1
|
Dhiman A, Choudhary D, Mehan S, Maurya PK, Sharma AK, Kumar A, Mukherjee R, Gupta S, Khan Z, Gupta GD, Narula AS. Therapeutic potential of Baicalin against experimental obsessive compulsive disorder: Evidence from CSF, blood plasma, and brain analysis. J Neuroimmunol 2025; 403:578598. [PMID: 40168745 DOI: 10.1016/j.jneuroim.2025.578598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Obsessive-Compulsive Disorder (OCD) is a complex neuropsychiatric condition characterized by recurrent obsessions and compulsions, significantly impacting an individual's functionality and quality of life. This study aimed to explore the neuroprotective and therapeutic potential of baicalin, a flavonoid with known antioxidant, anti-inflammatory, and neurotropic properties, in an animal model of OCD induced by 8-OH-DPAT (8HPAT). The research utilized in silico docking studies and in vivo experiments to assess baicalin's interactions with key intracellular targets: SIRT-1, Nrf2, HO-1, and PPAR-gamma, and its effects on neurochemical, neurobehavioral, and histopathological parameters. In silico results indicated a strong binding affinity of baicalin for SIRT-1, Nrf2, HO-1, and PPAR-gamma, suggesting potential regulatory roles in antioxidant and anti-inflammatory pathways. In-vivo findings demonstrated that baicalin, administered at doses of 50 mg/kg and 100 mg/kg, significantly alleviated OCD-like behaviours, including excessive lever pressing, marble burying, and compulsive checking. Baicalin treatment normalized serotonin and dopamine levels and reduced glutamate levels in the brain, restoring neurotransmitter balance. Furthermore, baicalin decreased inflammatory cytokines (TNF-alpha and IL-1 beta), improved complete blood count profile, and gross morphological and histopathological alterations by restoring neuronal density and cellular integrity in affected brain regions. Combining baicalin with fluvoxamine (10 mg/kg) showed synergistic effects, further enhancing neuroprotective outcomes. These results suggest that baicalin holds promise as a potential therapeutic agent for OCD, warranting further clinical investigation to explore its efficacy and underlying mechanisms in human subjects. The findings underscore the importance of targeting intracellular pathways and neurotransmitter systems in developing effective treatments for OCD and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abhinay Dhiman
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India.
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Arun Kumar Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Moreau AL, Hansen I, Bogdan R. A systematic review of structural neuroimaging markers of psychotherapeutic and pharmacological treatment for obsessive-compulsive disorder. Front Psychiatry 2025; 15:1432253. [PMID: 40018086 PMCID: PMC11865061 DOI: 10.3389/fpsyt.2024.1432253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025] Open
Abstract
Identifying individual difference factors associated with treatment response and putative mechanisms of therapeutic change may improve treatment for Obsessive Compulsive Disorder (OCD). Our systematic review of structural neuroimaging markers (i.e., morphometry, structural connectivity) of psychotherapy and medication treatment response for OCD identified 26 eligible publications from 20 studies (average study total n=54 ± 41.6 [range: 11-175]; OCD group n=29 ± 19) in child, adolescent, and adult samples evaluating baseline brain structure correlates of treatment response as well as treatment-related changes in brain structure. Findings were inconsistent across studies; significant associations within the anterior cingulate cortex (3/5 regional, 2/8 whole brain studies) and orbitofrontal cortex (5/10 regional, 2/7 whole brain studies) were most common, but laterality and directionality were not always consistent. Structural neuroimaging markers of treatment response do not currently hold clinical utility. Given increasing evidence that associations between complex behavior and brain structure are characterized by small, but potentially meaningful, effects, much larger samples are likely needed. Multivariate approaches (e.g., machine learning) may also improve the clinical predictive utility of neuroimaging data.
Collapse
Affiliation(s)
- Allison L. Moreau
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, United States
| | | | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
3
|
Koch K, Manrique DR, Gigl S, Ruan H, Gürsel DA, Rus-Oswald G, Reess T, Berberich G. Decoding Obsessive-Compulsive Disorder: The Regional Vulnerability Index and Its Association With Clinical Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00036-9. [PMID: 39914728 DOI: 10.1016/j.bpsc.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Patients with obsessive-compulsive disorder (OCD) exhibit notable alterations in brain structure, which are likely to be of clinical relevance. Recently, in schizophrenia, the regional vulnerability index (RVI) was introduced to translate findings from ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) studies to the individual level. Building on this framework, in the current study, we sought to investigate whether the RVI might also serve as a vulnerability index for OCD. METHODS Toward this aim, we assessed subcortical volume and cortical thickness in a sample of 250 participants (140 patients with OCD, 110 healthy volunteers) and calculated the RVI by leveraging ENIGMA-derived deficits as the "ground truth" for expected regional brain alterations. RESULTS Subcortical volume and cortical thickness RVI values were significantly different in patients compared with healthy control participants. In addition, RVI values based on subcortical volume were significantly correlated with the severity of clinical symptoms. Moreover, RVI values for both subcortical volume and cortical thickness were significantly different in medicated subgroups while there was no significant difference in unmedicated patients. CONCLUSIONS The current results suggest that the RVI may represent an individual characteristic that reflects the degree of correspondence between individual patterns of structural alterations and disease-characteristic patterns of structural alterations. However, our findings also indicate that relatively large effect sizes in the meta-analytic ground truth are a prerequisite for obtaining a meaningful RVI parameter that can also be related to clinical severity. Therefore, the current findings require further validation through additional research to confirm the RVI's robustness and determine its predictive value.
Collapse
Affiliation(s)
- Kathrin Koch
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany.
| | - Daniela Rodriguez Manrique
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, Germany
| | - Sandra Gigl
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Hanyang Ruan
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Deniz A Gürsel
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Georgiana Rus-Oswald
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany; Department of Clinical Psychology, Leiden University, Leiden, the Netherlands
| | - Tim Reess
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| |
Collapse
|
4
|
Pastre M, Occéan B, Boudousq V, Conejero I, Fabbro‐Peray P, Collombier L, Mallet L, Lopez‐Castroman J. Serotonergic underpinnings of obsessive-compulsive disorder: A systematic review and meta-analysis of neuroimaging findings. Psychiatry Clin Neurosci 2025; 79:48-59. [PMID: 39511769 PMCID: PMC11789457 DOI: 10.1111/pcn.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a frequent and disabling condition, with many patients being treatment-resistant. Improved understanding of its neurobiology is vital for better therapies. Evidence is still conflicting regarding specific serotonergic-related dysfunctions in OCD. We systematically reviewed the literature to provide a quantitative assessment of the role of serotonin (5-HT) in patients with untreated OCD through imaging. We searched for neuroimaging studies investigating central 5-HT tonus in unmedicated patients with OCD, excluding studies comprising treated patients to prevent bias from antidepressant-induced changes in serotonergic tonus. We also conducted a meta-analysis using a homogeneous group of positron emission tomography and single photon emission computed tomography articles that compared 5-HT transporter (SERT) and 5-HT2A receptor (HT2AR) binding potential in different brain regions of patients with untreated OCD and healthy controls. The systematic review encompassed 18 articles, with 13 included in the subsequent meta-analysis. Risk of bias was assessed by a revised form of the Newcastle-Ottawa Scale. We provided standardized mean difference (SMD) values for SERT and 5-HT2AR binding potential measures across 15 different brain regions. Patients with OCD showed lower SERT binding potential in the brainstem (SMD = -1.13, 95% CI [-1.81 to -0.46]), midbrain (SMD = -0.54, 95% CI [-0.92 to -0.16]), and thalamus/hypothalamus regions (SMD = -0.58, 95% CI [-0.99 to -0.18]) with neglectable to moderate heterogeneity. By combining results from 2 decades of molecular imaging studies, we show that individuals with OCD exhibit lower SERT binding potential in specific brain regions, providing compelling evidence of a 5-HT system dysfunction. However, the exact mechanisms underlying this phenotype remain elusive. The limitations include heterogeneity across studies in populations, imaging techniques, and radiotracer usage.
Collapse
Affiliation(s)
| | - Bob‐Valéry Occéan
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique Innovation et Méthodologie (BESPIM)CHU NimesNimesFrance
| | - Vincent Boudousq
- Département de Médecine Nucléaire et Biophysique MédicaleCHU NimesNimesFrance
| | | | - Pascale Fabbro‐Peray
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique Innovation et Méthodologie (BESPIM)CHU NimesNimesFrance
| | - Laurent Collombier
- Département de Médecine Nucléaire et Biophysique MédicaleCHU NimesNimesFrance
| | - Luc Mallet
- Université Paris‐Est Créteil, DMU IMPACT, Département Médical‐Universitaire de Psychiatrie et d'AddictologieHôpitaux Universitaires Henri Mondor‐Albert Chenevier, Assistance Publique‐Hôpitaux de ParisCréteilFrance
- Institut du Cerveau‐Paris Brain Institute–ICMSorbonne Université, Inserm, CNRSParisFrance
- Department of Mental Health and Psychiatry, Global Health InstituteUniversity of GenevaGenevaSwitzerland
| | - Jorge Lopez‐Castroman
- Department of PsychiatryCHU NimesNimesFrance
- CIBERSAM, ISCIIIMadridSpain
- Department of Psychiatry, Radiology, Public Health, Nursing and MedicineUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
5
|
Lima Santos JP, Versace A, Arora M, Bertocci MA, Chase HW, Skeba A, Graur S, Bonar L, Maffei C, Yendiki A, Rasmussen SA, Haber SN, Phillips ML. Examining relationships among NODDI indices of white matter structure in prefrontal cortical-thalamic-striatal circuitry and OCD symptomatology. Transl Psychiatry 2024; 14:410. [PMID: 39358342 PMCID: PMC11447092 DOI: 10.1038/s41398-024-03101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Obsessive-compulsive disorder is a psychiatric disorder characterized by intrusive thoughts and repetitive behaviors. There are two prominent features: Harm Avoidance (HA) and Incompleteness (INC). Previous resting-state studies reported abnormally elevated connectivity between prefrontal cortical (PFC) and subcortical regions (thalamus, striatum) in OCD participants. Yet, little is known about the white matter (WM) structural abnormalities in these connections. Using brain parcellation and segmentation, whole brain tractography, and Neurite Orientation Dispersion and Density Imaging (NODDI), we aimed to characterize WM structural abnormalities in OCD vs. healthy controls and determine the extent to which NODDI indices of these connections were associated with subthreshold-threshold HA, INC and overall OCD symptom severity across all participants. Four PFC regions were segmented: ventral medial (vmPFC), ventrolateral (vlPFC), dorsomedial (dmPFC), and dorsolateral (dlPFC). NODDI Neurite Density (NDI) and Orientation Dispersion (ODI) indices of WM structure were extracted from connections between these PFC regions and the thalamus (42 OCD, 44 healthy controls, mean age[SD] = 23.65[4.25]y, 63.9% female) and striatum (38 OCD, 41 healthy controls, mean age[SD] = 23.59[4.27]y, 64.5% female). Multivariate analyses of covariance revealed no between-group differences in these indices. Multivariate regression models revealed that greater NDI in vmPFC-thalamus, greater NDI and ODI in vmPFC-striatum, and greater NDI in dmPFC-thalamus connections were associated with greater INC severity (Q ≤ 0.032). These findings highlight the utility of NODDI in the examination of WM structure in OCD, provide valuable insights into specific WM alterations underlying dimensional INC, and can facilitate the development of customized treatments for OCD individuals with treatment-resistant symptoms.
Collapse
Affiliation(s)
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manan Arora
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alex Skeba
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Bonar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiara Maffei
- Department of Radiology, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Yendiki
- Department of Radiology, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne N Haber
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Tomiyama H, Murayama K, Nemoto K, Kato K, Matsuo A, Kang M, Sashikata K, Togao O, Nakao T. No significant alteration in white matter microstructure in first-degree relatives of patients with obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2024; 344:111884. [PMID: 39236485 DOI: 10.1016/j.pscychresns.2024.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by structural alteration within white matter tissues of cortico-striato-thalamo-cortical, temporal and occipital circuits. However, the presence of microstructural changes in the white matter tracts of unaffected first-degree relatives of patients with OCD as a vulnerability marker remains unclear. Therefore, here, diffusion-tensor magnetic resonance imaging (DTI) data were obtained from 29 first-degree relatives of patients with OCD and 59 healthy controls. We investigated the group differences in FA using whole-brain analysis (DTI analysis). For additional regions of interest (ROI) analysis, we focused on the posterior thalamic radiation and sagittal stratum, shown in recent meta-analysis of patients with OCD. In both whole-brain and ROI analyses, using a strict statistical threshold (family-wise error rate [FWE] corrected p<.05 for whole-brain analyses, and p<.0125 (0.05/4) with Bonferroni correction for ROI analyses), we found no significant group differences in FA. Subtle reductions were observed in the anterior corona radiata, forceps minor, cingulum bundle, and corpus callosum only when a lenient statistical was applied (FWE corrected p<.20). These findings suggest that alterations in the white matter microstructure of first-degree relatives, as potential vulnerability markers for OCD, are likely subtle.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Kyushu University Hospital, Japan.
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Akira Matsuo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Mingi Kang
- Department of Psychology, Kyushu University, Japan
| | | | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
7
|
Yang X, Shang T, Ding Z, Qin X, Qi J, Han J, Lv D, Li T, Ma J, Zhan C, Xiao J, Sun Z, Wang N, Yu Z, Li C, Meng X, Chen Y, Li P. Abnormal structure and function of white matter in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111061. [PMID: 38901756 DOI: 10.1016/j.pnpbp.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/19/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Abnormal structure and function of gray matter (GM) have been discovered in the cortico-striatal-thalamic-cortical (CSTC) circuit in obsessive-compulsive disorder (OCD). The GM structure and function may be influenced by the structure and function of the white matter (WM). Therefore, it is crucial to explore the characteristics of WM in OCD. METHODS Diffusion tensor imaging and resting-state functional magnetic resonance imaging data of 52 patients with OCD and 39 healthy controls (HCs) were collected. The tract-based spatial statistics, amplitude of low-frequency fluctuations (ALFF), and structural-functional coupling approaches were utilized to explore the WM structure and function. Furthermore, the relationship between the abnormal WM structure and function and clinical symptoms of OCD was investigated using Pearson's correlation. Support vector machine was performed to evaluate whether patients with OCD could be identified with the changed WM structure and function. RESULTS Compared to HCs, the lower fractional anisotropy (FA) values of four clusters including the superior corona radiata, anterior corona radiata, right superior longitudinal fasciculus, corpus callosum, left posterior corona radiata, fornix, and the right anterior limb of internal capsule, reduced ALFF/FA ratio in the left anterior thalamic radiation (ATR), and the decreased functional connectivity between the left ATR and the left dorsal lateral prefrontal cortex within CSTC circuit at rest were observed in OCD. The decreased ALFF/FA ratio in the left ATR negatively correlated with Yale-Brown Obsessive-Compulsive Scale obsessive thinking scores and Hamilton Anxiety Rating Scale scores in OCD. Furthermore, the features that combined the abnormal WM structure and function performed best in distinguishing OCD from HCs with the appropriate accuracy (0.80), sensitivity (0.82), as well as specificity (0.80). CONCLUSION Current research discovered changed WM structure and function in OCD. Furthermore, abnormal WM structural-functional coupling may lead to aberrant GM connectivity within the CSTC circuit at rest in OCD. TRIAL REGISTRATION Study on the mechanism of brain network in obsessive-compulsive disorder with multi-model magnetic resonance imaging (ChiCTR-COC-17013301).
Collapse
Affiliation(s)
- Xu Yang
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Tinghuizi Shang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zhipeng Ding
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Xiaoqing Qin
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jiale Qi
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jiaqi Han
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang 150050, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang 150050, China
| | - Jian Xiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Na Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zengyan Yu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Xiangyu Meng
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang 150050, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| |
Collapse
|
8
|
Owens-Walton C, Nir TM, Al-Bachari S, Ambrogi S, Anderson TJ, Aventurato ÍK, Cendes F, Chen YL, Ciullo V, Cook P, Dalrymple-Alford JC, Dirkx MF, Druzgal J, Emsley HCA, Guimarães R, Haroon HA, Helmich RC, Hu MT, Johansson ME, Kim HB, Klein JC, Laansma M, Lawrence KE, Lochner C, Mackay C, McMillan CT, Melzer TR, Nabulsi L, Newman B, Opriessnig P, Parkes LM, Pellicano C, Piras F, Piras F, Pirpamer L, Pitcher TL, Poston KL, Roos A, Silva LS, Schmidt R, Schwingenschuh P, Shahid-Besanti M, Spalletta G, Stein DJ, Thomopoulos SI, Tosun D, Tsai CC, van den Heuvel OA, van Heese E, Vecchio D, Villalón-Reina JE, Vriend C, Wang JJ, Wu YR, Yasuda CL, Thompson PM, Jahanshad N, van der Werf Y. A worldwide study of white matter microstructural alterations in people living with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:151. [PMID: 39128907 PMCID: PMC11317500 DOI: 10.1038/s41531-024-00758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
The progression of Parkinson's disease (PD) is associated with microstructural alterations in neural pathways, contributing to both motor and cognitive decline. However, conflicting findings have emerged due to the use of heterogeneous methods in small studies. Here we performed a large diffusion MRI study in PD, integrating data from 17 cohorts worldwide, to identify stage-specific profiles of white matter differences. Diffusion-weighted MRI data from 1654 participants diagnosed with PD (age: 20-89 years; 33% female) and 885 controls (age: 19-84 years; 47% female) were analyzed using the ENIGMA-DTI protocol to evaluate white matter microstructure. Skeletonized maps of fractional anisotropy (FA) and mean diffusivity (MD) were compared across Hoehn and Yahr (HY) disease groups and controls to reveal the profile of white matter alterations at different stages. We found an enhanced, more widespread pattern of microstructural alterations with each stage of PD, with eventually lower FA and higher MD in almost all regions of interest: Cohen's d effect sizes reached d = -1.01 for FA differences in the fornix at PD HY Stage 4/5. The early PD signature in HY stage 1 included higher FA and lower MD across the entire white matter skeleton, in a direction opposite to that typical of other neurodegenerative diseases. FA and MD were associated with motor and non-motor clinical dysfunction. While overridden by degenerative changes in the later stages of PD, early PD is associated with paradoxically higher FA and lower MD in PD, consistent with early compensatory changes associated with the disorder.
Collapse
Grants
- R01 AG058854 NIA NIH HHS
- P41 EB015922 NIBIB NIH HHS
- R01NS107513 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 MH117601 NIMH NIH HHS
- R01 NS107513 NINDS NIH HHS
- U19 AG062418 NIA NIH HHS
- F32 MH122057 NIMH NIH HHS
- R01 AG059874 NIA NIH HHS
- U.S. Alzheimer’s Association (AARG-23-1149996)
- Health Research Council of New Zealand (20/538; 21/165)
- São Paulo Research Foundation FAPESP-BRAINN Grants# 2013-07559-3 / FAPESP #2022-1178-4
- São Paulo Research Foundation FAPESP-BRAINN Grant # 2013–07559-3.
- Health Research Council of New Zealand (20/538); Marsden Fund New Zealand (UOC2105); Neurological Foundation of New Zealand (2232 PRG); Research and Education Trust Pacific Radiology (MRIJDA).
- Grant from ParkinsonNL (P2023-14); Honoraria from Movement Disorders Society Quebec.
- NINDS R01NS107513
- Engineering and Physical Sciences Research Council (EPSRC) UK
- Parkinson's UK, Cure Parkinsons Trust, Oxford Biomedical Research Centre, GSK-Oxford IMCM.
- JK is supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), and the NIHR Oxford Health Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
- NIMH 32MH122057
- U19 AG062418
- Health Research Council of New Zealand (20/538); Neurological Foundation of New Zealand (2232 PRG); Research and Education Trust Pacific Radiology (MRIJDA).
- EPSRC UK, MRC UK, GE medical systems, Academy of Medical Sciences UK
- Italian Ministry of Health, grant number RF-2019-12370182
- Health Research Council of New Zealand (21/165)
- Personal fees from Bial, AbbVie and Boston Scientific.
- NIH/NIA
- São Paulo Research Foundation FAPESP-BRAINN Grant # 2013–07559-3; CNPQ (#315953/2021-7) National Council for Scientific and Technological Development
- U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01AG059874, R01MH117601, R01NS107513, R01AG058854, P41EB015922
Collapse
Affiliation(s)
- Conor Owens-Walton
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| | - Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | | | - Sonia Ambrogi
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Tim J Anderson
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Neurology Department, Te Whatu Ora-Health New Zealand Waitaha Canterbury, Christchurch, New Zealand
| | - Ítalo Karmann Aventurato
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Yao-Liang Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan, ROC
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Phil Cook
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John C Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Te Kura Mahi ā- Hirikapo | School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Michiel F Dirkx
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Hedley C A Emsley
- Lancaster Medical School, Lancaster University, Lancaster, UK
- Department of Neurology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Rachel Guimarães
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Hamied A Haroon
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Rick C Helmich
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michele T Hu
- Oxford Parkinson's Disease Centre, Nuffield, Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - Martin E Johansson
- Department of Neurology and Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ho Bin Kim
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre, Nuffield, Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - Max Laansma
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Katherine E Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Clare Mackay
- Oxford Parkinson's Disease Centre, Nuffield, Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford, UK
| | - Corey T McMillan
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Te Kura Mahi ā- Hirikapo | School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ben Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Peter Opriessnig
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Laura M Parkes
- Division of Psychology, Communication & Human Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Clelia Pellicano
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Lukas Pirpamer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Toni L Pitcher
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Kathleen L Poston
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Annerine Roos
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lucas Scárdua Silva
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Petra Schwingenschuh
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Marian Shahid-Besanti
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | | | - Dan J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan, ROC
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Odile A van den Heuvel
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva van Heese
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Julio E Villalón-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Chris Vriend
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging program, Amsterdam, The Netherlands
| | - Jiun-Jie Wang
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan, ROC
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
- Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan, ROC
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan, ROC
- Department of Neurology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Clarissa Lin Yasuda
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ysbrand van der Werf
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
- Amsterdam UMC, Dept. Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Vriend C, de Joode NT, Pouwels PJW, Liu F, Otaduy MCG, Pastorello B, Robertson FC, Ipser J, Lee S, Hezel DM, van Meter PE, Batistuzzo MC, Hoexter MQ, Sheshachala K, Narayanaswamy JC, Venkatasubramanian G, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG, Stein DJ, Wall M, Simpson HB, van den Heuvel OA. Age of onset of obsessive-compulsive disorder differentially affects white matter microstructure. Mol Psychiatry 2024; 29:1033-1045. [PMID: 38228890 PMCID: PMC11176057 DOI: 10.1038/s41380-023-02390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
Previous diffusion MRI studies have reported mixed findings on white matter microstructure alterations in obsessive-compulsive disorder (OCD), likely due to variation in demographic and clinical characteristics, scanning methods, and underpowered samples. The OCD global study was created across five international sites to overcome these challenges by harmonizing data collection to identify consistent brain signatures of OCD that are reproducible and generalizable. Single-shell diffusion measures (e.g., fractional anisotropy), multi-shell Neurite Orientation Dispersion and Density Imaging (NODDI) and fixel-based measures, were extracted from skeletonized white matter tracts in 260 medication-free adults with OCD and 252 healthy controls. We additionally performed structural connectome analysis. We compared cases with controls and cases with early (<18) versus late (18+) OCD onset using mixed-model and Bayesian multilevel analysis. Compared with healthy controls, adult OCD individuals showed higher fiber density in the sagittal stratum (B[SE] = 0.10[0.05], P = 0.04) and credible evidence for higher fiber density in several other tracts. When comparing early (n = 145) and late-onset (n = 114) cases, converging evidence showed lower integrity of the posterior thalamic radiation -particularly radial diffusivity (B[SE] = 0.28[0.12], P = 0.03)-and lower global efficiency of the structural connectome (B[SE] = 15.3[6.6], P = 0.03) in late-onset cases. Post-hoc analyses indicated divergent direction of effects of the two OCD groups compared to healthy controls. Age of OCD onset differentially affects the integrity of thalamo-parietal/occipital tracts and the efficiency of the structural brain network. These results lend further support for the role of the thalamus and its afferent fibers and visual attentional processes in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, and Department of Anatomy and Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands.
- Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands.
| | - Niels T de Joode
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, and Department of Anatomy and Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
- Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
- Brain Imaging, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
| | - Feng Liu
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Maria C G Otaduy
- LIM44, Hospital das Clinicas HCFMUSP, Instituto e Departamento de Radiologia da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruno Pastorello
- LIM44, Hospital das Clinicas HCFMUSP, Instituto e Departamento de Radiologia da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Frances C Robertson
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Seonjoo Lee
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Dianne M Hezel
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Page E van Meter
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Marcelo C Batistuzzo
- Obsessive-Compulsive Spectrum Disorders Program, LIM23, Hospital das Clinicas HCFMUSP, Instituto & Departamento de Psiquiatria da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Department of Methods and Techniques in Psychology, Pontifical Catholic University, Sao Paulo, SP, Brazil
| | - Marcelo Q Hoexter
- LIM44, Hospital das Clinicas HCFMUSP, Instituto e Departamento de Radiologia da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Karthik Sheshachala
- National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | | | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Euripedes C Miguel
- Obsessive-Compulsive Spectrum Disorders Program, LIM23, Hospital das Clinicas HCFMUSP, Instituto & Departamento de Psiquiatria da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Y C Janardhan Reddy
- National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Roseli G Shavitt
- Obsessive-Compulsive Spectrum Disorders Program, LIM23, Hospital das Clinicas HCFMUSP, Instituto & Departamento de Psiquiatria da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Melanie Wall
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Helen Blair Simpson
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, and Department of Anatomy and Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
- Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Shobeiri P, Hosseini Shabanan S, Haghshomar M, Khanmohammadi S, Fazeli S, Sotoudeh H, Kamali A. Cerebellar Microstructural Abnormalities in Obsessive-Compulsive Disorder (OCD): a Systematic Review of Diffusion Tensor Imaging Studies. CEREBELLUM (LONDON, ENGLAND) 2024; 23:778-801. [PMID: 37291229 DOI: 10.1007/s12311-023-01573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Previous neuroimaging studies have suggested that obsessive-compulsive disorder (OCD) is associated with altered resting-state functional connectivity of the cerebellum. In this study, we aimed to describe the most significant and reproducible microstructural abnormalities and cerebellar changes associated with obsessive-compulsive disorder (OCD) using diffusion tensor imaging (DTI) investigations. PubMed and EMBASE were searched for relevant studies using the PRISMA 2020 protocol. A total of 17 publications were chosen for data synthesis after screening titles and abstracts, full-text examination, and executing the inclusion criteria. The patterns of cerebellar white matter (WM) integrity loss, determined by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) metrics, varied across studies and symptoms. Changes in fractional anisotropy (FA) values were described in six publications, which were decreased in four and increased in two studies. An increase in diffusivity parameters of the cerebellum (i.e., MD, RD, and AD) in OCD patients was reported in four studies. Alterations of the cerebellar connectivity with other brain areas were also detected in three studies. Heterogenous results were found in studies that investigated cerebellar microstructural abnormalities in correlation with symptom dimension or severity. OCD's complex phenomenology may be characterized by changes in cerebellar WM connectivity across wide networks, as shown by DTI studies on OCD patients in both children and adults. Classification features in machine learning and clinical tools for diagnosing OCD and determining the prognosis of the disorder might both benefit from using cerebellar DTI data.
Collapse
Affiliation(s)
- Parnian Shobeiri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Maryam Haghshomar
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Shaghayegh Khanmohammadi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fazeli
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
11
|
Mataix-Cols D, Fernández de la Cruz L, De Schipper E, Kuja-Halkola R, Bulik CM, Crowley JJ, Neufeld J, Rück C, Tammimies K, Lichtenstein P, Bölte S, Beucke JC. In search of environmental risk factors for obsessive-compulsive disorder: study protocol for the OCDTWIN project. BMC Psychiatry 2023; 23:442. [PMID: 37328750 PMCID: PMC10273515 DOI: 10.1186/s12888-023-04897-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The causes of obsessive-compulsive disorder (OCD) remain unknown. Gene-searching efforts are well underway, but the identification of environmental risk factors is at least as important and should be a priority because some of them may be amenable to prevention or early intervention strategies. Genetically informative studies, particularly those employing the discordant monozygotic (MZ) twin design, are ideally suited to study environmental risk factors. This protocol paper describes the study rationale, aims, and methods of OCDTWIN, an open cohort of MZ twin pairs who are discordant for the diagnosis of OCD. METHODS OCDTWIN has two broad aims. In Aim 1, we are recruiting MZ twin pairs from across Sweden, conducting thorough clinical assessments, and building a biobank of biological specimens, including blood, saliva, urine, stool, hair, nails, and multimodal brain imaging. A wealth of early life exposures (e.g., perinatal variables, health-related information, psychosocial stressors) are available through linkage with the nationwide registers and the Swedish Twin Registry. Blood spots stored in the Swedish phenylketonuria (PKU) biobank will be available to extract DNA, proteins, and metabolites, providing an invaluable source of biomaterial taken at birth. In Aim 2, we will perform within-pair comparisons of discordant MZ twins, which will allow us to isolate unique environmental risk factors that are in the causal pathway to OCD, while strictly controlling for genetic and early shared environmental influences. To date (May 2023), 43 pairs of twins (21 discordant for OCD) have been recruited. DISCUSSION OCDTWIN hopes to generate unique insights into environmental risk factors that are in the causal pathway to OCD, some of which have the potential of being actionable targets.
Collapse
Affiliation(s)
- David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Lorena Fernández de la Cruz
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Elles De Schipper
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James J Crowley
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Christian Rück
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kristiina Tammimies
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Solna, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sven Bölte
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Jan C Beucke
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Mataix-Cols D, de la Cruz LF, de Schipper E, Kuja-Halkola R, Bulik CM, Crowley JJ, Neufeld J, Rück C, Tammimies K, Lichtenstein P, Bölte S, Beucke JC. In search of environmental risk factors for obsessive-compulsive disorder: Study protocol for the OCDTWIN project. RESEARCH SQUARE 2023:rs.3.rs-2897566. [PMID: 37215041 PMCID: PMC10197758 DOI: 10.21203/rs.3.rs-2897566/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background The causes of obsessive-compulsive disorder (OCD) remain unknown. Gene-searching efforts are well underway, but the identification of environmental risk factors is at least as important and should be a priority because some of them may be amenable to prevention or early intervention strategies. Genetically informative studies, particularly those employing the discordant monozygotic (MZ) twin design, are ideally suited to study environmental risk factors. This protocol paper describes the study rationale, aims, and methods of OCDTWIN, an open cohort of MZ twin pairs who are discordant for the diagnosis of OCD. Methods OCDTWIN has two broad aims. In Aim 1, we are recruiting MZ twin pairs from across Sweden, conducting thorough clinical assessments, and building a biobank of biological specimens, including blood, saliva, urine, stool, hair, nails, and multimodal brain imaging. A wealth of early life exposures (e.g., perinatal variables, health-related information, psychosocial stressors) are available through linkage with the nationwide registers and the Swedish Twin Registry. Blood spots stored in the Swedish phenylketonuria (PKU) biobank will be available to extract DNA, proteins, and metabolites, providing an invaluable source of biomaterial taken at birth. In Aim 2, we will perform within-pair comparisons of discordant MZ twins, which will allow us to isolate unique environmental risk factors that are in the causal pathway to OCD, while strictly controlling for genetic and early shared environmental influences. To date (May 2023), 43 pairs of twins (21 discordant for OCD) have been recruited. Discussion OCDTWIN hopes to generate unique insights into environmental risk factors that are in the causal pathway to OCD, some of which have the potential of being actionable targets.
Collapse
|
13
|
Zhang S, Li B, Jiang J, Hu X, Li H, Cao L, Zhou Z, Liang K, Zhou H, Zhang L, Gong Q, Huang X. Abnormal focal segments in left uncinate fasciculus in adults with obsessive-compulsive disorder. Front Psychiatry 2023; 14:1128808. [PMID: 37065900 PMCID: PMC10098161 DOI: 10.3389/fpsyt.2023.1128808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023] Open
Abstract
Background Although the specific role of the uncinate fasciculus (UF) in emotional processing in patients with obsessive-compulsive disorder (OCD) has been investigated, the exact focal abnormalities in the UF have not been identified. The aim of the current study was to identify focal abnormalities in the white matter (WM) microstructure of the UF and to determine the associations between clinical features and structural neural substrates. Methods In total, 71 drug-naïve patients with OCD and 81 age- and sex-matched healthy controls (HCs) were included. Automated fiber quantification (AFQ), a tract-based quantitative approach, was adopted to measure alterations in diffusion parameters, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD), along the trajectory of the UF. Additionally, we utilized partial correlation analyses to explore the relationship between the altered diffusion parameters and clinical characteristics. Results OCD patients showed significantly higher FA and lower RD at the level of the temporal and insular portions in the left UF than HCs. In the insular segments of the left UF, increased FA was positively correlated with the Hamilton Anxiety Scale (HAMA) score, while decreased RD was negatively correlated with the duration of illness. Conclusion We observed specific focal abnormalities in the left UF in adult patients with OCD. Correlations with measures of anxiety and duration of illness underscore the functional importance of the insular portion of left UF disturbance in OCD patients.
Collapse
Affiliation(s)
- Suming Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bin Li
- Mental Health Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxin Jiang
- Mental Health Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lingxiao Cao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zilin Zhou
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kaili Liang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huan Zhou
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Runge K, Reisert M, Feige B, Nickel K, Urbach H, Venhoff N, Tzschach A, Schiele MA, Hannibal L, Prüss H, Domschke K, Tebartz van Elst L, Endres D. Deep clinical phenotyping of patients with obsessive-compulsive disorder: an approach towards detection of organic causes and first results. Transl Psychiatry 2023; 13:83. [PMID: 36882422 PMCID: PMC9992508 DOI: 10.1038/s41398-023-02368-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
In the revised diagnostic classification systems ICD-11 and DSM-5, secondary, organic forms of obsessive-compulsive disorder (OCD) are implemented as specific nosological entities. Therefore, the aim of this study was to clarify whether a comprehensive screening approach, such as the Freiburg-Diagnostic-Protocol for patients with OCD (FDP-OCD), is beneficial for detecting organic OCD forms. The FDP-OCD includes advanced laboratory tests, an expanded magnetic resonance imaging (MRI) protocol, and electroencephalography (EEG) investigations as well as automated MRI and EEG analyses. Cerebrospinal fluid (CSF), [18F]fluorodeoxyglucose positron emission tomography, and genetic analysis were added for patients with suspected organic OCD. The diagnostic findings of the first 61 consecutive OCD inpatients (32 female and 29 male; mean age: 32.7 ± 12.05 years) analyzed using our protocol were investigated. A probable organic cause was assumed in five patients (8%), which included three patients with autoimmune OCD (one patient with neurolupus and two with specific novel neuronal antibodies in CSF) and two patients with newly diagnosed genetic syndromes (both with matching MRI alterations). In another five patients (8%), possible organic OCD was detected (three autoimmune cases and two genetic cases). Immunological serum abnormalities were identified in the entire patient group, particularly with high rates of decreased "neurovitamin" levels (suboptimal vitamin D in 75% and folic acid in 21%) and increased streptococcal (in 46%) and antinuclear antibodies (ANAs; in 36%). In summary, the FDP-OCD screening led to the detection of probable or possible organic OCD forms in 16% of the patients with mostly autoimmune forms of OCD. The frequent presence of systemic autoantibodies such as ANAs further support the possible influence of autoimmune processes in subgroups of patients with OCD. Further research is needed to identify the prevalence of organic OCD forms and its treatment options.
Collapse
Affiliation(s)
- Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Tzschach
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Tang W, Shen T, Huang Y, Zhu W, You S, Zhu C, Zhang L, Ma J, Wang Y, Zhao J, Li T, Lai HY. Exploring structural and functional alterations in drug-naïve obsessive-compulsive disorder patients: An ultrahigh field multimodal MRI study. Asian J Psychiatr 2023; 81:103431. [PMID: 36610205 DOI: 10.1016/j.ajp.2022.103431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Brain structural and functional alterations have been reported in obsessive-compulsive disorder (OCD) patients; however, these findings were inconsistent across studies due to several limitations, including small sample sizes, different inclusion/exclusion criteria, varied demographic characteristics and symptom dimensions, comorbidity, and medication status. Prominent and replicable neuroimaging biomarkers remain to be discovered. METHODS This study explored the gray matter structure, neural activity, and white matter microstructure differences in 40 drug-naïve OCD patients and 57 matched healthy controls using ultrahigh field 7.0 T multimodal magnetic resonance imaging, which increased the spatial resolution and detection power. We also evaluated correlations among different modalities, imaging features and clinical symptoms. RESULTS Drug-naïve OCD patients exhibited significantly increased gray matter volume in the frontal cortex, especially in the orbitofrontal cortex, as well as volumetric reduction in the temporal lobe, occipital lobe and cerebellum. Increased neural activities were observed in the cingulate gyri and precuneus. Increased temporal-middle cingulate and posterior cingulate-precuneus functional connectivities and decreased frontal-middle cingulate connectivity were further detected. Decreased fractional anisotropy values were found in the cingulum-hippocampus gyrus and inferior fronto-occipital fascicle in OCD patients. Moreover, significantly altered imaging features were related to OCD symptom severity. Altered functional and structural neural connectivity might influence compulsive and obsessive features, respectively. CONCLUSIONS Altered structure and function of the classical cortico-striato-thalamo-cortical circuit, limbic system, default mode network, visual, language and sensorimotor networks play important roles in the neurophysiology of OCD.
Collapse
Affiliation(s)
- Wenxin Tang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Shen
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueqi Huang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujun You
- School of History, Zhejiang University, Hangzhou, China
| | - Cheng Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyue Zhang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jiehua Ma
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiquan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingping Zhao
- Department of Psychiatry and Mental Health Institute, The Second Xiangya Hospital of The Central South University, Changsha, Hunan, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Hsin-Yi Lai
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Tao Q, Dang J, Niu X, Gao X, Zhang M, Yang Z, Xu Y, Yu M, Cheng J, Han S, Zhang Y. White matter microstructural abnormalities and gray matter volume alterations in obsessive-compulsive disorder: A coordinate-based meta-analysis. J Affect Disord 2023; 320:751-761. [PMID: 36174788 DOI: 10.1016/j.jad.2022.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE A comprehensive meta-analysis using correlated coordinate data to explore abnormalities in white matter (WM) microarchitecture and changes in gray matter volume (GMV) in patients with obsessive-compulsive disorder (OCD). METHODS We reviewed 23 reported studies of diffusion tensor imaging (DTI) in OCD patients. The differences in WM fractional anisotropy (FA) between OCD patients and healthy controls (HCs) were investigated using tract-based spatial statistics (TBSS) and voxel-based analysis (VBA), respectively, and the results of the two methods were compared. In addition, we will explore changes in OCD GMV by analyzing studies (n = 21) using the voxel-based morphometry (VBM) approach and comparing the difference between adults and adolescents. RESULTS In the pooled meta-analysis, WM study results presented that compared with HCs, OCD patients had higher FA in right lenticular nucleus (putamen), and lower FA in corpus callosum (CC), left insula, right cerebellum (hemispheric lobule), right gyrus rectal and left inferior parietal gyri. However, in subgroup analysis, there was a significant difference in FA changes between TBSS and VBA in OCD patients compared with HCs. In addition, we found that the GMV of OCD patients was significantly increased in left striatum and left precentral gyrus, and significantly decreased in right inferior frontal gyrus triangular part, right superior temporal gyrus and right hippocampus. Compared with adolescents, adult patients have increased GMV in left lenticular nucleus putamen. CONCLUSION The meta-analysis showed that OCD patients had abnormal WM microarchitecture and altered GMV. These changes may be closely related to the pathophysiological mechanism of the disease.
Collapse
Affiliation(s)
- Qiuying Tao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China
| | - Yinhuan Xu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China
| | - Miaomiao Yu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and application of Brain Function of Henan Province, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China
| |
Collapse
|
17
|
Piras F, Banaj N, Ciullo V, Piras F, Ducci G, Demaria F, Vicari S, Spalletta G. Dysfunctional Beliefs and Cognitive Performance across Symptom Dimensions in Childhood and Adolescent OCD. J Clin Med 2022; 12:219. [PMID: 36615019 PMCID: PMC9821226 DOI: 10.3390/jcm12010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Although etiological and maintenance cognitive factors have proved effective in predicting the disease course in youths with OCD, their contribution to symptom severity and specific OCD dimensions has been scarcely examined. In a cohort of children and adolescents with OCD (N = 41; mean age = 14; age range = 10-18 yrs.), we investigated whether certain dysfunctional beliefs and cognitive traits could predict symptom severity, and whether they were differentially associated with specific symptom dimensions. We found that self-oriented and socially prescribed perfectionism and intolerance to uncertainty were associated with higher obsession severity, which was not uniquely related to any neuropsychological variable. Greater severity of obsessions and compulsions about harm due to aggression/injury/violence/natural disasters was predicted by excessive concerns with the expectations of other people. Severity in this dimension was additionally predicted by decreasing accuracy in performing a problem-solving, non-verbal reasoning task, which was also a significant predictor of severity of obsessions about symmetry and compulsions to count or order/arrange. Apart from corroborating both the belief-based and neuropsychological models of OCD, our findings substantiate for the first time the specificity of certain dysfunctional beliefs and cognitive traits in two definite symptom dimensions in youth. This bears important clinical implications for developing treatment strategies to deal with unique dysfunctional core beliefs, and possibly for preventing illness chronicity.
Collapse
Affiliation(s)
- Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
| | - Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
| | - Valentina Ciullo
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
| | - Giuseppe Ducci
- Mental Health Department, ASL Roma 1, Piazza Santa Maria della Pietà 5–Pad. 26, 00193 Rome, Italy
| | - Francesco Demaria
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 1977 Butler Blvd., Houston, TX 77030, USA
| |
Collapse
|
18
|
Ivanov I, Boedhoe PSW, Abe Y, Alonso P, Ameis SH, Arnold PD, Balachander S, Baker JT, Banaj N, Bargalló N, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Brem S, Brennan BP, Buitelaar J, Calvo R, Cheng Y, Cho KIK, Dallaspezia S, Denys D, Diniz JB, Ely BA, Feusner JD, Ferreira S, Fitzgerald KD, Fontaine M, Gruner P, Hanna GL, Hirano Y, Hoexter MQ, Huyser C, Ikari K, James A, Jaspers-Fayer F, Jiang H, Kathmann N, Kaufmann C, Kim M, Koch K, Kwon JS, Lázaro L, Liu Y, Lochner C, Marsh R, Martínez-Zalacaín I, Mataix-Cols D, Menchón JM, Minuzzi L, Morer A, Morgado P, Nakagawa A, Nakamae T, Nakao T, Narayanaswamy JC, Nurmi EL, Oh S, Perriello C, Piacentini JC, Picó-Pérez M, Piras F, Piras F, Reddy YCJ, Manrique DR, Sakai Y, Shimizu E, Simpson HB, Soreni N, Soriano-Mas C, Spalletta G, Stern ER, Stevens MC, Stewart SE, Szeszko PR, Tolin DF, van Rooij D, Veltman DJ, van der Werf YD, van Wingen GA, Venkatasubramanian G, Walitza S, Wang Z, Watanabe A, Wolters LH, Xu X, Yun JY, Zarei M, Zhang F, Zhao Q, Jahanshad N, Thomopoulos SI, Thompson PM, Stein DJ, van den Heuvel OA, O'Neill J. Associations of medication with subcortical morphology across the lifespan in OCD: Results from the international ENIGMA Consortium. J Affect Disord 2022; 318:204-216. [PMID: 36041582 DOI: 10.1016/j.jad.2022.08.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Widely used psychotropic medications for obsessive-compulsive disorder (OCD) may change the volumes of subcortical brain structures, and differently in children vs. adults. We measured subcortical volumes cross-sectionally in patients finely stratified for age taking various common classes of OCD drugs. METHODS The ENIGMA-OCD consortium sample (1081 medicated/1159 unmedicated OCD patients and 2057 healthy controls aged 6-65) was divided into six successive 6-10-year age-groups. Individual structural MRIs were parcellated automatically using FreeSurfer into 8 regions-of-interest (ROIs). ROI volumes were compared between unmedicated and medicated patients and controls, and between patients taking serotonin reuptake inhibitors (SRIs), tricyclics (TCs), antipsychotics (APs), or benzodiazepines (BZs) and unmedicated patients. RESULTS Compared to unmedicated patients, volumes of accumbens, caudate, and/or putamen were lower in children aged 6-13 and adults aged 50-65 with OCD taking SRIs (Cohen's d = -0.24 to -0.74). Volumes of putamen, pallidum (d = 0.18-0.40), and ventricles (d = 0.31-0.66) were greater in patients aged 20-29 receiving APs. Hippocampal volumes were smaller in patients aged 20 and older taking TCs and/or BZs (d = -0.27 to -1.31). CONCLUSIONS Results suggest that TCs and BZs could potentially aggravate hippocampal atrophy of normal aging in older adults with OCD, whereas SRIs may reduce striatal volumes in young children and older adults. Similar to patients with psychotic disorders, OCD patients aged 20-29 may experience subcortical nuclear and ventricular hypertrophy in relation to APs. Although cross-sectional, present results suggest that commonly prescribed agents exert macroscopic effects on subcortical nuclei of unknown relation to therapeutic response.
Collapse
Affiliation(s)
- Iliyan Ivanov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Premika S W Boedhoe
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yoshinari Abe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Pino Alonso
- Department of Clinical Sciences, Bellvitge Biomedical Research Institute-IDIBELL, CIBERSAM, Bellvitge University Hospital, Barcelona, Spain
| | - Stephanie H Ameis
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Srinivas Balachander
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Justin T Baker
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nuria Bargalló
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Image Diagnostic Center, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Marcelo C Batistuzzo
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil; Department of Methods and Techniques in Psychology, Pontifical Catholic University of Sao Paulo, SP, Brazil
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy; Departments of Psychiatry and Medical Genetics, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Jan C Beucke
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Irene Bollettini
- Departments of Psychiatry and Medical Genetics, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Brian P Brennan
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Rosa Calvo
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clínic of Barcelona (CIBERSAM), Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kang Ik K Cho
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Brain and Cognitive Sciences, Seoul University College of Natural Science, Seoul, Republic of Korea
| | - Sara Dallaspezia
- Departments of Psychiatry and Medical Genetics, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Damiaan Denys
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Juliana B Diniz
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Benjamin A Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Jamie D Feusner
- Division of Neurosciences & Clinical Translation, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Staglin IMHRO Center for Cognitive Neuroscience, Jane & Terry Semel institute For Neurosciences, University of California, Los Angeles, CA, USA
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, ICVS/3B's PT Government Associate Laboratory, Clinical Academic Center, Braga, Portugal
| | - Kate D Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Martine Fontaine
- Columbia University Irving Medical Center, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Patricia Gruner
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Gregory L Hanna
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Marcelo Q Hoexter
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Chaim Huyser
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Levvel Academic Center for Child and Adolescent Psychiatry, Amsterdam, the Netherlands
| | - Keisuke Ikari
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anthony James
- Department of Psychiatry, Oxford University, Oxford, UK
| | - Fern Jaspers-Fayer
- Britsh Columbia Children's Hospital, BC Mental Health and Substance Use Services Research, University of British Columbia, Vancouver, BC, Canada
| | - Hongyan Jiang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Kaufmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul University College of Natural Science, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Luisa Lázaro
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clínic of Barcelona (CIBERSAM), Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Yanni Liu
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Christine Lochner
- SAMRC Unit on Anxiety & Stress Disorders, Department of Psychiatry, Stellenbosch University, South Africa
| | - Rachel Marsh
- Columbia University Irving Medical Center, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Ignacio Martínez-Zalacaín
- Department of Clinical Sciences, Bellvitge Biomedical Research Institute-IDIBELL, CIBERSAM, Bellvitge University Hospital, Barcelona, Spain
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - José M Menchón
- Department of Clinical Sciences, Bellvitge Biomedical Research Institute-IDIBELL, CIBERSAM, Bellvitge University Hospital, Barcelona, Spain
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, St. Joseph's Health Care, Hamilton, Ontario, Canada
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clínic of Barcelona (CIBERSAM), Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, ICVS/3B's PT Government Associate Laboratory, Clinical Academic Center, Braga, Portugal
| | - Akiko Nakagawa
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Janardhanan C Narayanaswamy
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Erika L Nurmi
- Division of Child and Adolescent Psychiatry, Jane & Terry Semel Institute For Neurosciences, University of California, Los Angeles, CA, USA; Staglin IMHRO Center for Cognitive Neuroscience, Jane & Terry Semel institute For Neurosciences, University of California, Los Angeles, CA, USA
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Gyeonggi-do, Republic of Korea
| | - Chris Perriello
- University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - John C Piacentini
- Division of Child and Adolescent Psychiatry, Jane & Terry Semel Institute For Neurosciences, University of California, Los Angeles, CA, USA; Staglin IMHRO Center for Cognitive Neuroscience, Jane & Terry Semel institute For Neurosciences, University of California, Los Angeles, CA, USA
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, ICVS/3B's PT Government Associate Laboratory, Clinical Academic Center, Braga, Portugal
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Y C Janardhan Reddy
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Daniela Rodriguez Manrique
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Yuki Sakai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; ATR Brain Information Communication Research Laboratiry Group, Kyoto, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - H Blair Simpson
- Columbia University Irving Medical Center, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Noam Soreni
- Pediatric OCD Consultation Service, Anxiety Treatment and Research Center, Offord Center of Child Studies, Hamilton, Ontario, Canada
| | - Carles Soriano-Mas
- Department of Clinical Sciences, Bellvitge Biomedical Research Institute-IDIBELL, CIBERSAM, Bellvitge University Hospital, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona- UB, Barcelona,Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, USA
| | - Emily R Stern
- Department of Psychiatry, New York University Langone School of Medicine, New York, NY, USA
| | - Michael C Stevens
- Institute of Living/Hartford Hospital, Hartford, CT, USA; Yale University School of Medicine, New Haven, CT, USA
| | - S Evelyn Stewart
- Britsh Columbia Children's Hospital, BC Mental Health and Substance Use Services Research, University of British Columbia, Vancouver, BC, Canada
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David F Tolin
- Institute of Living/Hartford Hospital, Hartford, CT, USA; Yale University School of Medicine, New Haven, CT, USA
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dick J Veltman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Guido A van Wingen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Ganesan Venkatasubramanian
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Zhen Wang
- Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine, China
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lidewij H Wolters
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Fengrui Zhang
- Magnetic Resonance Image Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Zhao
- Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine, China
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, South Africa
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Joseph O'Neill
- Division of Child and Adolescent Psychiatry, Jane & Terry Semel Institute For Neurosciences, University of California, Los Angeles, CA, USA; Staglin IMHRO Center for Cognitive Neuroscience, Jane & Terry Semel institute For Neurosciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Fontenelle LF, Nicolini H, Brakoulias V. Early intervention in obsessive-compulsive disorder: From theory to practice. Compr Psychiatry 2022; 119:152353. [PMID: 36341748 DOI: 10.1016/j.comppsych.2022.152353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is frequent and often disabling. Yet, correct diagnosis and appropriate treatment implementation are usually delayed, with undesirable consequences. In this paper we review the rationale for early intervention in OCD and provide recommendations for early intervention services. Two scenarios are discussed, i.e., subclinical (prodromal) obsessive-compulsive symptoms (OCS) and full-blown OCD. Although the typical patient with OCD reports a long history of subclinical OCS, longitudinal studies suggest most individuals with OCS in the community do not convert to full-blown OCD. Thus, research on "at risk" phenotypes for OCD and how they should incorporate different risk factors (e.g., polygenic risk scores) are badly needed. For this specific scenario, preventative treatments that are cheap, well tolerated and highly scalable (e.g., lifestyle interventions) are of major interest. On the other hand, increasing evidence suggests OCD to be a progressive disorder and the severity and duration of illness to be associated with both biological changes and increased clinical complexity, including greater number of physical and psychiatric comorbidities, increased family accommodation and worse treatment response. Therefore, prompt identification and early treatment implementation for full-blown OCD are also critical for ethical, clinical and therapeutic reasons. Based on the existing findings, we argue that, regardless of focusing on subclinical OCS or clinical OCD, early intervention services need to target a childhood age group. In addition to delivering well established treatments to people with full-blown OCD early on their illness, early intervention services also need to provide psychoeducation for patients, families and teachers.
Collapse
Affiliation(s)
- Leonardo F Fontenelle
- Obsessive, Compulsive, and Anxiety Spectrum Research Program. Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil; D'Or Institute for Research and Education, Rio de Janeiro, Brazil; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico; Clinical Research, Carracci Medical Group, Mexico City, Mexico
| | - Vlasios Brakoulias
- Western Sydney Obsessive-Compulsive and Related Disorders Service, Western Sydney Local Health District Mental Health Service, Sydney, Australia; School of Medicine and Translational Health Research Institute, Western Sydney University, Sydney, Australia
| |
Collapse
|
20
|
Bharti K, Conte G, Tommasin S, Giannì C, Suppa A, Mirabella G, Cardona F, Pantano P. White matter alterations in drug-naïve children with Tourette syndrome and obsessive-compulsive disorder. Front Neurol 2022; 13:960979. [PMID: 36262836 PMCID: PMC9575657 DOI: 10.3389/fneur.2022.960979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome (TS) and early-onset obsessive-compulsive disorder (OCD) are frequently associated and conceptualized as distinct phenotypes of a common disease spectrum. However, the nature of their relationship is still largely unknown on a pathophysiological level. In this study, early structural white matter (WM) changes investigated through diffusion tensor imaging (DTI) were compared across four groups of drug-naïve children: TS-pure (n = 16), TS+OCD (n = 14), OCD (n = 10), and 11 age-matched controls. We analyzed five WM tracts of interest, i.e., cortico-spinal tract (CST), anterior thalamic radiations (ATR), inferior longitudinal fasciculus (ILF), corpus callosum (CC), and cingulum and evaluated correlations of DTI changes to symptom severity. Compared to controls, TS-pure and TS+OCD showed a comparable pattern of increased fractional anisotropy (FA) in CST, ATR, ILF and CC, with FA changes displaying negative correlation to tic severity. Conversely, in OCD, FA decreased in all WM tracts (except for the cingulum) compared to controls and negatively correlated to symptoms. We demonstrate different early WM microstructural alterations in children with TS-pure/TS+OCD as opposed to OCD. Our findings support the conceptualization of TS+OCD as a subtype of TS while suggesting that OCD is characterized by independent pathophysiological mechanisms affecting WM development.
Collapse
Affiliation(s)
- Komal Bharti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giulia Conte
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- *Correspondence: Giulia Conte
| | - Silvia Tommasin
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Costanza Giannì
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Isernia, Italy
| | - Antonio Suppa
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Isernia, Italy
| | - Giovanni Mirabella
- Department of Clinical and Experimental Sciences Section, Brescia University, Brescia, Italy
| | - Francesco Cardona
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Isernia, Italy
| |
Collapse
|
21
|
Grazioplene RG, DeYoung CG, Hampson M, Anticevic A, Pittenger C. Obsessive compulsive symptom dimensions are linked to altered white-matter microstructure in a community sample of youth. Transl Psychiatry 2022; 12:328. [PMID: 35948535 PMCID: PMC9365814 DOI: 10.1038/s41398-022-02013-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Obsessive-compulsive symptoms (OCS) are common in school-aged children and predict the development of obsessive compulsive disorder (OCD). White-matter abnormalities have been described in OCD, but the white matter correlates of OCS in the developing brain are unclear. Some correlates of OCS (or a diagnosis of OCD) may reflect correlates of a transdiagnostic or even general psychopathology factor. We examined these questions in a large sample of typically developing youth (N = 1208), using a hierarchical analysis of fixel-based white matter measures in relation to OCS and general psychopathology. General psychopathology was associated with abnormalities in the posterior corpus callosum and forceps major in an age-dependent manner, suggesting altered maturation (specifically, hypermaturation in younger subjects). A unidimensional measure of OCS did not associate with any white-matter abnormalities, but analysis of separate OCS dimensions (derived from factor analysis within this sample) revealed the 'Bad Thoughts' dimension to associate with white-matter abnormalities in dorsal parietal white-matter and descending corticospinal tracts, and the 'Symmetry' dimension to associate with abnormalities in the anterior corpus callosum. Repetition/checking and Symmetry OCS were additionally associated with posterior abnormalities overlapping with the correlates of general psychopathology. Contamination symptoms had no white-matter correlates. Secondary analysis of fractional anisotropy (FA) revealed distinct white-matter abnormalities, suggesting that fixel-based and FA analyses identify distinct features of white matter relevant to psychopathology. These findings suggest that OCS dimensions correlate with dissociable abnormalities in white matter, implicating separable networks. Future studies should examine these white-matter signatures in a longitudinal framework.
Collapse
Affiliation(s)
| | - Colin G DeYoung
- University of Minnesota, Department of Psychology, Minneapolis, MN, USA
| | - Michelle Hampson
- Yale University, Department of Radiology and Biomedical Imaging, New Haven, CT, USA
| | - Alan Anticevic
- Yale University, Department of Psychiatry, New Haven, CT, USA
| | | |
Collapse
|
22
|
Schachar RJ, Dupuis A, Anagnostou E, Georgiades S, Soreni N, Arnold PD, Burton CL, Crosbie J. Obsessive-compulsive disorder in children and youth: neurocognitive function in clinic and community samples. J Child Psychol Psychiatry 2022; 63:881-889. [PMID: 34687037 DOI: 10.1111/jcpp.13533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neurocognitive impairments are common in OCD, although not well studied in children and youth with the disorder. METHOD Using the stop-signal task (SST), we measured response inhibition (stop-signal reaction time-SSRT), sustained attention (reaction time variability-RTV), reaction time (RT), and performance monitoring (post-error slowing-PES) in OCD cases and controls from two samples of children and youth. A Clinic OCD group (n = 171, aged 7-17 years) was recruited from a specialty clinic after rigorous assessment. A typically developing (Clinic TD, n = 157) group was enlisted through advertisement. A community OCD sample (Community OCD, n = 147) and controls (Community TD n = 13,832, aged 6-17 years) were recruited at a science museum. We also identified a community group with high OCD traits without an OCD diagnosis (Community High Trait; n = 125). RESULTS Clinic OCD participants had longer SSRT and greater RTV than Clinic TD. These effects were greater in younger OCD participants and, for SSRT, in those on medication for OCD. The Community OCD group did not differ from Controls but was similar to the Clinic OCD group in ADHD and ASD comorbidity and medication usage. The Community High Trait group had longer SSRT and atypical PES suggesting that symptom severity predicts neurocognitive function. No group differences were found in RT. CONCLUSIONS In the largest study of neurocognitive performance in children with OCD to date, we found impaired response inhibition and sustained attention in OCD participants in comparison to typically developing peers. Performance was worse in younger OCD participants. In the community sample, participants with high OCD trait scores but no OCD diagnosis had impaired response inhibition and error processing, suggesting that OCD might be under-recognized.
Collapse
Affiliation(s)
- Russell J Schachar
- University of Toronto, Toronto, ON, Canada.,Hospital for Sick Children, Toronto, ON, Canada
| | | | - Evdokia Anagnostou
- University of Toronto, Toronto, ON, Canada.,Holland Bloorview, Toronto, ON, Canada
| | | | - Noam Soreni
- McMaster University, Hamilton, ON, Canada.,St. Joseph's HealthCare, Hamilton, ON, Canada
| | - Paul D Arnold
- University of Toronto, Toronto, ON, Canada.,Hospital for Sick Children, Toronto, ON, Canada.,The Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada
| | | | - Jennifer Crosbie
- University of Toronto, Toronto, ON, Canada.,Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
23
|
Endres D, Domschke K, Schiele MA. [Neurobiology of obsessive-compulsive disorder]. DER NERVENARZT 2022; 93:670-677. [PMID: 35725830 DOI: 10.1007/s00115-022-01331-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a frequent mental disorder that leads to an enormous impairment in the quality of life. Cognitive-behavioral explanatory approaches are well established. Scientific research on the underlying neurobiology has increased in recent years. OBJECTIVE This article reviews current research findings and the etiopathophysiological considerations derived from them. MATERIAL AND METHODS An overview of the genetic, epigenetic, structural, functional, and neurochemical alterations in OCD is presented. Additionally, the possible organic causes that can trigger obsessive-compulsive symptoms are summarized. RESULTS With respect to OCD a moderate heritability is assumed. On a molecular level, genetic variants and epigenetic variations in the serotonergic, dopaminergic and glutamatergic systems in particular seem to play a role in the pathogenesis of the disease and affect the corresponding neurotransmission. Cortico-striatal-thalamo-cortical loops are neurochemically modulated, and predominance of the activity of the direct excitatory pathway is hypothesized in OCD. Recent research also provides evidence for the involvement of frontoparietal and frontolimbic networks. Obsessive-compulsive symptoms may also have different organic (e.g., immunological) causes. CONCLUSION The neurobiology of OCD is partially understood and categorized in an integrative neurobiological model. For the rare secondary immunological causes the concept of "autoimmune OCD" has recently been proposed. The better understanding of the neurobiology of OCD might allow for individualized, personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Dominique Endres
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hauptstr. 5, 79104, Freiburg, Deutschland.
| | - Katharina Domschke
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hauptstr. 5, 79104, Freiburg, Deutschland.,Center for Basics in NeuroModulation, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Deutschland
| | - Miriam A Schiele
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hauptstr. 5, 79104, Freiburg, Deutschland
| |
Collapse
|
24
|
Abnormal white matter structure in hoarding disorder. J Psychiatr Res 2022; 148:1-8. [PMID: 35081485 DOI: 10.1016/j.jpsychires.2022.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/23/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022]
Abstract
Although preliminary neuroimaging research suggests that patients with hoarding disorder (HD) show widespread abnormal task-related activity in the brain, there has been no research on alterations in the white matter tracts in these patients. The aim of this study was to investigate the characteristics of the major white matter tracts in patients with HD. Tract-based spatial statistics were used to search for white matter tract abnormalities throughout the brain in 25 patients with HD and 36 healthy controls. Post hoc analysis of regions of interest was performed to detect correlations with clinical features. Compared with the controls, patients with HD showed decreased fractional anisotropy and increased radial diffusivity in anatomically widespread white matter tracts. Post hoc analysis of regions of interest revealed a significant negative correlation between the severity of hoarding symptoms and fractional anisotropy in the left anterior limb of the internal capsule and a positive correlation between the severity of these symptoms and radial diffusivity in the right anterior thalamic radiation. Patients with HD showed a broad range of alterations in the frontal white matter tracts, including the frontothalamic circuit, frontoparietal network, and frontolimbic pathway. The findings of this study indicate associations between frontal white matter abnormalities related to the severity of hoarding symptoms in HD and the cortical regions involved in cognitive dysfunction. The insights provided would be useful for understanding the neurobiological basis of HD.
Collapse
|
25
|
Liu L, Liu J, Yang L, Wen B, Zhang X, Cheng J, Han S, Zhang Y, Cheng J. Accelerated Brain Aging in Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2022; 13:852479. [PMID: 35599767 PMCID: PMC9120421 DOI: 10.3389/fpsyt.2022.852479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) may be accompanied by an accelerated structural decline of the brain with age compared to healthy controls (HCs); however, this has yet to be proven. To answer this question, we built a brain age prediction model using mean gray matter volumes of each brain region as features, which were obtained by voxel-based morphometry derived from T1-weighted MRI scans. The prediction model was built using two Chinese Han datasets (dataset 1, N = 106 for HCs and N = 90 for patients with OCD; dataset 2, N = 270 for HCs) to evaluate its performance. Then, a new prediction model was trained using data for HCs in dataset 1 and applied to patients with OCD to investigate the brain aging trajectory. The brain-predicted age difference (brain-PAD) scores, defined as the difference between predicted brain age and chronological age, were calculated for all participants and compared between patients with matched HCs in dataset 1. It was demonstrated that the prediction model performs consistently across different datasets. Patients with OCD presented higher brain-PAD scores than matched HCs, suggesting that patients with OCD presented accelerated brain aging. In addition, brain-PAD scores were negatively correlated with the duration of illness, suggesting that brain-PAD scores might capture progressive structural brain changes. These results identified accelerated brain aging in patients with OCD for the first time and deepened our understanding of the pathogenesis of OCD.
Collapse
Affiliation(s)
- Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhong Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Public Health, School of Medicine, Huanghuai University, Zhumadian, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaopan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junying Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Goldwaser EL, Du X, Adhikari BM, Kvarta M, Chiappelli J, Hare S, Marshall W, Savransky A, Carino K, Bruce H, Acheson A, Kochunov P, Elliot Hong L. Role of White Matter Microstructure in Impulsive Behavior. J Neuropsychiatry Clin Neurosci 2022; 34:254-260. [PMID: 35040662 PMCID: PMC9289076 DOI: 10.1176/appi.neuropsych.21070167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Increased impulsivity is a hallmark trait of some neuropsychiatric illnesses, including addiction, traumatic brain injury, and externalizing disorders. The authors hypothesized that altered cerebral white matter microstructure may also underwrite normal individual variability in impulsive behaviors and tested this among healthy individuals. METHODS Impulsivity and diffusion tensor imaging (DTI) data were collected from 74 healthy adults (32 women; mean age=36.6 years [SD=13.6]). Impulsivity was evaluated using the Barratt Impulsiveness Scale-11, which provides a total score and scores for three subdomains: attentional, motor, and nonplanning impulsiveness. DTI was processed using the Enhancing Neuro Imaging Genetics Through Meta Analysis-DTI analysis pipeline to measure whole-brain and regional white matter fractional anisotropy (FA) values in 24 tracts. RESULTS Whole-brain total average FA was inversely correlated with motor impulsiveness (r=-0.32, p=0.007) and positively correlated with nonplanning impulsiveness (r=0.29, p=0.02); these correlations were significant after correction for multiple comparisons. Additional significant correlations were observed for motor impulsiveness and regional FA values for the corticospinal tract (r=-0.29, p=0.01) and for nonplanning impulsiveness and regional FA values for the superior fronto-occipital fasciculus (r=0.32, p=0.008). CONCLUSIONS These results provide initial evidence that the motor and nonplanning subdomains of impulsive behavior are linked to specific white matter microstructural connectivity, supporting the notion that impulsivity is in part a network-based construct involving white matter microstructural integrity among otherwise healthy populations.
Collapse
Affiliation(s)
- Eric L. Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bhim M. Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephanie Hare
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wyatt Marshall
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya Savransky
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen Carino
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley Acheson
- Psychiatry and Behavioral Science, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Seitz-Holland J, Lyons M, Kushan L, Lin A, Villalon-Reina JE, Cho KIK, Zhang F, Billah T, Bouix S, Kubicki M, Bearden CE, Pasternak O. Opposing white matter microstructure abnormalities in 22q11.2 deletion and duplication carriers. Transl Psychiatry 2021; 11:580. [PMID: 34759270 PMCID: PMC8581007 DOI: 10.1038/s41398-021-01703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Deletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity. Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22q-del) found nonspecific white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the first time, investigate WM microstructure in 22q11.2 duplication carriers (22q-dup). Multi-shell diffusion-weighted images were acquired from 26 22q-del, 19 22q-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM and cerebrospinal fluid (CSF) volumes. In 22q-del, anisotropy following free-water elimination remained significantly higher compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when correcting for the higher CSF and lower WM volumes. In contrast, 22q-dup had lower anisotropy and greater extracellular space than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-number variation on WM, which may arise from distinct pathologies. In 22q-del, microstructural abnormalities may be secondary to enlarged CSF space and more densely packed WM. In 22q-dup, we see evidence for demyelination similar to what is commonly observed in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| | - Monica Lyons
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Julio E Villalon-Reina
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| |
Collapse
|
28
|
van den Heuvel OA, Vriend C. White Matter Microstructure in Obsessive-Compulsive Disorder: More Methods, More Answers. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:942-944. [PMID: 34625220 DOI: 10.1016/j.bpsc.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, The Netherlands.
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, The Netherlands
| |
Collapse
|
29
|
Structural properties of corpus callosum are associated differently with verbal creativity and visual creativity. Brain Struct Funct 2021; 226:2511-2521. [PMID: 34430997 DOI: 10.1007/s00429-021-02329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
Recent neuroimaging studies demonstrate that creativity is related to brain regions across both hemispheres, and the corpus callosum forms the structural basis of inter-hemispheric information exchange. However, the findings regarding the relationship between inter-hemispheric interaction and creativity remain inconsistent, which may be caused by different types of creativity and neural features being adopted. To clarify the inconsistency, and understand how inter-hemispheric interactions are related to different kinds of creativity, we explored the correlation between eight structural measures of the corpus callosum (CC) and two different domains of creativity [verbal creativity (VerC) and visual creativity (VisC)] using a large healthy-adult sample (n = 446). The results showed that VerC was positively correlated with fractional anisotropy (FA) and negatively correlated with the radial diffusivity (RD) of CC; whereas there was no significant association between VisC and CC measures. These results persisted after regressing VisC from VerC, regressing VerC from VisC, and regress out general intelligence from both creativity measures. In summary, we showed that the structural properties of corpus collosum are associated in different ways with two domains of creativity, i.e., verbal creativity and visual creativity, which enriches our understanding of the underlying neural mechanism in different types of creativity.
Collapse
|
30
|
Brecke V, Thorsen AL, Ousdal OT, Vriend C, Alnæs D, Hagen K, Hansen B, Kvale G, van den Heuvel OA. Diffusion Tensor Imaging Before and 3 Months After Concentrated Exposure Response Prevention in Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:674020. [PMID: 34122191 PMCID: PMC8187597 DOI: 10.3389/fpsyt.2021.674020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Subtle differences in white matter microstructure have been found in obsessive-compulsive disorder (OCD) compared to controls using diffusion tensor imaging (DTI), but it is unclear if and how this change after treatment. The primary aim of this pre-registered study was to investigate white matter integrity between OCD patients and controls and changes after concentrated exposure and response prevention (ERP). Methods: Fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) and mean diffusivity (MD) were estimated using FMRIB Software Library (FSL). The images were registered to a study-specific template using a longitudinal pipeline based on full tensor information in DTI-TK. Voxel-based analysis was performed using tract-based spatial statistics (TBSS). Using SPSS, we compared the integrity in three bilateral regions of interest (ROI), the sagittal stratum, posterior thalamic radiation and cingulum, in 32 OCD patients and 30 matched healthy controls at baseline. Patients received a four-day concentrated ERP format. We investigated longitudinal changes in 26 OCD patients and 22 healthy controls at 3months follow-up using repeated-measures ANOVA. Exploratory t-tests were conducted for AD and MD. Secondary hypothesis used linear regression to investigate if baseline FA predict treatment outcome 3 months later, and if patients with illness onset before 18 years of age would show lower FA in sagittal stratum. Finally, we performed sensitivity analysis on medication and comorbidity influences on FA. Results: Three months after treatment, 77% of the patients were in remission. Contrary to our hypotheses, we did not find any significant differences in FA, RD, AD or MD between the groups before treatment, nor significant group by time effects in any of the ROI. None of the baseline FA measures significantly predicted treatment outcome. Illness onset before 18 years of age did not significantly predict FA in the sagittal stratum. Adjusting for medication or comorbid anxiety or mood disorder did not influence the results. Conclusions: Although concentrated ERP in OCD lead to high remission, we did not find significant long-term changes by DTI. Future studies will benefit from using larger sample sizes and multi-shell diffusion-weighted imaging when investigating white matter microstructure in OCD and underlying neurobiological mechanisms of treatment.
Collapse
Affiliation(s)
- Vilde Brecke
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Anders Lillevik Thorsen
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Olga Therese Ousdal
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Chris Vriend
- Department of Psychiatry, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dag Alnæs
- Bjørknes College, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristen Hagen
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Psychiatric Department, Hospital of Molde, Molde, Norway
| | - Bjarne Hansen
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, University of Bergen, Bergen, Norway
| | - Gerd Kvale
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Odile A. van den Heuvel
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Psychiatry, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Maziero MP, Seitz-Holland J, Cho KIK, Goldenberg JE, Tanamatis TW, Diniz JB, Cappi C, Alice de Mathis M, Otaduy MCG, da Graça Morais Martin M, de Melo Felipe da Silva R, Shavitt RG, Batistuzzo MC, Lopes AC, Miguel EC, Pasternak O, Hoexter MQ. Cellular and Extracellular White Matter Abnormalities in Obsessive-Compulsive Disorder: A Diffusion Magnetic Resonance Imaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:983-991. [PMID: 33862255 DOI: 10.1016/j.bpsc.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND While previous studies have implicated white matter (WM) as a core pathology of obsessive-compulsive disorder (OCD), the underlying neurobiological processes remain elusive. This study used free-water (FW) imaging derived from diffusion magnetic resonance imaging to identify cellular and extracellular WM abnormalities in patients with OCD compared with control subjects. Next, we investigated the association between diffusion measures and clinical variables in patients. METHODS We collected diffusion-weighted magnetic resonance imaging and clinical data from 83 patients with OCD (56 women/27 men, age 37.7 ± 10.6 years) and 52 control subjects (27 women/25 men, age 32.8 ± 11.5 years). Fractional anisotropy (FA), FA of cellular tissue, and extracellular FW maps were extracted and compared between patients and control subjects using tract-based spatial statistics and voxelwise comparison in FSL Randomise. Next, we correlated these WM measures with clinical variables (age of onset and symptom severity) and compared them between patients with and without comorbidities and patients with and without psychiatric medication. RESULTS Patients with OCD demonstrated lower FA (43.4% of the WM skeleton), lower FA of cellular tissue (31% of the WM skeleton), and higher FW (22.5% of the WM skeleton) compared with control subjects. We did not observe significant correlations between diffusion measures and clinical variables. Comorbidities and medication status did not influence diffusion measures. CONCLUSIONS Our findings of widespread FA, FA of cellular tissue, and FW abnormalities suggest that OCD is associated with microstructural cellular and extracellular abnormalities beyond the corticostriatothalamocortical circuits. Future multimodal longitudinal studies are needed to understand better the influence of essential clinical variables across the illness trajectory.
Collapse
Affiliation(s)
- Maria Paula Maziero
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Faculty of Medicine, City University of São Paulo, São Paulo, Brazil.
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua E Goldenberg
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Taís W Tanamatis
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana B Diniz
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Cappi
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Alice de Mathis
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria C G Otaduy
- Laboratório de Investigações Médicas 44, Instituto de Radiologia, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria da Graça Morais Martin
- Laboratório de Investigações Médicas 44, Instituto de Radiologia, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Renata de Melo Felipe da Silva
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roseli G Shavitt
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo C Batistuzzo
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Department of Methods and Techniques in Psychology, Humanities and Health Sciences School, Pontifical Catholic University of São Paulo, São Paulo, Brazil
| | - Antonio C Lopes
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eurípedes C Miguel
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcelo Q Hoexter
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|