
|
Cuellar-Barboza AB, Sánchez-Ruiz JA, Rodriguez-Sanchez IP, González S, Calvo G, Lugo J, Costilla-Esquivel A, Martínez LE, Ibarra-Ramirez M. Gene expression in peripheral blood in treatment-free major depression. Acta Neuropsychiatr 2020; 32:1-10. [PMID: 32039744 DOI: 10.1017/neu.2020.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Peripheral gene expression of several molecular pathways has been studied in major depressive disorder (MDD) with promising results. We sought to investigate some of these genes in a treatment-free Latino sample of Mexican descent. MATERIAL AND METHODS The sample consisted of 50 MDD treatment-free cases and 50 sex and age-matched controls. Gene expression of candidate genes of neuroplasticity (BDNF, p11, and VGF), inflammation (IL1A, IL1B, IL4, IL6, IL7, IL8, IL10, MIF, and TNFA), the canonical Wnt signaling pathway (TCF7L2, APC, and GSK3B), and mTOR, was compared in cases and controls. RNA was obtained from blood samples. We used bivariate analyses to compare subjects versus control mean mRNA quantification of target genes and lineal regression modelling to test for effects of age and body mass index on gene expression. RESULTS Most subjects were female (66%) with a mean age of 26.7 (SD 7.9) years. Only GSK3B was differentially expressed between cases and controls at a statistically significant level (p = 0.048). TCF7L-2 showed the highest number of correlations with MDD-related traits, yet these were modest in size. DISCUSSION GSK3B encodes a moderator of the canonical Wnt signaling pathway. It has a role in neuroplasticity, neuroprotection, depression, and other psychiatric phenotypes. We found that adding population diversity has the potential to elicit distinct peripheral gene expression markers in MDD and MDD-related traits. However, our results should only be considered as hypothesis-generating research that merits further replication in larger cohorts of similar ancestry.
Collapse
Affiliation(s)
- Alfredo B Cuellar-Barboza
- Department of Psychiatry, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Jorge A Sánchez-Ruiz
- Department of Psychiatry, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Iram P Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Sarai González
- Department of Psychiatry, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Geovana Calvo
- Department of Genetics, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
| | - José Lugo
- Department of Genetics, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Antonio Costilla-Esquivel
- Department of Psychiatry, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
- Centro de Investigación en Matemáticas A.C. (CIMAT), Monterrey, México
| | - Laura E Martínez
- Department of Genetics, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Marisol Ibarra-Ramirez
- Department of Genetics, University Hospital, Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
18
|
Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 2018; 19:783-791. [PMID: 30535469 PMCID: PMC6323245 DOI: 10.3892/mmr.2018.9713] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of this review is to summarize the research progress of PI3K/Akt signaling pathway in erythropoiesis and glycolysis. Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is activated by numerous genes and leads to protein kinase B (Akt) binding to the cell membrane, with the help of phosphoinositide-dependent kinase, in the PI3K/Akt signal transduction pathway. Threonine and serine phosphorylation contribute to Akt translocation from the cytoplasm to the nucleus and further mediates enzymatic biological effects, including those involved in cell proliferation, apoptosis inhibition, cell migration, vesicle transport and cell cancerous transformation. As a key downstream protein of the PI3K/Akt signaling pathway, hypoxia-inducible factor (HIF)-1 is closely associated with the concentration of oxygen in the environment. Maintaining stable levels of HIF-1 protein is critical under normoxic conditions; however, HIF-1 levels quickly increase under hypoxic conditions. HIF-1α is involved in the acute hypoxic response associated with erythropoietin, whereas HIF-2α is associated with the response to chronic hypoxia. Furthermore, PI3K/Akt can reduce the synthesis of glycogen and increase glycolysis. Inhibition of glycogen synthase kinase 3β activity by phosphorylation of its N-terminal serine increases accumulation of cyclin D1, which promotes the cell cycle and improves cell proliferation through the PI3K/Akt signaling pathway. The PI3K/Akt signaling pathway is closely associated with a variety of enzymatic biological effects and glucose metabolism.
Collapse
Affiliation(s)
- Youbang Xie
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xuefeng Shi
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Kuo Sheng
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Guoxiong Han
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Wenqian Li
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Qiangqiang Zhao
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Baili Jiang
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jianming Feng
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jianping Li
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Yuhai Gu
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
19
|
Inkster B, Simmons A, Cole J, Schoof E, Linding R, Nichols T, Muglia P, Holsboer F, Saemann P, McGuffin P, Fu C, Miskowiak K, Matthews PM, Zai G, Nicodemus K. Unravelling the GSK3β-related genotypic interaction network influencing hippocampal volume in recurrent major depressive disorder. Psychiatr Genet 2018; 28:77-84. [PMID: 30080747 PMCID: PMC6531290 DOI: 10.1097/ypg.0000000000000203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Glycogen synthase kinase 3β (GSK3β) has been implicated in mood disorders. We previously reported associations between a GSK3β polymorphism and hippocampal volume in major depressive disorder (MDD). We then reported similar associations for a subset of GSK3β-regulated genes. We now investigate an algorithm-derived comprehensive list of genes encoding proteins that directly interact with GSK3β to identify a genotypic network influencing hippocampal volume in MDD. PARTICIPANTS AND METHODS We used discovery (N=141) and replication (N=77) recurrent MDD samples. Our gene list was generated from the NetworKIN database. Hippocampal measures were derived using an optimized Freesurfer protocol. We identified interacting single nucleotide polymorphisms using the machine learning algorithm Random Forest and verified interactions using likelihood ratio tests between nested linear regression models. RESULTS The discovery sample showed multiple two-single nucleotide polymorphism interactions with hippocampal volume. The replication sample showed a replicable interaction (likelihood ratio test: P=0.0088, replication sample; P=0.017, discovery sample; Stouffer's combined P=0.0007) between genes associated previously with endoplasmic reticulum stress, calcium regulation and histone modifications. CONCLUSION Our results provide genetic evidence supporting associations between hippocampal volume and MDD, which may reflect underlying cellular stress responses. Our study provides evidence of biological mechanisms that should be further explored in the search for disease-modifying therapeutic targets for depression.
Collapse
Affiliation(s)
- Becky Inkster
- Department of Psychiatry, University of Cambridge, UK
- Wolfson College, University of Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, UK
| | - Andy Simmons
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - James Cole
- The Computational, Cognitive & Clinical Neuroimaging Lab, Department of Medicine, Imperial College London, UK
| | - Erwin Schoof
- Biotech Research & Innovation Centre, University of Copenhagen
| | - Rune Linding
- Biotech Research & Innovation Centre, University of Copenhagen
| | - Tom Nichols
- Department of Statistics, Warwick University, UK
| | - Pierandrea Muglia
- Genetics Division, Drug Discovery, Medicine Development Centre, GlaxoSmithKline, R&D, Verona, Italy
| | | | | | - Peter McGuffin
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - Cynthia Fu
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - Kamilla Miskowiak
- Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Paul M Matthews
- Department of Medicine, Imperial College London and UK Dementia Research Institute
| | - Gwyneth Zai
- Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, and Mood & Anxiety Division, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Kristin Nicodemus
- Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK
| |
Collapse
|