1
|
Giesler LP, O'Brien WT, Bain J, Spitz G, Jaehne EJ, van den Buuse M, Shultz SR, Mychasiuk R, McDonald SJ. Investigating the role of the brain-derived neurotrophic factor Val66Met polymorphism in repetitive mild traumatic brain injury outcomes in rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:5. [PMID: 40045366 PMCID: PMC11884142 DOI: 10.1186/s12993-025-00270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) poses a significant public health concern, particularly regarding repetitive injury, with outcomes ranging from acute neurobehavioral deficits to long-term impairments. While demographic factors like age and sex influence outcomes, the understanding of genetic contributions, particularly the role of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, remains limited. This study aimed to characterize acute effects of repetitive mTBI (rmTBI) in rats with the Val68Met SNP, the rodent equivalent of the human Val66Met, focusing on behavioral, fluid biomarker, and histological changes. METHODS Using a closed-head injury model, rats underwent five mTBIs over consecutive days. Behavioral assessments included sensorimotor function, anxiety-like behavior, spatial learning and memory, and nociceptive response. Plasma neurofilament light (NfL) levels served as a biomarker of axonal injury and immunohistochemistry evaluated microglial activation. RESULTS Sensorimotor deficits and increased anxiety-like behavior were found in rats with rmTBI, but these changes were not affected by sex or genotype. Plasma NfL levels were higher in rmTBI compared with sham rats, with levels greater in female rmTBI when compared with male rmTBI rats. Microglial activation was observed in the hypothalamus of injured rats, but was not influenced by genotype or sex. CONCLUSIONS While the Val68Met SNP did not significantly influence acute responses to rmTBI in this study, further investigation into alternative functional and pathophysiological outcomes, as well as long-term effects, is required.
Collapse
Affiliation(s)
- Lauren P Giesler
- Department of Neuroscience, Monash University, Melbourne, Australia
| | | | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Gershon Spitz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Monash-Epworth Rehabilitation Research Centre, Monash University, Melbourne, Australia
| | - Emily J Jaehne
- Department of Psychology Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Maarten van den Buuse
- Department of Psychology Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Health Sciences, Vancouver Island University, Nanaimo, BC, Canada
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | | | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, Melbourne, Australia.
- Department of Neuroscience, School of Translational Medicine, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
2
|
Amawi H, Hammad AM, Ibrahim AA, Alsbih N, Hall FS, Alasmari F, Al-Trad B. Impact of Exercise on Tramadol-Conditioned Place Preference. Brain Sci 2025; 15:89. [PMID: 39851456 PMCID: PMC11763564 DOI: 10.3390/brainsci15010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Tramadol (TRA) is an opioid that is used to manage moderate to severe pain. Long-term use of TRA can lead to the development of opioid use disorder. OBJECTIVES This study investigates the role of forced exercise in reducing TRA-seeking behavior. METHODS Adult male rats (240-260 g) were divided into five groups; the control group received vehicle injections, the TRA group received TRA (75 mg/kg, i.p) every other day for 8 days, and three TRA-exercise groups were forced to run on a treadmill (60 min/day, 5 days/week) for 2, 4, or 6 weeks prior to conditioning with TRA. A tramadol-conditioned place preference (CPP) procedure assessed TRA reinforcement, after which all rats were euthanized, tissue extracted, and mRNA expression for brain-derived neurotrophic factor (Bdnf) and interleukin 1 beta (Il-1β) determined in hippocampus (Hipp), prefrontal cortex (PFC), and nucleus accumbens (NAc). RESULTS TRA-seeking behavior was seen in the TRA group and the 6 weeks forced exercise group. By contrast, forced exercise for 2 or 4 weeks attenuated TRA-seeking behavior. This attenuation was associated with a significant increase in Bdnf mRNA expression in the Hipp and NAc, but not the PFC. Additionally, the TRA-induced elevations in Il-1β mRNA expression were reversed by all durations of exercise in Hipp. However, only 2 and 4 weeks, but not 6 weeks, of exercise reduced elevations in PFC and NAc Il-1β expression. CONCLUSION Forced exercise for 2 and 4 weeks attenuates TRA-seeking behavior partially through the regulation of Bdnf and Il-1β mRNA expression.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Clinical Pharmacy and Pharmacy Practice, College of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Alaa M. Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Aseel Abdullah Ibrahim
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan (B.A.-T.)
| | - Nosyba Alsbih
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan (B.A.-T.)
| | - Frank Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan (B.A.-T.)
| |
Collapse
|
3
|
Huang H, Huang J, Lu W, Huang Y, Luo R, Bathalian L, Chen M, Wang X. A Four-Week High-Fat Diet Induces Anxiolytic-like Behaviors through Mature BDNF in the mPFC of Mice. Brain Sci 2024; 14:389. [PMID: 38672038 PMCID: PMC11048392 DOI: 10.3390/brainsci14040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The effect of a high-fat diet (HFD) on mood is a widely debated topic, with the underlying mechanisms being poorly understood. This study explores the anxiolytic effects of a four-week HFD in C57BL/6 mice. Five-week-old mice were exposed to either an HFD (60% calories from fat) or standard chow diet (CD) for four weeks, followed by cannula implantation, virus infusion, behavioral tests, and biochemical assays. Results revealed that four weeks of an HFD induced anxiolytic-like behaviors and increased the protein levels of mature brain-derived neurotrophic factor (mBDNF) and phosphorylated tyrosine kinase receptor B (p-TrkB) in the medial prefrontal cortex (mPFC). Administration of a BDNF-neutralizing antibody to the mPFC reversed HFD-induced anxiolytic-like behaviors. Elevated BDNF levels were observed in both neurons and astrocytes in the mPFC of HFD mice. Additionally, these mice exhibited a higher number of dendritic spines in the mPFC, as well as upregulation of postsynaptic density protein 95 (PSD95). Furthermore, mRNA levels of the N6-methyladenosine (m6A) demethylase, fat mass and obesity-associated protein (FTO), and the hydrolase matrix metalloproteinase-9 (MMP9), also increased in the mPFC. These findings suggest that an HFD may induce FTO and MMP9, which could potentially regulate BDNF processing, contributing to anxiolytic-like behaviors. This study proposes potential molecular mechanisms that may underlie HFD-induced anxiolytic behaviors.
Collapse
Affiliation(s)
- Huixian Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Jia Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Wensi Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Yanjun Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Ran Luo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Luqman Bathalian
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Ming Chen
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuemin Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Inan S, Meissler JJ, Bessho S, Wiah S, Tukel C, Eisenstein TK, Rawls SM. Blocking IL-17A prevents oxycodone-induced depression-like effects and elevation of IL-6 levels in the ventral tegmental area and reduces oxycodone-derived physical dependence in rats. Brain Behav Immun 2024; 117:100-111. [PMID: 38199516 PMCID: PMC10932873 DOI: 10.1016/j.bbi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Oxycodone is the most prescribed opioid for pain management and has been available in clinics for almost a century, but effects of chronic oxycodone have been studied less than morphine in preclinical and clinical studies. Newly developed depression has been coupled with chronic oxycodone use in a few clinical studies, but no preclinical studies have investigated the pathogenesis of oxycodone-induced depression. Gut microbiome changes following oxycodone use is an understudied area, and interleukin-17A (IL-17A) is linked to both the development of mood disorders and regulation of gut microbiome. The present study investigated effects of chronic oxycodone exposure on mood-related behaviors (depression and anxiety), pain hypersensitivity, physical dependence, immune markers, and the gut microbiome and tested the hypothesis that blocking IL-17A with a systemically administered monoclonal antibody reduces oxycodone-derived effects. Oxycodone (using an incremental dosing regimen) or saline was injected twice a day for 12 days. IL-17A Ab (200 µg/100 µl) or saline was administered every 3rd day during the 12-day interval. Chronic oxycodone induced a depression-like effect, but not anxiogenic- or anxiolytic-like effects; promoted hyperalgesia; increased IL-17A and IL-6 levels in the ventral tegmental area (VTA); and induced physical dependence. IL-17A Ab co-administration with oxycodone prevented the depression-like effect and hyperalgesia, reduced naloxone-precipitated withdrawal signs, and normalized the increase in cytokine levels. Chronic oxycodone exposure did not affect gut microbiome and integrity. Our results identify a role for IL-17A in oxycodone-related behavioral and neuroimmune effects and show that IL-17A Ab has potential therapeutic value in blocking these effects. Given that humanized IL-17A Ab is approved for treatment of psoriasis and psoriatic arthritis, our findings point toward studying it for use in the treatment of oxycodone use disorder.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | - Joseph J Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shingo Bessho
- Center for Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Cagla Tukel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Toby K Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Jaehne EJ, Corrone M, van den Buuse M. Administering a Behavioral Test Battery in Rodents. Methods Mol Biol 2024; 2746:87-100. [PMID: 38070082 DOI: 10.1007/978-1-0716-3585-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Although animal models cannot broadly represent uniquely human psychiatric or psychological syndromes such as anxiety, depression, or schizophrenia, behavioral testing in rodents can be extremely helpful to investigate specific disease aspects and symptoms. Animal behavioral test batteries allow researchers to reveal specific behavioral changes in genetically modified mice or following targeted treatments or in response to environmental interventions. Examples of types of behaviors that can be combined in a test battery include anxiety-like behavior, learning and memory, depression-relevant behavior, social interaction, and locomotor hyperactivity. Here, we describe several commonly used and relatively simple behavioral tests which can be combined in the same cohort of animals.
Collapse
Affiliation(s)
- Emily J Jaehne
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
van den Buuse M, Jaehne EJ. Testing Prepulse Inhibition of Acoustic Startle in Rodents. Methods Mol Biol 2024; 2746:121-133. [PMID: 38070085 DOI: 10.1007/978-1-0716-3585-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Prepulse inhibition (PPI) is a measure of sensorimotor gating which is widely used in rodents to study information processing and attention dysfunction. PPI is commonly measured in rats and mice using automated equipment. Here, we present details of a PPI testing protocol extensively used in previous studies. The protocol includes a set pulse-alone startle level and prepulse-pulse combinations with varying interval and intensity. Variations of this protocol can be used depending on the experimental aim or equipment and software version.
Collapse
Affiliation(s)
- Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia.
| | - Emily J Jaehne
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Antolasic EJ, Jaehne EJ, van den Buuse M. Interaction of Brain-derived Neurotrophic Factor, Exercise, and Fear Extinction: Implications for Post-traumatic Stress Disorder. Curr Neuropharmacol 2024; 22:543-556. [PMID: 37491857 PMCID: PMC10845100 DOI: 10.2174/1570159x21666230724101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 07/27/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) plays an important role in brain development, neural plasticity, and learning and memory. The Val66Met single-nucleotide polymorphism is a common genetic variant that results in deficient activity-dependent release of BDNF. This polymorphism and its impact on fear conditioning and extinction, as well as on symptoms of post-traumatic stress disorder (PTSD), have been of increasing research interest over the last two decades. More recently, it has been demonstrated that regular physical activity may ameliorate impairments in fear extinction and alleviate symptoms in individuals with PTSD via an action on BDNF levels and that there are differential responses to exercise between the Val66Met genotypes. This narrative literature review first describes the theoretical underpinnings of the development and persistence of intrusive and hypervigilance symptoms commonly seen in PTSD and their treatment. It then discusses recent literature on the involvement of BDNF and the Val66Met polymorphism in fear conditioning and extinction and its involvement in PTSD diagnosis and severity. Finally, it investigates research on the impact of physical activity on BDNF secretion, the differences between the Val66Met genotypes, and the effect on fear extinction learning and memory and symptoms of PTSD.
Collapse
Affiliation(s)
- Emily J. Antolasic
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emily J. Jaehne
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | | |
Collapse
|
8
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Jaehne EJ, Semaan H, Grosman A, Xu X, Schwarz Q, van den Buuse M. Enhanced methamphetamine sensitisation in a rat model of the brain-derived neurotrophic factor Val66Met variant: Sex differences and dopamine receptor gene expression. Neuropharmacology 2023; 240:109719. [PMID: 37742717 DOI: 10.1016/j.neuropharm.2023.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and the Val66Met polymorphism may play a role in the development of psychosis and schizophrenia. The aim of this study was to investigate long-term effects of methamphetamine (Meth) on psychosis-like behaviour and dopamine receptor and dopamine transporter gene expression in a novel rat model of the BDNF Val66Met polymorphism. At the end of a 7-day subchronic Meth treatment, female rats with the Met/Met genotype selectively showed locomotor hyperactivity sensitisation to the acute effect of Meth. Male rats showed tolerance to Meth irrespective of Val66Met genotype. Two weeks later, female Met/Met rats showed increased locomotor activity following both saline treatment or a low dose of Meth, a hyperactivity which was not observed in other genotypes or in males. Baseline PPI did not differ between the groups but the disruption of PPI by acute treatment with apomorphine was absent in Meth-pretreated Met/Met rats. Female Met/Met rats selectively showed down-regulation of dopamine D2 receptor gene expression in striatum. Behavioural effects of MK-801 or its locomotor sensitisation by prior Meth pretreatment were not influenced by genotype. These data suggest a selective vulnerability of female Met/Met rats to short-term and long-term effects of Meth, which could model increased vulnerability to psychosis development associated with the BDNF Val66Met polymorphism.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Hayette Semaan
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Adam Grosman
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Xiangjun Xu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Maarten van den Buuse
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
10
|
Ateaque S, Merkouris S, Barde YA. Neurotrophin signalling in the human nervous system. Front Mol Neurosci 2023; 16:1225373. [PMID: 37470055 PMCID: PMC10352796 DOI: 10.3389/fnmol.2023.1225373] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
This review focuses on neurotrophins and their tyrosine kinase receptors, with an emphasis on their relevance to the function and dysfunction in the human nervous system. It also deals with measurements of BDNF levels and highlights recent findings from our laboratory on TrkB and TrkC signalling in human neurons. These include ligand selectivity and Trk activation by neurotrophins and non-neurotrophin ligands. The ligand-induced down-regulation and re-activation of Trk receptors is also discussed.
Collapse
Affiliation(s)
- Sarah Ateaque
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Spyros Merkouris
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Jaehne EJ, Antolasic EJ, Creutzberg KC, Begni V, Riva MA, van den Buuse M. Impaired fear memory in a rat model of the Brain-Derived Neurotrophic Factor Val66Met polymorphism is reversed by chronic exercise. Neurobiol Learn Mem 2023; 203:107779. [PMID: 37269900 DOI: 10.1016/j.nlm.2023.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with reduced activity-dependent BDNF release in the brain and has been implicated in fear and anxiety disorders, including post-traumatic stress disorder. Exercise has been shown to have benefits in affective disorders but the role of BDNF Val66Met remains unclear. Male and female BDNF Val66Met rats were housed in automated running-wheel cages from weaning while controls were housed in standard cages. During adulthood, all rats underwent standard three-day fear conditioning testing, with three tone/shock pairings on day 1 (acquisition), and extinction learning and memory (40 tones/session) on day 2 and day 3. Expression of BDNF and stress-related genes were measured in the frontal cortex. Extinction testing on day 2 revealed significantly lower freezing in response to initial cue exposure in control Met/Met rats, reflecting impaired fear memory. This deficit was reversed in both male and female Met/Met rats exposed to exercise. There were no genotype effects on acquisition or extinction of fear, however chronic exercise increased freezing in all groups at every stage of testing. Exercise furthermore led to increased expression of Bdnf in the prefrontal cortex of females and its isoforms in both sexes, as well as increased expression of FK506 binding protein 51 (Fkpb5) in females and decreased expression of Serum/glucocorticoid-regulated kinase (Sgk1) in males independent of genotype. These results show that the Met/Met genotype of the Val66Met polymorphism affects fear memory, and that chronic exercise selectively reverses this genotype effect. Chronic exercise also led to an overall increase in freezing in all genotypes which may contribute to results.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emily J Antolasic
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Kerstin C Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
12
|
Jaehne EJ, McInerney E, Sharma R, Genders SG, Djouma E, van den Buuse M. A Rat Model of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Shows Attenuated Motivation for Alcohol Self-Administration and Diminished Propensity for Cue-Induced Relapse in Females. BIOLOGY 2023; 12:799. [PMID: 37372084 DOI: 10.3390/biology12060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in alcohol use disorder. The Val66Met polymorphism is a common variant of the BDNF gene (rs6265) which reduces activity-dependent BDNF release, and has been suggested as a risk factor for psychiatric disorders and substance use. Using an operant self-administration paradigm, this study aimed to investigate ethanol preference and ethanol seeking in a novel rat model of the BDNF Val66Met polymorphism, Val68Met rats. Male and female BDNF Val68Met rats of three genotypes (Val/Val, Val/Met and Met/Met) were trained to lever press for a 10% ethanol solution. There was no effect of Val68Met genotype on acquisition of stable response to ethanol or its extinction. Met/Met rats of both sexes had a slight, but significantly lower breakpoint during progressive ratio sessions while female rats with the Met/Met genotype demonstrated a lower propensity for reinstatement of responding to cues. There were no effects of Val68Met genotype on anxiety-like behaviour or locomotor activity. In conclusion, Met/Met rats showed lower motivation to continue to press for a reward, and also a decreased propensity to relapse, suggesting a possible protective effect of the Met/Met genotype against alcohol use disorder, at least in females.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne 3086, Australia
| | - Elizabeth McInerney
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia
| | - Ronan Sharma
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne 3086, Australia
| | - Shannyn G Genders
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia
| | - Elvan Djouma
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne 3086, Australia
- Department of Pharmacology, University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
13
|
Lehmann M, Plieger T, Reuter M, Ettinger U. Insights into the molecular genetic basis of individual differences in metacognition. Physiol Behav 2023; 264:114139. [PMID: 36870383 DOI: 10.1016/j.physbeh.2023.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
There is a striking lack of studies on the molecular genetic basis of metacognition, i.e., the higher-order ability to monitor mental processes. Here, an initial step toward resolving this issue was undertaken by investigating functional polymorphisms from three genes of the dopaminergic or serotonergic systems (DRD4, COMT, and 5-HTTLPR) in relation to behaviorally assessed metacognition in six paradigms across three cognitive domains. We report evidence for a task-dependent higher average confidence level (metacognitive bias) in carriers of at least one S or LG-allele in the 5-HTTLPR genotype and integrate these findings within a differential susceptibility framework.
Collapse
Affiliation(s)
- Mirko Lehmann
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany
| | - Thomas Plieger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany
| | - Martin Reuter
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, NRW, Germany.
| |
Collapse
|
14
|
Barha CK, Starkey SY, Hsiung GYR, Tam R, Liu-Ambrose T. Aerobic exercise improves executive functions in females, but not males, without the BDNF Val66Met polymorphism. Biol Sex Differ 2023; 14:16. [PMID: 37013586 PMCID: PMC10069071 DOI: 10.1186/s13293-023-00499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Aerobic exercise promotes cognitive function in older adults; however, variability exists in the degree of benefit. The brain-derived neurotropic factor (BDNF) Val66Met polymorphism and biological sex are biological factors that have been proposed as important modifiers of exercise efficacy. Therefore, we assessed whether the effect of aerobic exercise on executive functions was dependent on the BDNFval66met genotype and biological sex. METHODS We used data from a single-blind randomized controlled trial in older adults with subcortical ischemic vascular cognitive impairment (NCT01027858). Fifty-eight older adults were randomly assigned to either the 6 months, three times per week progressive aerobic training (AT) group or the usual care plus education control (CON) group. The secondary aim of the parent study included executive functions which were assessed with the Trail Making Test (B-A) and the Digit Symbol Substitution Test at baseline and trial completion at 6 months. RESULTS Analysis of covariance, controlling for baseline global cognition and baseline executive functions performance (Trail Making Test or Digit Symbol Substitution Test), tested the three-way interaction between experimental group (AT, CON), BDNFval66met genotype (Val/Val carrier, Met carrier), and biological sex (female, male). Significant three-way interactions were found for the Trail Making Test (F(1,48) = 4.412, p < 0.04) and Digit Symbol Substitution Test (F(1,47) = 10.833, p < 0.002). Posthoc analyses showed female Val/Val carriers benefited the most from 6 months of AT compared with CON for Trail Making Test and Digit Symbol Substitution Test performance. Compared with CON, AT did not improve Trail Making Test performance in male Val/Val carriers or Digit Symbol Substitution Test performance in female Met carriers. CONCLUSIONS These results suggest that future randomized controlled trials should take into consideration BDNF genotype and biological sex to better understand the beneficial effects of AT on cognitive function in vascular cognitive impairment to maximize the beneficial effects of exercise and help establish exercise as medicine for cognitive health.
Collapse
Affiliation(s)
- Cindy K Barha
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Samantha Y Starkey
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - G Y Robin Hsiung
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British Columbia Hospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
- Centre for Hip Health and Mobility, Vancouver, Canada.
| |
Collapse
|
15
|
Jaehne EJ, Kent JN, Lam N, Schonfeld L, Spiers JG, Begni V, De Rosa F, Riva MA, van den Buuse M. Chronic running-wheel exercise from adolescence leads to increased anxiety and depression-like phenotypes in adulthood in rats: Effects on stress markers and interaction with BDNF Val66Met genotype. Dev Psychobiol 2023; 65:e22347. [PMID: 36567651 DOI: 10.1002/dev.22347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022]
Abstract
Exercise has been shown to be beneficial in reducing symptoms of affective disorders and to increase the expression of brain-derived neurotrophic factor (BDNF). The BDNF Val66Met polymorphism is associated with reduced activity-dependent BDNF release and increased risk for anxiety and depression. Male and female Val66Met rats were given access to running wheels from 3 weeks of age and compared to sedentary controls. Anxiety- and depression-like behaviors were measured in adulthood using the elevated plus maze (EPM), open field (OF), and forced swim test (FST). Expression of BDNF and a number of stress-related genes, the glucocorticoid receptor (Nr3c1), serum/glucocorticoid-regulated kinase 1 (Sgk1), and FK506 binding protein 51 (Fkbp5) in the hippocampus were also measured. Rats given access to running wheels developed high levels of voluntary exercise, decreased open-arm time on the EPM and center-field time in the OF, reduced overall exploratory activity in the open field, and increased immobility time in the FST with no differences between genotypes. Chronic exercise induced a significant increase in Bdnf mRNA and BDNF protein levels in the hippocampus with some of these effects being genotype specific. Exercise decreased the expression of Nr3c1 and Sgk1, but increased the expression of Fkbp5. These results suggest that chronic running-wheel exercise from adolescence increased anxiety and depression-like phenotypes in adulthood, independent of BDNF Val66Met genotype. Further studies are required to confirm that increased indices of anxiety-like behavior are independent from reduced overall locomotor activity.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jessica N Kent
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Nikki Lam
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Lina Schonfeld
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Federico De Rosa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia.,Department of Pharmacology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Gao F, Wang J, Yang S, Ji M, Zhu G. Fear extinction induced by activation of PKA ameliorates anxiety-like behavior in PTSD mice. Neuropharmacology 2023; 222:109306. [PMID: 36341808 DOI: 10.1016/j.neuropharm.2022.109306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Prolonged exposure (PE) therapy aiming to promote fear extinction is a useful treatment for post-traumatic stress disorder (PTSD). However, the mechanisms underlying fear extinction and effective methods used to promote fear extinction in PTSD are still lacking. In this study, we displayed dysfunctions of cyclic adenosine 3,5-monophosphate (cAMP)-protein kinase A (PKA), protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and calcium signaling in peripheral serum of PTSD patients using bioinformatics analysis. Later, we confirmed the dysfunctions of cAMP-PKA, AKT/mTOR and calcium signaling in the hippocampus of PTSD mice. Moreover, the reduction of calpain1 in the hippocampus enhanced fear memory acquisition. Single activation of PKA by systemic application of rolipram (ROL) or meglumine cyclic adenylate (M-cAMP) before re-exposure promoted fear extinction and improved anxiety-like behavior in PTSD mice. Moreover, systemic application of ROL before re-exposure improved hippocampal brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling and calpain1/AKT/mTOR signaling. Interestingly, the effects of activation of PKA could be partially blocked by TrkB antagonist, ANA-12 and mTOR inhibitor, RAPA. Finally, intranasal administration of ROL could also adjust the abnormality of fear memory and improve anxiety-like behaviors in PTSD mice. Collectively, activation of PKA could promote fear extinction, which correlated with the reduction of anxiety-like behavior. The mechanisms were related to the BDNF/TrkB and calpain1/AKT/mTOR signaling pathways. PKA activation might be a useful complementary therapy for PE in the symptom elimination of PTSD.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Manman Ji
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
17
|
A review of molecular and genetic factors for determining mild traumatic brain injury severity and recovery. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
18
|
Difede J, Rothbaum BO, Rizzo AA, Wyka K, Spielman L, Reist C, Roy MJ, Jovanovic T, Norrholm SD, Cukor J, Olden M, Glatt CE, Lee FS. Enhancing exposure therapy for posttraumatic stress disorder (PTSD): a randomized clinical trial of virtual reality and imaginal exposure with a cognitive enhancer. Transl Psychiatry 2022; 12:299. [PMID: 35896533 PMCID: PMC9329292 DOI: 10.1038/s41398-022-02066-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a significant public health issue. Yet, there are limited treatment options and no data to suggest which treatment will work for whom. We tested the efficacy of virtual reality exposure (VRE) or prolonged imaginal exposure (PE), augmented with D-cycloserine (DCS) for combat-related PTSD. As an exploratory aim, we examined whether brain-derived neurotrophic factor (BDNF) and fatty acid amide hydrolase (FAAH) moderated treatment response. Military personnel with PTSD (n = 192) were recruited into a multisite double-blind randomized controlled trial to receive nine weeks of VRE or PE, with DCS or placebo. Primary outcome was the improvement in symptom severity. Randomization was stratified by comorbid depression (MDD) and site. Participants in both VRE and PE showed similar meaningful clinical improvement with no difference between the treatment groups. A significant interaction (p = 0.45) suggested VRE was more effective for depressed participants (CAPS difference M = 3.51 [95% CI 1.17-5.86], p = 0.004, ES = 0.14) while PE was more effective for nondepressed participants (M = -8.87 [95% CI -11.33 to -6.40], p < 0.001, ES = -0.44). The main effect of DCS vs. placebo was not significant. Augmentation by MDD interaction (p = 0.073) suggested that depressed participants improved more on placebo (M = -8.43 [95% CI -10.98 to -5.88], p < 0.001, ES = -0.42); DCS and placebo were equally effective for nondepressed participants. There was an apparent moderating effect of BDNF Val66Met polymorphism on DCS augmentation (ES = 0.67). Met66 allele carriers improved more on DCS (ES = -0.25). FAAH 385 A carriers improved more than non-carriers (ES = 0.33), particularly those with MDD (ES = 0.62). This study provides a step toward precision therapeutics for PTSD by demonstrating that comorbid MDD and genetic markers may help guide treatment selection.ClinicalTrials.gov Identifier: NCT01352637.
Collapse
Affiliation(s)
- JoAnn Difede
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA.
| | | | - Albert A Rizzo
- University of Southern California Institute for Creative Technologies, Los Angeles, CA, USA
| | - Katarzyna Wyka
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Lisa Spielman
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Reist
- Department of Psychiatry, VA Long Beach Healthcare System, Long Beach, CA, USA
- University of California, Irvine, Irvine, CA, USA
- Science 37, Los Angeles, CA, USA
| | - Michael J Roy
- Department of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Seth D Norrholm
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Judith Cukor
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Megan Olden
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Charles E Glatt
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
19
|
The BDNF Val66Met Polymorphism Does Not Increase Susceptibility to Activity-Based Anorexia in Rats. BIOLOGY 2022; 11:biology11050623. [PMID: 35625351 PMCID: PMC9138045 DOI: 10.3390/biology11050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Genetic animal models are a valuable tool for understanding how human pathologies develop. The type of animal model chosen is important for uncovering effects specific to certain behaviours and neurobiological functions. A polymorphism in the brain-derived neurotrophic factor (BDNF) has been linked with various clinical conditions in human subjects and with mouse models of anorectic behaviour. This study investigated for the first time the role of the BDNF Val66Met allelic substitution in a rat model of anorexia nervosa (AN), known as activity-based anorexia (ABA). Contrary to reports of altered BDNF signaling in patients with AN and increased anorectic behaviour in a mouse model containing the same allelic variation, it showed that 66Met did not alter susceptibility to weight loss or aspects of energy balance, including feeding and exercise in the rat model. It highlights the need to consider species–specific differences when evaluating animal models of human pathologies. Abstract Brain-derived neurotrophic factor (BDNF) is abundantly expressed in brain regions involved in both homeostatic and hedonic feeding, and it circulates at reduced levels in patients with anorexia nervosa (AN). A single nucleotide polymorphism in the gene encoding for BDNF (Val66Met) has been associated with worse outcomes in patients with AN, and it is shown to promote anorectic behaviour in a mouse model of caloric restriction paired with social isolation stress. Previous animal models of the Val66Met polymorphism have been in mice because of the greater ease in modification of the mouse genome, however, the most widely-accepted animal model of AN, known as activity-based anorexia (ABA), is most commonly conducted in rats. Here, we examine ABA outcomes in a novel rat model of the BDNF Val66Met allelic variation (Val68Met), and we investigate the role of this polymorphism in feeding, food choice and sucrose preference, and energy expenditure. We demonstrate that the BDNF Val68Met polymorphism does not influence susceptibility to ABA or any aspect of feeding behaviour. The discrepancy between these results and previous reports in mice may relate to species–specific differences in stress reactivity.
Collapse
|