1
|
Shan J, Qu Y, Hashimoto K. Gut-brain axis modulation by sudachi peel extract enhances resilience to chronic social defeat stress in mice. J Affect Disord 2025; 381:401-409. [PMID: 40189061 DOI: 10.1016/j.jad.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/09/2025] [Accepted: 04/03/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Sudachitin, an anti-inflammatory compound from Citrus sudachi peel, may influence stress resilience. We examined whether sudachi peel extract affects depression-like behaviors and gut microbiota dysbiosis in mice subjected to chronic social defeat stress (CSDS). METHODS First, we examined the effect of sudachitin on depression-like behavior and plasma interleukin-6 (IL-6) levels following lipopolysaccharide (LPS, 0.5 mg/kg) administration. Next, we investigated whether supplementation with sudachi peel extract could modulate the gut microbiota dysbiosis induced by CSDS. RESULTS Sudachitin prevented LPS-induced depression-like behavior and the rise in plasma IL-6. In control mice, CSDS increased IL-6, induced splenomegaly, and caused anhedonia-like behavior. These changes were absent in the sudachi peel extract group. Although alpha-diversity of the gut microbiota remained abnormal under CSDS, beta-diversity was significantly altered by sudachi peel extract. Moreover, plasma IL-6 levels and Iba1 expression in the prefrontal cortex correlated with the relative abundance of certain gut bacteria. LIMITATIONS The exact mechanisms behind the resilience-promoting effects of sudachi peel extract remain unclear. CONCLUSION Sudachi peel extract supplementation enhances resilience to CSDS by preventing anhedonia, reducing plasma IL-6 levels and splenomegaly, and modulating gut microbiota composition. Further research is needed to clarify these anti-inflammatory pathways and the roles of additional pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Jiajing Shan
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
2
|
Wellington NJ, Boųcas AP, Lagopoulos J, Quigley BL, Kuballa AV. Molecular pathways of ketamine: A systematic review of immediate and sustained effects on PTSD. Psychopharmacology (Berl) 2025; 242:1197-1243. [PMID: 40097854 DOI: 10.1007/s00213-025-06756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
RATIONALE Existing studies predominantly focus on the molecular and neurobiological mechanisms underlying Ketamine's acute treatment effects on post-traumatic stress disorder (PTSD). This emphasis has largely overlooked its sustained therapeutic effects, which hold significant potential for the development of targeted interventions. OBJECTIVES This systematic review examines the pharmacokinetic and pharmacodynamic effects of ketamine on PTSD, differentiating between immediate and sustained molecular effects. METHOD A comprehensive search across databases (Web of Science, Scopus, Global Health, PubMed) and grey literature yielded 317 articles, where 29 studies met the inclusion criteria. These studies included preclinical models and clinical trials, through neurotransmitter regulation, gene expression, synaptic plasticity, and neural pathways (PROSPERO ID: CRD42024582874). RESULTS We found accumulating evidence that the immediate effects of ketamine, which involve changes in GABA, glutamate, and glutamine levels, trigger the re-regulation of BDNF, enhancing synaptic plasticity via pathways such as TrkB and PSD-95. Other molecular influences also include c-Fos, GSK-3, HDAC, HCN1, and the modulation of hormones like CHR and ACTH, alongside immune responses (IL-6, IL-1β, TNF-α). Sustained effects arise from neurotransmitter remodulations and involve prolonged changes in gene expression. These include mTOR-mediated BDNF expression, alterations in GSK-3β, FkBP5, GFAP, ERK phosphorylation, and epigenetic modifications (DNMT3, MeCP2, H3K27me3, mir-132, mir-206, HDAC). CONCLUSION These molecular changes promote long-term synaptic stability and re-regulation in key brain regions, contributing to prolonged therapeutic benefits. Understanding the sustained molecular and epigenetic mechanisms behind ketamine's effects is critical for developing safe and effective personalised treatments, potentially leading to more effective recovery.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia.
- School of Health, UniSC, Sippy Downs, QLD, Australia.
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia.
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| | - Ana P Boųcas
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Maroochydore, QLD, Australia
| | - Bonnie L Quigley
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
3
|
Cardona-Acosta AM, Parise LF, Bolaños-Guzmán CA, Parise EM. PROPHYLACTIC KETAMINE: CURRENT KNOWLEDGE AND FUTURE DIRECTIONS. Biol Psychiatry 2025:S0006-3223(25)01103-5. [PMID: 40158609 DOI: 10.1016/j.biopsych.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/21/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
The prevalence of stress-induced disorders, including depression, anxiety, PTSD, and postpartum depression, has been increasing, while current treatment approaches are limited. As a result, researchers are exploring alternative treatments that include ketamine as a prophylactic against these disorders. This review provides an overview of the current knowledge on the use of ketamine as a prophylactic for stress-induced disorders, including preclinical and clinical findings on R,S-ketamine, as well as (2R,6R)- and (2S,6S)-hydroxynorketamine. We also explore the potential underlying mechanisms involved in preventing these disorders, including the brain regions/circuits, as well as glutamatergic, dopaminergic, serotonergic, and inflammatory processes known to be involved, as evidenced by studies with ketamine and its metabolites. Additionally, we highlight the limitations and risks associated with ketamine use, such as age- and sex-specific efficacy, potential long-term and adverse effects, and legal and ethical considerations. Finally, we discuss future research directions, including the implications for clinical practice, integrating ketamine into current treatment approaches, and potential advancements in ketamine-based therapies. Overall, the literature emphasizes the importance of continuing research to better understand the potential benefits and risks of ketamine as a prophylactic for stress-induced disorders.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Lyonna F Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Liu G, Ma L, Sakamoto A, Fujimura L, Xu D, Zhao M, Wan X, Murayama R, Anzai N, Hashimoto K. Splenic γδ T cells mediate antidepressant and prophylactic actions of arketamine in lipopolysaccharide-induced depression in mice. Pharmacol Biochem Behav 2024; 245:173906. [PMID: 39549733 DOI: 10.1016/j.pbb.2024.173906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits both therapeutic and sustained prophylactic effects in an inflammation-driven model of depression, although the precise mechanisms remain elusive. Given the involvement of γδ T cells in inflammatory processes, this study explored their role in the effects of arketamine. To assess therapeutic outcomes, mice received lipopolysaccharide (LPS:1.0 mg/kg), followed by either arketamine (10 mg/kg) or saline. For prophylactic assessment, arketamine or saline was administered six days prior to LPS exposure. A single dose of LPS (1.0 mg/kg) reduced the proportion of γδ T cells in the spleen but did not affect their levels in the blood, prefrontal cortex, or small intestine. Arketamine mitigated LPS-induced splenomegaly, counteracted the elevation of plasma interleukin-6 levels and the reduction in the proportion of splenic γδ T cells, and alleviated depression-like behavior as assessed by the forced swimming test. Notably, negative correlations were observed between the proportion of splenic γδ T cells and indicators of inflammation and depression. Furthermore, pretreatment with a γδ TCR antibody significantly countered the therapeutic and prophylactic effects of arketamine on LPS-induced changes. These findings highlight a novel role for splenic γδ T cells in inflammation-associated depression and suggest the potential of arketamine as a treatment option. Consequently, γδ T cells may represent a novel therapeutic target for inflammation-related depression. Further studies on the role of γδ T cells in depressed patients with inflammation are warranted.
Collapse
Affiliation(s)
- Guilin Liu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Li Ma
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Akemi Sakamoto
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan
| | - Dan Xu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingming Zhao
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiayun Wan
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Rumi Murayama
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
5
|
Kawczak P, Feszak I, Bączek T. Ketamine, Esketamine, and Arketamine: Their Mechanisms of Action and Applications in the Treatment of Depression and Alleviation of Depressive Symptoms. Biomedicines 2024; 12:2283. [PMID: 39457596 PMCID: PMC11505277 DOI: 10.3390/biomedicines12102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Research over the past years has compared the enantiomers (S)-ketamine (esketamine) and (R)-ketamine (arketamine) of the previously known racemic mixture called ketamine (R/S-ketamine). Esketamine has been found to be more potent, offering three times stronger analgesic effects and 1.5 times greater anesthetic efficacy than arketamine. It provides smoother anesthesia with fewer side effects and is widely used in clinical settings due to its neuroprotective, bronchodilatory, and antiepileptic properties. Approved by the FDA and EMA in 2019, esketamine is currently used alongside SSRIs or SNRIs for treatment-resistant depression (TRD). On the other hand, arketamine has shown potential for treating neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis, offering possible antidepressant effects and anti-inflammatory benefits. While esketamine is already in clinical use, arketamine's future depends on further research to address its safety, efficacy, and optimal dosing. Both enantiomers hold significant clinical value, with esketamine excelling in anesthesia, and arketamine showing promise in neurological and psychiatric treatments.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Feszak
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
| |
Collapse
|
6
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Splenic nerve denervation attenuates depression-like behaviors in Chrna7 knock-out mice via the spleen-gut-brain axis. J Affect Disord 2024; 362:114-125. [PMID: 38944290 DOI: 10.1016/j.jad.2024.06.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Growing evidence highlights the role of the spleen-brain axis in inflammation-associated depression. The α7-subtype of nicotinic acetylcholine receptor (α7 nAChR, encoded by the Chrna7 gene) is implicated in systemic inflammation, with Chrna7 knock-out (KO) mice displaying depression-like behaviors. Yet, the influence of spleen nerve on depression-like behaviors in these KO mice remains to be elucidated. METHODS We investigated the effects of the splenic nerve denervation (SND) on depression-like behaviors, the protein expression in the prefrontal cortex (PFC), and the gut microbiota composition in Chrna7 KO mice. RESULTS SND markedly alleviated depression-like behaviors and the reduced expression of GluA1 and postsynaptic density protein-95 (PSD-95) in the PFC of Chrna7 KO mice. No changes in α-diversity of gut microbiota were noted among the control, KO + sham, and KO + SND groups. However, significant differences in β-diversity of gut microbiota were noted among the groups. Notable alterations in various microbiota (e.g., Fluviimonas_pallidilutea, Maribacter_arcticus, Parvibacter_caecicola) and plasma metabolites (e.g., helicide, N-acetyl-L-aspartic acid, α-D-galactose 1-phosphate, choline, creatine) were observed between KO + sham and KO + SND groups. Interestingly, correlations were found between the relative abundance of specific microbiota and other outcomes, including synaptic proteins, metabolites and behavioral data. LIMITATIONS The underlying mechanisms remain to be fully understood. CONCLUSIONS Our findings indicate that the splenic nerve contributes to depression-like phenotypes in Chrna7 KO mice via the spleen-gut-brain axis.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan.
| |
Collapse
|
7
|
Chang L, Wei Y, Qu Y, Zhao M, Zhou X, Long Y, Hashimoto K. Role of oxidative phosphorylation in the antidepressant effects of arketamine via the vagus nerve-dependent spleen-brain axis. Neurobiol Dis 2024; 199:106573. [PMID: 38901783 DOI: 10.1016/j.nbd.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-β1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-β1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-β1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.
Collapse
Affiliation(s)
- Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Mingming Zhao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China; Department of Thyroid and Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
8
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Dietary sulforaphane glucosinolate mitigates depression-like behaviors in mice with hepatic ischemia/reperfusion injury: A role of the gut-liver-brain axis. J Psychiatr Res 2024; 176:129-139. [PMID: 38857554 DOI: 10.1016/j.jpsychires.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Nutrition has been increasingly recognized for its use in mental health. Depression is commonly observed in patients with chronic liver disease (CLD). Building on our recent findings of depression-like behaviors in mice with hepatic ischemia/reperfusion (HI/R) injury, mediated by the gut-liver-brain axis, this study explored the potential influence of dietary sulforaphane glucosinolate (SGS) on these behaviors. Behavioral assessments for depression-like behaviors were conducted 7 days post either sham or HI/R injury surgery. Dietary intake of SGS significantly prevented splenomegaly, systemic inflammation, depression-like behaviors, and downregulation of synaptic proteins in the prefrontal cortex (PFC) of HI/R-injured mice. Through 16S rRNA analysis and untargeted metabolomic analyses, distinct bacterial profiles and metabolites were identified between control + HI/R group and SGS + HI/R group. Correlations were observed between the relative abundance of gut microbiota and both behavioral outcomes and blood metabolites. These findings suggest that SGS intake could mitigate depression-like phenotypes in mice with HI/R injury, potentially through the gut-liver-brain axis. Additionally, SGS, found in crucial vegetables like broccoli, could offer prophylactic nutritional benefits for depression in patients with CLD.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
9
|
Li Y, Fan C, Hu Y, Zhang W, Li H, Wang Y, Xu Z. Multi-cohort validation: A comprehensive exploration of prognostic marker in clear cell renal cell carcinoma. Int Immunopharmacol 2024; 135:112300. [PMID: 38781609 DOI: 10.1016/j.intimp.2024.112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of RCC. It is characterized by resistance to traditional radiotherapy and chemotherapy, as well as an unfavorable clinical prognosis. Although TYMP is implicated in the advancement of tumor progression, the role of TYMP in ccRCC is still not understood. Heightened TYMP expression was identified in ccRCC through database mining and confirmed in RCC cell lines. Indeed, TYMP knockdown impacted RCC cell proliferation, migration, and invasion in vitro. TYMP showed a positive correlation with clinicopathological parameters (histological grade, pathological stage). Moreover, patients with high TYMP expression were indicative of poor prognosis in TCGA-ccRCC and external cohorts. The results of single-cell analysis showed that the distribution of TYMP was predominantly observed in monocytes and macrophages. Furthermore, there is a significant association between TYMP and immune status. Methylation analysis further elucidated the relationship between TYMP expression and multiple methylation sites. Drug sensitivity analysis unveiled potential pharmaceutical options. Additionally, mutation analyses identified an association between TYMP and the ccRCC driver genes like BAP1 and ROS1. In summary, TYMP may serve as a reliable prognostic indicator for ccRCC.
Collapse
Affiliation(s)
- Yifei Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Fan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuhang Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weizhi Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hang Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yining Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ziqiang Xu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
10
|
Ma L, Eguchi A, Liu G, Qu Y, Wan X, Murayama R, Mori C, Hashimoto K. A role of gut-brain axis on prophylactic actions of arketamine in male mice exposed to chronic restrain stress. Pharmacol Biochem Behav 2024; 238:173736. [PMID: 38401573 DOI: 10.1016/j.pbb.2024.173736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
The gut-brain axis, which includes gut microbiota and microbiome-derived metabolites, might be implicated in depression. We reported the sustained prophylactic effects of a new antidepressant arketamine in chronic restrain stress (CRS) model of depression. In this study, we investigated the role of gut-brain axis on the prophylactic effects of arketamine in the CRS (7 days) model. Pretreatment with arketamine (10 mg/kg, 1 day prior to the CRS onset) significantly prevented CRS-induced body weight loss, increased immobility time of forced swimming test, decreased sucrose preference of sucrose preference test, and reduced expressions of synaptic proteins (GluA1 and PSD-95) in the prefrontal cortex (PFC) in the male mice. Gut microbiota analysis showed that pretreatment with arketamine might restore altered abundance of gut microbiota in CRS-exposed mice. An untargeted metabolomics analysis revealed four metabolites (e.g., L-leucine, N-acetyl-l-glutamine, 2-(2,4-dichlorophenyl)-3-[4-(dimethylamino)phenyl]acrylonitrile, L-threonine amide) that were altered between control and CRS group; however, there were found to be altered between the saline + CRS group and the arketamine + CRS group. Network analysis demonstrated correlations among synaptic proteins in the PFC and certain microbiota, and blood metabolites. These findings suggest that gut-brain axis, including its metabolites, might partially contribute to the persistent prophylactic effects of arketamine in the CRS model.
Collapse
Affiliation(s)
- Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Guilin Liu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Rumi Murayama
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
11
|
Berner J, Acharjee A. Cerebrospinal fluid metabolomes of treatment-resistant depression subtypes and ketamine response: a pilot study. DISCOVER MENTAL HEALTH 2024; 4:12. [PMID: 38630417 PMCID: PMC11024073 DOI: 10.1007/s44192-024-00066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Depression is a disorder with variable presentation. Selecting treatments and dose-finding is, therefore, challenging and time-consuming. In addition, novel antidepressants such as ketamine have sparse optimization evidence. Insights obtained from metabolomics may improve the management of patients. The objective of this study was to determine whether compounds in the cerebrospinal fluid (CSF) metabolome correlate with scores on questionnaires and response to medication. We performed a retrospective pilot study to evaluate phenotypic and metabolomic variability in patients with treatment-resistant depression using multivariate data compression algorithms. Twenty-nine patients with treatment-resistant depression provided fasting CSF samples. Over 300 metabolites were analyzed in these samples with liquid chromatography-mass spectrometry. Chart review provided basic demographic information, clinical status with self-reported questionnaires, and response to medication. Of the 300 metabolites analyzed, 151 were present in all CSF samples and used in the analyses. Hypothesis-free multivariate analysis compressed the resultant data set into two dimensions using Principal Component (PC) analysis, accounting for ~ 32% of the variance. PC1 accounted for 16.9% of the variance and strongly correlated with age in one direction and 5-methyltetrahydrofolate, homocarnosine, and depression and anxiety scores in the opposite direction. PC2 accounted for 15.4% of the variance, with one end strongly correlated with autism scores, male gender, and cognitive fatigue scores, and the other end with bipolar diagnosis, lithium use, and ethylmalonate disturbance. This small pilot study suggests that complex treatment-resistant depression can be mapped onto a 2-dimensional pathophysiological domain. The results may have implications for treatment selection for depression subtypes.
Collapse
Affiliation(s)
- Jon Berner
- Woodinville Psychiatric Associates, 18500 156Th Ave NE #100, Woodinville, WA, 98072, USA.
| | - Animesh Acharjee
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- MRC Health Data Research UK (HDR UK), London, UK
| |
Collapse
|
12
|
Zhang S, Pu Y, Liu J, Li L, An C, Wu Y, Zhang W, Zhang W, Qu S, Yan W. Exploring the multifaceted potential of (R)-ketamine beyond antidepressant applications. Front Pharmacol 2024; 15:1337749. [PMID: 38666026 PMCID: PMC11043571 DOI: 10.3389/fphar.2024.1337749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
(R, S)- and (S)-ketamine have made significant progress in the treatment of treatment-resistant depression (TRD) and have become a research focus in recent years. However, they both have risks of psychomimetic effects, dissociative effects, and abuse liability, which limit their clinical use. Recent preclinical and clinical studies have shown that (R)-ketamine has a more efficient and lasting antidepressant effect with fewer side effects compared to (R, S)- and (S)-ketamine. However, a recent small-sample randomized controlled trial found that although (R)-ketamine has a lower incidence of adverse reactions in adult TRD treatment, its antidepressant efficacy is not superior to the placebo group, indicating its antidepressant advantage still needs further verification and clarification. Moreover, an increasing body of research suggests that (R)-ketamine might also have significant applications in the prevention and treatment of medical fields or diseases such as cognitive disorders, perioperative anesthesia, ischemic stroke, Parkinson's disease, multiple sclerosis, osteoporosis, substance use disorders, inflammatory diseases, COVID-19, and organophosphate poisoning. This article briefly reviews the mechanism of action and research on antidepressants related to (R)-ketamine, fully revealing its application potential and development prospects, and providing some references and assistance for subsequent expanded research.
Collapse
Affiliation(s)
- Senbing Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yanzhu Pu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianning Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lewen Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chibing An
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yumin Wu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjie Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenxia Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Song Qu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Depression-like phenotypes in mice following common bile duct ligation: Insights into the gut-liver-brain axis via the vagus nerve. Neurobiol Dis 2024; 192:106433. [PMID: 38331354 DOI: 10.1016/j.nbd.2024.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Depression frequently occurs in patients with liver cirrhosis, yet the reasons for this correlation are not fully understood. Dysbiosis of gut microbiota has been implicated in depression through the gut-brain axis via the vagus nerve. This study explored the potential role of the gut-liver-brain axis via the vagus nerve in depression-like phenotypes in mice with liver cirrhosis. These mice underwent common bile duct ligation (CBDL), a method used to stimulate liver cirrhosis. To assess depression-like behaviors, behavioral tests were conducted 10 days following either sham or CBDL surgeries. The mice with CBDL displayed symptoms such as splenomegaly, elevated plasma levels of interleukin-6 and tumor necrosis factor-α, depression-like behaviors, decreased levels of synaptic proteins in the prefrontal cortex (PFC), disrupted gut microbiota balance, and changes in blood metabolites (or lipids). Additionally, there were positive or negative correlations between the relative abundance of microbiome and behavioral data or blood metabolites (or lipids). Significantly, these changes were reversed in CBDL mice by performing a subdiaphragmatic vagotomy. Intriguingly, depression-like phenotypes in mice with CBDL were improved after a single injection of arketamine, a new antidepressant. These results suggest that CBDL-induced depression-like phenotypes in mice are mediated through the gut-liver-brain axis via the subdiaphragmatic vagus nerve, and that arketamine might offer a new treatment approach for depression in liver cirrhosis patients.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
14
|
Wang Y, Wu J, Gong Y, Wang H, Wu T, Liu R, Sui W, Zhang M. Peanut oil odor enhances the immunomodulatory effect on immunosuppressed mice by regulating the cAMP signaling pathway via the brain-spleen axis. Food Funct 2024; 15:1994-2007. [PMID: 38288526 DOI: 10.1039/d3fo03629d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The role of sniffing relative to immune function has attracted considerable attention. The present study investigated the immunomodulatory effects of peanut oil odor on cyclophosphamide (CTX)-induced immunosuppressed mice. The subset of mice subjected to prolonged (8 h) sniffing peanut oil odor (PL) demonstrated significantly elevated levels of agouti-related peptide, neuropeptide Y, and glutamate (p < 0.05), whereas it significantly down-regulated the level of γ-aminobutyric acid in the brain (p < 0.05). Furthermore, immunohistochemistry results indicated significantly increased expression of mGluR1/5 and decreased expression of GABABR in the hippocampus and hypothalamus (p < 0.05) of the PL group. Additionally, the PL group had significantly up-regulated expression levels of cAMP, Epac, Rap1, ERK1/2 and PKA (p < 0.05) and remarkably increased phosphorylation of CREB in the cAMP signaling pathway (p < 0.05), which influenced the central nervous system. Moreover, compared with CTX-induced mice, the percentages of peripheral blood T lymphocytes (CD3+CD4+ and CD3+CD8+) and the levels of splenic cytokines (IL-2, IL-4, and TNF-α) were significantly increased following PL treatment (p < 0.05). The PL group also showed significantly up-regulated expression levels of cAMP, p-p65, and p-IκBα in the spleen (p < 0.05) by western blot analysis. In summary, PL intervention significantly up-regulated the expression levels of cAMP in the brain (p < 0.05), with subsequent transfer of cAMP to the spleen which promoted phosphorylation of p65 and IκBα. This series of events enhanced the immunity of mice, which confirmed the regulatory effect of PL on the cAMP signaling pathway, thereby enhancing immune function via the brain-spleen axis.
Collapse
Affiliation(s)
- Yijin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianfu Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ying Gong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Huiting Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
| |
Collapse
|
15
|
Yang Y, Eguchi A, Wan X, Mori C, Hashimoto K. Depression-like phenotypes in mice with hepatic ischemia/reperfusion injury: A role of gut-microbiota-liver-brain axis via vagus nerve. J Affect Disord 2024; 345:157-167. [PMID: 37879416 DOI: 10.1016/j.jad.2023.10.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Depression is a frequent symptom in patients with chronic liver disease; however, the mechanisms underlying this association remain unclear. Dysbiosis of gut microbiota plays a critical role in depression through the gut-brain axis via the vagus nerve. In this study, we investigated whether the gut-microbiota-liver-brain axis plays a role in depression-like phenotypes in mice with hepatic ischemia/reperfusion (HI/R) injury via the vagus nerve. Behavioral tests for depression-like behaviors were performed 7 days after sham or HI/R injury surgery. Mice with HI/R injury exhibited splenomegaly, systemic inflammation, depression-like behaviors, reduced expression of synaptic proteins in the prefrontal cortex (PFC), abnormal composition of gut microbiota, and altered blood metabolites and lipids. Furthermore, there were positive or negative correlations between the relative abundance of microbiome and behavioral data or blood metabolites (or lipids). Moreover, subdiaphragmatic vagotomy significantly blocked these changes in mice with HI/R injury. Notably, depression-like phenotypes in mice with HI/R injury were ameliorated after subsequent single injection of the new antidepressant arketamine. The current findings suggest that HI/R injury induces depression-like phenotypes in mice through the gut-microbiota-liver-brain axis via the subdiaphragmatic vagus nerve. Furthermore, arketamine may have therapeutic potential in the treatment of depression in patients with chronic liver disease.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
16
|
Liu G, Ma L, Qu Y, Wan X, Xu D, Zhao M, Murayama R, Hashimoto K. Prophylactic effects of arketamine, but not hallucinogenic psychedelic DOI nor non-hallucinogenic psychedelic analog lisuride, in lipopolysaccharide-treated mice and mice exposed to chronic restrain stress. Pharmacol Biochem Behav 2023; 233:173659. [PMID: 37844631 DOI: 10.1016/j.pbb.2023.173659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Anesthetic ketamine and classical psychedelics that act as 5-hydroxytryptamine-2A receptor (5-HT2AR) agonists demonstrated rapid and sustained antidepressant actions in patients with treatment-resistant depression. The new antidepressant arketamine is reported to cause long-lasting prophylactic effects in lipopolysaccharide (LPS)-treated mice and mice exposed to chronic restrain stress (CRS). However, no study has compared the prophylactic effects of DOI (2,5-dimethoxy-4-iodoamphetamine: a hallucinogenic psychedelic drug with potent 5-HT2AR agonism), lisuride (non-hallucinogenic psychedelic analog with 5-HT2AR and 5-HT1AR agonism), and arketamine on depression-like behaviors in mice. Saline (10 ml/kg), DOI (2.0 or 4.0 mg/kg), lisuride (1.0 or 2.0 mg/kg), or arketamine (10 mg/kg) was administered intraperitoneally (i.p.) to male mice 6 days before administration of LPS (1.0 mg/kg). Pretreatment with aketamine, but not DOI and lisuride, significantly ameliorated body weight loss, splenomegaly, the increased immobility time of forced swimming test (FST), and the decreased expression of PSD-95 in the prefrontal cortex (PFC) of LPS-treated mice. In another test, male mice received the same treatment one day before CRS (7 days). Pretreatment with aketamine, but not DOI and lisuride, significantly ameliorated the increased FST immobility time, the reduced sucrose preference in the sucrose preference test, and the decreased expression of PSD-95 in the PFC of CRS-exposed mice. These findings suggest that, unlike to arketamine, both DOI and lisuride did not exhibit long-lasting prophylactic effects in mouse models of depression.
Collapse
Affiliation(s)
- Guilin Liu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Dan Xu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Mingming Zhao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Rumi Murayama
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
17
|
Liu QR, Zong QK, Ding LL, Dai HY, Sun Y, Dong YY, Ren ZY, Hashimoto K, Yang JJ. Effects of perioperative use of esketamine on postpartum depression risk in patients undergoing cesarean section: A randomized controlled trial. J Affect Disord 2023; 339:815-822. [PMID: 37482224 DOI: 10.1016/j.jad.2023.07.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Postpartum depression (PPD) is a prevalent public health issue. Although ketamine has prophylactic effects on PPD in women undergoing cesarean section, the effects of esketamine on PPD remain unclear. This trial aimed to evaluate the efficacy of perioperative esketamine infusion on PPD risk by assessing Edinburgh Postnatal Depression Scale (EPDS) scores and blood biomarkers. METHODS A total of 150 participants undergoing elective cesarean section were randomly allocated to receive either esketamine or normal saline. Since 27 participants were excluded due to consent withdrawal or loss to follow-up, 123 patients were included. The primary outcome was the prevalence of PPD risk. Secondary outcomes included the prevalence of postpartum anxiety (PPA) risk, levels of biomarkers, postoperative pain intensity, and cumulative sufentanil consumption. RESULTS The prevalence of PPD and PPA risk at 3 days, 42 days, 3 months, and 6 months postpartum did not differ between the two groups. Furthermore, EPDS scores, pain intensity at rest, and during coughing on postoperative days (POD) 1 and 2 did not differ between the two groups. Sufentanil consumption during 0-12 h, 12-24 h, 0-24 h, and 0-48 h postoperatively were significantly lower in the esketamine group compared to the control group. Blood biomarkers did not differ between the two groups on POD 3. LIMITATIONS The sample size was small. PPD risk was simply screened, not diagnosed. CONCLUSIONS Perioperative administration of esketamine did not decrease the incidence of PPD risk in women after elective cesarean section. However, esketamine reduced opioid consumption.
Collapse
Affiliation(s)
- Qing-Ren Liu
- Department of Anesthesiology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Qian-Kun Zong
- Department of Anesthesiology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Li-Li Ding
- Department of Anesthesiology, Xishan People's Hospital of Wuxi City, Wuxi 214105, China
| | - Hong-Yan Dai
- Department of Obstetrics & Gynecology, Xishan People's Hospital of Wuxi City, Wuxi, 214105, China
| | - Yan Sun
- Department of Obstetrics & Gynecology, Xishan People's Hospital of Wuxi City, Wuxi, 214105, China
| | - Yong-Yan Dong
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhuo-Yu Ren
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
18
|
Sharma A, Tajerian M, Berner J. Rapamycin Augmentation of Chronic Ketamine as a Novel Treatment for Complex Regional Pain Syndrome. Cureus 2023; 15:e43715. [PMID: 37724220 PMCID: PMC10505505 DOI: 10.7759/cureus.43715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
This case report describes the dramatic clinical response of refractory chronic complex regional pain syndrome to combined immunomodulatory treatment. Ketamine and rapamycin markedly minimized pain historically associated with suicidal behavior, increased baseline activity, and allowed for a reduction in palliative polypharmacy. The piecewise mechanism of action is unclear given multiple postulated targets, such as microglia, astroglia, T-regulatory cells, B-regulatory cells, or neurons. Relevant laboratory and genetic information may allow the application of this treatment to other affected individuals.
Collapse
Affiliation(s)
- Ayush Sharma
- Pain Management, Woodinville Psychiatric Associates, Woodinville, USA
| | - Maral Tajerian
- Department of Biology, Queens College, City University of New York, Flushing, USA
- The Graduate Center, City University of New York, New York, USA
| | - Jon Berner
- Psychiatry, Woodinville Psychiatric Associates, Woodinville, USA
| |
Collapse
|
19
|
Ma L, Wang L, Qu Y, Wan X, Hashimoto K. A role of splenic heme biosynthesis pathway in the persistent prophylactic actions of arketamine in lipopolysaccharide-treated mice. Transl Psychiatry 2023; 13:269. [PMID: 37491335 PMCID: PMC10368680 DOI: 10.1038/s41398-023-02564-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Relapse is common in remitted patients with major depressive disorder (MDD). Arketamine, an (R)-enantiomer of ketamine, has persistent prophylactic actions in an inflammatory model of depression. However, the precise mechanisms underlying these prophylactic actions remain unknown. Given the role of the brain-spleen axis in depression, we sought to identify splenic molecular targets that play a role in the prophylactic actions of arketamine. Lipopolysaccharide (LPS) (1.0 mg/kg) was administered 6 days after a single injection of arketamine (10 mg/kg) or saline. RNA-sequencing analysis found altered expression in the heme biosynthesis II pathway. Quantitative RT-PCR revealed that pretreatment with arketamine blocked increased expression of genes involved in the heme biosynthesis II pathway in LPS-treated mice, namely, 5-aminolevulinase synthase 2 (Alas2), ferrochelatase (Fech), hydroxymethylbilane synthase (Hmbs). Interestingly, there were positive correlations between the expression of these genes and spleen weight or plasma levels of pro-inflammatory cytokines. We also found higher expression of ALAS2 and FECH in the spleen from MDD patients. Pretreatment with a key intermediate precursor of heme, 5-aminolaevulinic acid (300 mg/kg/day for 3 days), caused splenomegaly, higher plasma levels of pro-inflammatory cytokines, and depression-like behavior in low-dose LPS (0.1 mg/kg)-treated mice. Interestingly, pretreatment with a heme biosynthesis inhibitor, succinyl acetone (120 mg/kg/day for 3 days), had prophylactic effects in LPS (1.0 mg/kg)-treated mice. These data suggest a novel role for the heme biosynthesis II pathway in the spleen for inflammation-related depression. Therefore, the heme biosynthesis pathway could be a new target for the prevention of relapse in MDD patients.
Collapse
Affiliation(s)
- Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
20
|
Johnston JN, Henter ID, Zarate CA. The antidepressant actions of ketamine and its enantiomers. Pharmacol Ther 2023; 246:108431. [PMID: 37146727 PMCID: PMC10213151 DOI: 10.1016/j.pharmthera.2023.108431] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist first developed as an anesthetic, has shown significant promise as a medication with rapid antidepressant properties in treatment-resistant depression. However, concerns such as adverse side effects and potential misuse liability have limited its widespread use. Racemic ketamine has two enantiomers-(S)- and (R)-ketamine-that appear to have disparate underlying mechanisms. This brief review summarizes some of the most recent preclinical and clinical research regarding the convergent and divergent prophylactic, immediate, and sustained antidepressant effects of (S)- and (R)-ketamine while addressing potential differences in their side effect and misuse liability profiles. Preclinical research suggests divergent mechanisms underlying (S)- and (R)-ketamine, with (S)-ketamine more directly affecting mechanistic target of rapamycin complex 1 (mTORC1) signaling and (R)-ketamine more directly affecting extracellular signal-related kinase (ERK) signaling. Clinical research suggests that (R)-ketamine has a milder side effect profile than (S)-ketamine and decreases depression rating scale scores, but recent randomized, controlled trials found that it had no significant antidepressant efficacy compared to placebo, suggesting that caution is warranted in interpreting its therapeutic potential. Future preclinical and clinical research is needed to maximize the efficacy of each enantiomer, either by optimizing dose, route of administration, or administration paradigm.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MA, United States.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MA, United States
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MA, United States
| |
Collapse
|
21
|
Li M, Han L, Xiao J, Zhang S, Liu G, Sun X. IL-1ra treatment prevents chronic social defeat stress-induced depression-like behaviors and glutamatergic dysfunction via the upregulation of CREB-BDNF. J Affect Disord 2023; 335:358-370. [PMID: 37217098 DOI: 10.1016/j.jad.2023.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/30/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Proinflammatory cytokines IL-1β has been proposed to be a key mediator in the pathophysiology of mood-related disorders. However, the IL-1 receptor antagonist (IL-1ra) is a natural antagonist of IL-1 and plays a key role in the regulation of IL-1-mediated inflammation, the effects of IL-1ra in stress-induced depression has not been well elucidated. METHODS Chronic social defeat stress (CSDS) and lipopolysaccharide (LPS) were used to investigate the effects of IL-1ra. ELISA kit and qPCR were used to detect IL-1ra levels. Golgi staining and electrophysiological recordings were used to investigate glutamatergic neurotransmission in the hippocampus. Immunofluorescence and western blotting were used to analyze CREB-BDNF pathway and synaptic proteins. RESULTS Serum levels of IL-1ra increased significantly in two animal models of depression, and there was a significant correlation between serum IL-1ra levels and depression-like behaviors. Both CSDS and LPS induced the imbalance of IL-1ra and IL-1β in the hippocampus. Furthermore, chronic intracerebroventricular (i.c.v.) infusion of IL-1ra not only blocked CSDS-induced depression-like behaviors, but also alleviated CSDS-induced decrease in dendritic spine density and impairments in AMPARs-mediated neurotransmission. Finally, IL-1ra treatment produces antidepressant-like effects through the activation of CREB-BDNF in the hippocampus. LIMITATION Further studies need to investigate the effect of IL-1ra in the periphery in CSDS-induced depression. CONCLUSION Our study suggests that the imbalance of IL-1ra and IL-1β reduces the expression of the CREB-BDNF pathway in the hippocampus, which dysregulates AMPARs-mediated neurotransmission, ultimately leading to depression-like behaviors. IL-1ra could be a new potential candidate for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mingxing Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430012, China; Department of Psychiatry, Wuhan Mental Health Center, Wuhan 430012, China.
| | - Li Han
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430012, China; Department of Psychiatry, Wuhan Mental Health Center, Wuhan 430012, China
| | - Junli Xiao
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430012, China; Department of Psychiatry, Wuhan Mental Health Center, Wuhan 430012, China
| | - Song Zhang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangya Liu
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Wuhan 430023, China.
| | - Xuejiao Sun
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
22
|
Johnston JN, Greenwald MS, Henter ID, Kraus C, Mkrtchian A, Clark NG, Park LT, Gold P, Zarate CA, Kadriu B. Inflammation, stress and depression: An exploration of ketamine's therapeutic profile. Drug Discov Today 2023; 28:103518. [PMID: 36758932 PMCID: PMC10050119 DOI: 10.1016/j.drudis.2023.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Well-established animal models of depression have described a proximal relationship between stress and central nervous system (CNS) inflammation - a relationship mirrored in the peripheral inflammatory biomarkers of individuals with depression. Evidence also suggests that stress-induced proinflammatory states can contribute to the neurobiology of treatment-resistant depression. Interestingly, ketamine, a rapid-acting antidepressant, can partially exert its therapeutic effects via anti-inflammatory actions on the hypothalamic-pituitary adrenal (HPA) axis, the kynurenine pathway or by cytokine suppression. Further investigations into the relationship between ketamine, inflammation and stress could provide insight into ketamine's unique therapeutic mechanisms and stimulate efforts to develop rapid-acting, anti-inflammatory-based antidepressants.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Maximillian S Greenwald
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kraus
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anahit Mkrtchian
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Neil G Clark
- US School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Philip Gold
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Mojiri-Forushani H, Khajehali E, Adelipour M, Mohammadi A. Inhibitory effects of fluoxetine on the secretion of inflammatory mediators and JAK/STAT3 and JNK/TLR4 gene expression. Mol Biol Rep 2023; 50:2231-2241. [PMID: 36571654 PMCID: PMC9791631 DOI: 10.1007/s11033-022-08219-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are the most common class of medicines used for the treatment of major depression. Recent studies have reported an association between depression and inflammation and suggested the significant effects of SSRIs on inflammatory processes. METHODS The current study aimed to evaluate the effects of fluoxetine, an SSRI, on the level of inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in the rat serum and RAW264.7 mouse macrophage cell line, using ELISA sandwich assays. Also, the expression of inflammatory genes, including JAK/STAT3 and TLR4/JNK, was examined in macrophages, using real-time quantitative reverse transcription PCR to determine the potential mechanism of fluoxetine in inflammation. The rats received fluoxetine (10, 20, and 40 mg/kg) 30 min before lipopolysaccharide (LPS) treatment for 90 min. The cells received different doses of fluoxetine (5, 10, and 20 µg/mL) before stimulation with LPS for 24 or 48 h. RESULTS The serum concentrations of IL-1β, IL-6, and TNF-α were reduced in rats and cells treated with fluoxetine. Following fluoxetine administration, the expression of JAK/STAT3 and TLR4/JNK genes was significantly decreased in the RAW264.7 cells treated with LPS for 24 h. However, after 48 h of treatment with LPS, fluoxetine failed to diminish the elevated expression of JAK and JNK genes, while it significantly decreased the expression of STAT3 and TLR4 genes. CONCLUSION The findings revealed that fluoxetine has anti-inflammatory properties, mainly due to the reduction of inflammatory cytokines and inhibition of JAK/STAT3 and TLR4/JNK gene expression in macrophages.
Collapse
Affiliation(s)
| | - Elham Khajehali
- Department of Anatomy & Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
24
|
Weapons of stress reduction: (R,S)-ketamine and its metabolites as prophylactics for the prevention of stress-induced psychiatric disorders. Neuropharmacology 2023; 224:109345. [PMID: 36427554 DOI: 10.1016/j.neuropharm.2022.109345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Exposure to stress is one of the greatest contributing factors to developing a psychiatric disorder, particularly in susceptible populations. Enhancing resilience to stress could be a powerful intervention to reduce the incidence of psychiatric disease and reveal insight into the pathophysiology of psychiatric disorders. (R,S)-ketamine and its metabolites have recently been shown to exert protective effects when administered before or after a variety of stressors and may be effective, tractable prophylactic compounds against psychiatric disease. Drug dosing, sex, age, and strain in preclinical rodent studies, significantly influence the prophylactic effects of (R,S)-ketamine and related compounds. Due to the broad neurobiological actions of (R,S)-ketamine, a variety of mechanisms have been proposed to contribute to the resilience-enhancing effects of this drug, including altering various transcription factors across the genome, enhancing inhibitory connections from the prefrontal cortex, and increasing synaptic plasticity in the hippocampus. Promisingly, select data have shown that (R,S)-ketamine may be an effective prophylactic against psychiatric disorders, such as postpartum depression (PPD). Overall, this review will highlight a brief history of the prophylactic effects of (R,S)-ketamine, the potential mechanisms underlying its protective actions, and possible future directions for translating prophylactic compounds to the clinic. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
|
25
|
Repeated use of 3,4-methylenedioxymethamphetamine is associated with the resilience in mice after chronic social defeat stress: A role of gut-microbiota-brain axis. Psychiatry Res 2023; 320:115020. [PMID: 36571897 DOI: 10.1016/j.psychres.2022.115020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA), the most widely used illicit compound worldwide, is the most attractive therapeutic drug for post-traumatic stress disorder (PTSD). Recent observational studies of US adults demonstrated that lifetime MDMA use was associated with lower risk of depression. Here, we examined whether repeated administration of MDMA can affect resilience versus susceptibility in mice exposed to chronic social defeat stress (CSDS). CSDS produced splenomegaly, anhedonia-like phenotype, and higher plasma levels of interleukin-6 (IL-6) in the saline-treated mice. In contrast, CSDS did not cause these changes in the MDMA-treated mice. Analysis of gut microbiome found several microbes altered between saline + CSDS group and MDMA + CSDS group. Untargeted metabolomics analysis showed that plasma levels of N-epsilon-methyl-L-lysine in the saline + CSDS group were significantly higher than those in the control and MDMA + CSDS groups. Interestingly, there were positive correlations between plasma IL-6 levels and the abundance of several microbes (or plasma N-epsilon-methyl-L-lysine) in the three groups. Furthermore, there were also positive correlations between the abundance of several microbes and N-epsilon-methyl-L-lysine in the three groups. In conclusion, these data suggest that repeated administration of MDMA might contribute to stress resilience in mice subjected to CSDS through gut-microbiota-brain axis.
Collapse
|
26
|
Ketamine, benzoate, and sarcosine for treating depression. Neuropharmacology 2023; 223:109351. [PMID: 36423705 DOI: 10.1016/j.neuropharm.2022.109351] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Studies have demonstrated the beneficial therapeutic effects of sarcosine, benzoate, and ketamine (including esketamine and arketamine) on depression. These drugs mainly act by modulating N-methyl-d-aspartate glutamate receptors (NMDARs) and reducing inflammation in the brain. Although ketamine, benzoate, and sarcosine act differently as the antagonists or coagonists of NMDARs, they all have demonstrated efficacy in animal models or human trials. In vitro and in vivo studies have indicated that sarcosine, benzoate, and ketamine exert their anti-inflammatory effects by inhibiting microglial activity. This review summarizes and compares the efficacy of the possible therapeutic mechanisms of sarcosine, benzoate, ketamine, esketamine, and arketamine. These compounds act as both NMDAR modulators and anti-inflammatory drugs and thus can be effective in the treatment of depression.
Collapse
|
27
|
Hashimoto K. Neuroinflammation through the vagus nerve-dependent gut–microbiota–brain axis in treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
28
|
Qu Y, Chang L, Ma L, Wan X, Hashimoto K. Rapid antidepressant-like effect of non-hallucinogenic psychedelic analog lisuride, but not hallucinogenic psychedelic DOI, in lipopolysaccharide-treated mice. Pharmacol Biochem Behav 2023; 222:173500. [PMID: 36476377 DOI: 10.1016/j.pbb.2022.173500] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Classical psychedelics with 5-hydroxytryptamine-2A receptor (5-HT2AR) agonism have rapid antidepressant actions in patients with depression. However, there is an ongoing debate over the role of 5-HT2AR in the antidepressant-like actions of psychedelics. In this study, we compared the effects of DOI (2,5-dimethoxy-4-iodoamphetamine: a hallucinogenic psychedelic drug with potent 5-HT2AR agonism), lisuride (non-hallucinogenic psychedelic analog with 5-HT2AR and 5-HT1AR agonisms), and the novel antidepressant (R)-ketamine on depression-like behavior and the decreased dendritic spine density in the brain of lipopolysaccharide (LPS)-treated mice. Saline (10 ml/kg), DOI (2.0 mg/kg), lisuride (1.0 mg/kg), or (R)-ketamine (10 mg/kg) was administered intraperitoneally to LPS (0.5 mg/kg, 23 h before)-treated mice. Both lisuride and (R)-ketamine significantly ameliorated the increased immobility time of forced swimming test, and the decreased dendritic spine density in the prelimbic region of medial prefrontal cortex, CA3 and dentate gyrus of hippocampus of LPS-treated mice. In contrast, DOI did not improve these changes produced after LPS administration. This study suggests that antidepressant-like effect of lisuride in LPS-treated mice is not associated with 5-HT2AR-related psychedelic effects. It is, therefore, unlikely that 5-HT2AR may play a major role in rapid-acting antidepressant actions of psychedelics although further detailed study is needed.
Collapse
Affiliation(s)
- Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
29
|
Impact of broad-spectrum antibiotics on the gut-microbiota-spleen-brain axis. Brain Behav Immun Health 2022; 27:100573. [PMID: 36583066 PMCID: PMC9793168 DOI: 10.1016/j.bbih.2022.100573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The spleen is a key immune-related organ that plays a role in communication between the brain and the immune system through the brain-spleen axis and brain-gut-microbiota axis. However, how the gut microbiota affects spleen and brain function remains unclear. Here, we investigated whether microbiome depletion induced by administration of an antibiotic cocktail (ABX) affects spleen and brain function. Treatment with ABX for 14 days resulted in a significant decrease in spleen weight and significant alterations in splenic functions, including the percentage of neutrophils, NK cells, macrophages, and CD8+ T cells. Furthermore, ABX treatment resulted in the depletion of a large portion of the gut microbiota. Untargeted metabolomics analysis showed that ABX treatment caused alterations in the levels of certain compounds in the plasma, spleen, and brain. Moreover, ABX treatment decreased the expression of microglia marker Iba1 in the cerebral cortex. Interestingly, correlations were found between the abundance of different microbiome components and metabolites in various tissues, as well as splenic cell populations and spleen weight. These findings suggest that ABX-induced microbiome depletion and altered metabolite levels may affect spleen and brain function through the gut-microbiota-spleen-brain axis.
Collapse
|
30
|
Ma L, Zhang J, Fujita Y, Shinno-Hashimoto H, Shan J, Wan X, Qu Y, Chang L, Wang X, Hashimoto K. Effects of spleen nerve denervation on depression-like phenotype, systemic inflammation, and abnormal composition of gut microbiota in mice after administration of lipopolysaccharide: A role of brain-spleen axis. J Affect Disord 2022; 317:156-165. [PMID: 36037991 DOI: 10.1016/j.jad.2022.08.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Accumulating evidence suggests the role of brain-spleen axis as well as brain-gut-microbiota axis in inflammation-related depression. The spleen mediates anti-inflammatory effects of the vagus nerve which plays a role in depression. However, the role of spleen nerve in inflammation-related depression remains unclear. METHODS The effects of the splenic nerve denervation (SND) in the depression-like phenotype, systemic inflammation, and abnormal composition of gut microbiota in adult mice after administration of lipopolysaccharide (LPS) were examined. RESULTS LPS (0.5 mg/kg) caused depression-like phenotype, systemic inflammation, splenomegaly, increased expression of Iba1 (ionized calcium-binding adapter molecule 1) and decreased expression of postsynaptic density protein-95 (PSD-95) in the hippocampus in the sham-operated mice. In contrast, LPS did not produce depression-like phenotype, and abnormal expressions of Iba1 and PSD-95 in the hippocampus in the SND-operated mice. Furthermore, SND significantly blocked LPS-induced increased plasma levels of pro-inflammatory cytokine interleukin-6 although SND did not affect LPS-induced splenomegaly and increased plasma levels of tumor necrosis factor-α in mice. There were significant changes in several microbiota among the four groups. Interestingly, there were correlations between the relative abundance of several microbiota and Iba1 (or PSD-95) expression in the hippocampus. In addition, expression of Iba1 in the hippocampus was correlated with the relative abundance of several microbiota. LIMITATIONS Detailed mechanisms are unclear. CONCLUSIONS These results suggest that the splenic nerve plays a role in inflammation-related depression, microglial activation in the hippocampus, and that gut microbiota may regulate microglial function in the brain via gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyo Shinno-Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
31
|
Wan X, Eguchi A, Qu Y, Yang Y, Chang L, Shan J, Mori C, Hashimoto K. Gut-microbiota-brain axis in the vulnerability to psychosis in adulthood after repeated cannabis exposure during adolescence. Eur Arch Psychiatry Clin Neurosci 2022; 272:1297-1309. [PMID: 35666299 DOI: 10.1007/s00406-022-01437-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/15/2022] [Indexed: 02/07/2023]
Abstract
Increasing epidemiological evidence shows that the use of cannabis during adolescence could increase the risk for psychosis in adulthood. However, the precise mechanisms underlying long-lasting cannabis-induced risk for psychosis remain unclear. Accumulating evidence suggests the role of gut microbiota in the pathogenesis of psychiatric disorders. Here, we examined whether gut microbiota plays a role in the risk for psychosis of adult after exposure of cannabinoid (CB) receptor agonist WIN55,212-2 during adolescence. Repeated administration of WIN55,212-2 (2 mg/kg/day) during adolescence (P35-P45) significantly increased the expression of Iba1 (ionized calcium-binding adapter molecule 1) in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) of adult mice after administration of lipopolysaccharide (LPS: 0.5 mg/kg). In contrast, there were no changes in blood levels of pro-inflammatory cytokines between the two groups. Although alpha-diversity and beta-diversity of gut microbiota were no differences between the two groups, there were several microbes altered between the two groups. Interestingly, there were significant correlations between the relative abundance of microbiota and Iba1 expression in the mPFC and NAc. Furthermore, there were also significant correlations between the relative abundance of microbiota and several metabolites in the blood. These findings suggest that gut microbiota may play a role in the microglial activation in the mPFC and NAc of adult mice after repeated WIN55,212-2 exposure during adolescence. Therefore, it is likely that gut-microbiota-microglia crosstalk might play a role in increased risk for psychosis in adults with cannabis use during adolescence.
Collapse
Affiliation(s)
- Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan.,Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
32
|
Ma L, Wang L, Chang L, Shan J, Qu Y, Wang X, Wan X, Fujita Y, Hashimoto K. A key role of miR-132-5p in the prefrontal cortex for persistent prophylactic actions of (R)-ketamine in mice. Transl Psychiatry 2022; 12:417. [PMID: 36171191 PMCID: PMC9519951 DOI: 10.1038/s41398-022-02192-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
(R,S)-ketamine is known to elicit persistent prophylactic effects in rodent models of depression. However, the precise molecular mechanisms underlying its action remain elusive. Using RNA-sequencing analysis, we searched for novel molecular target(s) that contribute to the prophylactic effects of (R)-ketamine, a more potent enantiomer of (R,S)-ketamine in chronic restraint stress (CRS) model. Pretreatment with (R)-ketamine (10 mg/kg, 1 day before CRS) significantly ameliorated body weight loss, increased immobility time of forced swimming test, and decreased sucrose preference of sucrose preference test in CRS-exposed mice. RNA-sequencing analysis of prefrontal cortex (PFC) revealed that several miRNAs such as miR-132-5p might contribute to sustained prophylactic effects of (R)-ketamine. Methyl CpG binding protein 2 (MeCP2) is known to regulate brain-derived neurotrophic factor (BDNF) expression. Quantitative RT-PCR confirmed that (R)-ketamine significantly attenuated altered expression of miR-132-5p and its regulated genes (Bdnf, Mecp2, Tgfb1, Tgfbr2) in the PFC of CRS-exposed mice. Furthermore, (R)-ketamine significantly attenuated altered expression of BDNF, MeCP2, TGF-β1 (transforming growth factor β1), and synaptic proteins (PSD-95, and GluA1) in the PFC of CRS-exposed mice. Administration of agomiR-132-5p decreased the expression of Bdnf and Tgfb1 in the PFC, resulting in depression-like behaviors. In contrast, administration of antagomiR-132-5p blocked the increased expression of miR-132-5p and decreased expression of Bdnf in the PFC of CRS-exposed mice, resulting in antidepressant-like effects. In conclusion, our data show a novel role of miR-132-5p in the PFC underlying depression-like phenotypes in CRS model and the sustained prophylactic effects of (R)-ketamine.
Collapse
Affiliation(s)
- Li Ma
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan ,grid.412632.00000 0004 1758 2270Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province China
| | - Long Wang
- grid.412632.00000 0004 1758 2270Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province China
| | - Lijia Chang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jiajing Shan
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Youge Qu
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Xingming Wang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Xiayun Wan
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
33
|
Effects of splenectomy on skin inflammation and psoriasis-like phenotype of imiquimod-treated mice. Sci Rep 2022; 12:14738. [PMID: 36042262 PMCID: PMC9427736 DOI: 10.1038/s41598-022-18900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 02/08/2023] Open
Abstract
Imiquimod (IMQ) is widely used as animal model of psoriasis, a chronic inflammatory skin disorder. Although topical application of IMQ to back skin causes splenomegaly in mice, how the spleen affects the psoriasis-like phenotype of IMQ-treated mice remains unclear. In this study, we analyzed the cellular composition of spleen and measured metabolites in blood of IMQ-treated mice. We also investigated whether splenectomy influences the degree of skin inflammation and pathology in IMQ-treated mice. Flow cytometry showed that the numbers of CD11b+Ly6c+ neutrophils, Ter119+ proerythroblasts, B220+ B cells, F4/80+ macrophages, and CD11c+ dendritic cells in the spleen were significantly higher in IMQ-treated mice compared to control mice. An untargeted metabolomics analysis of blood identified 14 metabolites, including taurine and 2,6-dihydroxybenzoic acid, whose levels distinguished the two groups. The composition of cells in the spleen and blood metabolites positively correlated with the weight of the spleen. However, splenectomy did not affect IMQ-induced psoriasis-like phenotypes compared with sham-operated mice, although splenectomy increased the expression of interleukin-17A mRNA in the skin of IMQ-treated mice. These data suggest that the spleen does not play a direct role in the development of psoriasis-like phenotype on skin of IMQ-treated mice, though IMQ causes splenomegaly.
Collapse
|
34
|
(R)-ketamine as prophylactic and therapeutic drug for neurological disorders: beyond depression. Neurosci Biobehav Rev 2022; 139:104762. [PMID: 35779628 DOI: 10.1016/j.neubiorev.2022.104762] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022]
Abstract
Neurological disorders are the leading cause of disability and the second leading cause of death worldwide. The increasing social and economic burdens of neurological disorders are driven by global population growth and aging. Depression is a common psychiatric symptom in numerous neurological disorders. It is also a risk factor for Alzheimer's disease (AD) and other dementias, Parkinson's disease (PD), and stroke. The rapid-acting and sustained antidepressant actions of (R,S)-ketamine for severe depression was accidentally discovered. Interestingly, (R)-ketamine has greater potency and longer-lasting antidepressant-like effects than (S)-ketamine in rodents. Importantly, its side effects in rodents and humans are lower than those of (R,S)-ketamine and (S)-ketamine. Furthermore, (R)-ketamine could elicit beneficial actions in various rodent models of neurological disorders, including PD, multiple sclerosis (MS), and stroke. In this article, we review the potential of (R)-ketamine as a prophylactic or therapeutic drug for neurological disorders including AD and other dementias, PD, MS, and stroke.
Collapse
|
35
|
Hashimoto K, Yang C. EditorialSpecial issue on "Brain-body communication in health and diseases". Brain Res Bull 2022; 186:47-49. [PMID: 35654260 DOI: 10.1016/j.brainresbull.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bidirectional interaction between the brain and the peripheral organs plays a key role in homeostasis in the body. Abnormalities in brain-body communication potentially leads to a number of brain diseases, including psychiatric and neurodegenerative disorders. For example, dysbiosis of gut microbiota and altered levels of microbes-derived compounds plays an important role in the pathophysiology of a number of psychiatric disorders and neurodegenerative disorders. Furthermore, depression is the most common psychiatric symptom in patients with physical disorders, including pain and cardiovascular diseases. This special issue brings together current information on the brain-body communication in health and diseases.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Brain Research Bulletin Special Issue: Brain–body communication in health and diseases Brain–spleen axis in health and diseases: a review and future perspective. Brain Res Bull 2022; 182:130-140. [PMID: 35157987 DOI: 10.1016/j.brainresbull.2022.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
|