1
|
Solomon P, Kaurani L, Budde M, Guiné JB, Krüger DM, Riquin K, Pena T, Burkhardt S, Fourgeux C, Adorjan K, Heilbronner M, Kalman JL, Kohshour MO, Papiol S, Reich-Erkelenz D, Schaupp SK, Schulte EC, Senner F, Vogl T, Anghelescu IG, Arolt V, Baune BT, Dannlowski U, Dietrich DE, Fallgatter AJ, Figge C, Juckel G, Konrad C, Reimer J, Reininghaus EZ, Schmauß M, Spitzer C, Wiltfang J, Zimmermann J, Schütz AL, Sananbenesi F, Sauvaget A, Falkai P, Schulze TG, Fischer A, Heilbronner U, Poschmann J. Integrative analysis of miRNA expression profiles reveals distinct and common molecular mechanisms underlying broad diagnostic groups of severe mental disorders. Mol Psychiatry 2025:10.1038/s41380-025-03018-9. [PMID: 40263528 DOI: 10.1038/s41380-025-03018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Micro RNAs (miRNAs) play a crucial role as regulators of various biological processes and have been implicated in the pathogenesis of mental disorders such as schizophrenia and bipolar disorders. In this study, we investigate the expression patterns of miRNAs in the PsyCourse Study (n = 1786), contrasting three broad diagnostic groups: Psychotic (Schizophrenia-spectrum disorders), Affective (Bipolar Disorder I, II and recurrent Depression), and neurotypic healthy individuals. Through comprehensive analyses, including differential miRNA expression, miRNA transcriptome-wide association study (TWAS), and predictive modelling, we identified multiple miRNAs unique to Psychotic and Affective groups as well as shared by both. Furthermore, we performed integrative analysis to identify the target genes of the dysregulated miRNAs and elucidate their potential roles in psychosis. Our findings reveal significant alterations of multiple miRNAs such as miR-584-3p and miR-99b-5p across the studied diagnostic groups, highlighting their role as molecular correlates. Additionally, the miRNA TWAS analysis discovered previously known and novel genetically dysregulated miRNAs confirming the relevance in the etiology of the diagnostic groups. Importantly, novel factors and putative molecular mechanisms underlying these groups were uncovered through the integration of miRNA-target gene interactions. This comprehensive investigation provides valuable insights into the molecular underpinnings of severe mental disorders, shedding light on the complex regulatory networks involving miRNAs.
Collapse
Affiliation(s)
- Pierre Solomon
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Lalit Kaurani
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Jean-Baptiste Guiné
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Dennis Manfred Krüger
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Kevin Riquin
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Tonatiuh Pena
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Cynthia Fourgeux
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina K Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Centers for Psychiatry Suedwuerttemberg, Ravensburg, Ravensburg, Germany
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Ion-George Anghelescu
- Department of Psychiatry and Psychotherapy, Mental Health Institute Berlin, Berlin, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Bernhardt T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Detlef E Dietrich
- AMEOS Clinical Center Hildesheim, Hildesheim, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Department of Psychiatry, Medical School of Hannover, Hannover, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, Germany
| | - Christian Figge
- Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg, Germany
| | - Jens Reimer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Psychosocial Medicine, Academic Teaching Hospital Itzehoe, Itzehoe, Germany
| | - Eva Z Reininghaus
- Division of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Max Schmauß
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Augsburg University, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Disease (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jörg Zimmermann
- Psychiatrieverbund Oldenburger Land GMBH, Karl-Jaspers-Klinik, Bad Zwischenahn, Germany
| | - Anna-Lena Schütz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Anne Sauvaget
- Nantes Université, CHU Nantes, Movement - Interactions - Performance, MIP, UR 4334, Nantes, France
| | - Peter Falkai
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - André Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, Germany
| | - Jeremie Poschmann
- Nantes Université, CHU-Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| |
Collapse
|
2
|
Wang W, Yang T, Liu N, Yang L, Liu C, Qi X, Wang N, Wang M, Wang Y. MiR-223-3p inhibits hippocampal neurons injury and exerts anti- anxiety/depression-like behaviors by directly targeting NLRP3. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06763-5. [PMID: 40237808 DOI: 10.1007/s00213-025-06763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/12/2025] [Indexed: 04/18/2025]
Abstract
Anxiety/depression disorders are among the most common neuropsychiatric conditions, and inflammation plays a significant role in their regulation. The involvement of miRNAs in the initiation, progression, and outcomes of anxiety disorders has been widely reported. Here, a decline in miR-223-3p expression was noticed in both IL-8-induced HT-22 cells and a rat model of anxiety/depression disorders treated with chronic unpredictable mild stress (CUMS). Our findings indicate that the overexpression of miR-223-3p significantly alleviates the effects of IL-8 on cell viability, inflammation, and oxidative stress in HT-22 cells, as verified by CCK-8 assay, ELISA assay, and flow cytometry. Through bioinformatics and luciferase reporter assays, NLRP3 was identified as a direct target of miR-223-3p. The inhibition of NLRP3 significantly reduced IL-8-induced damage to hippocampal neurons, while overexpression of NLRP3 reversed the protective effects of miR-223-3p. Moreover, increasing miR-223-3p levels significantly attenuated CUMS-induced anxiety/depression -like behaviors, such as decreased time in center in the open field test (OFT) and decreased time in open arm in the plus-maze test (EPM). The overexpression of miR-223-3p resulted in significant reductions in TNF-α, IL-1β, and SOD levels, an increase in MDA activity, as well as upregulation of cyclic adenosine monophosphate (cAMP), phosphorylated cAMP response element-binding protein (p-CREB), and brain-derived neurotrophic factor (BDNF) in the hippocampus. Overexpression of NLRP3 also reversed the effects of miR-223-3p in vivo. Thus, our research suggests that miR-223-3p can improve anxiety/depression-like behavior and inhibit hippocampal neuronal injury by targeting NLRP3, demonstrating its considerable anti-anxiety potential.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Department of Neurology, Xuanwu Hospital, Hebei Hospital, Capital Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Laboratory of Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei, 050000, China
| | - Tingting Yang
- Department of Endocrinology, Shijiazhuang Second Hospital, Shijiazhuang, Hebei, 050000, China
| | - Na Liu
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Department of Neurology, Xuanwu Hospital, Hebei Hospital, Capital Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Laboratory of Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei, 050000, China
| | - Lin Yang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Department of Neurology, Xuanwu Hospital, Hebei Hospital, Capital Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Laboratory of Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei, 050000, China
| | - Cong Liu
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Department of Neurology, Xuanwu Hospital, Hebei Hospital, Capital Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Laboratory of Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei, 050000, China
| | - Xiaoxiao Qi
- Department of Neurology, Xuanwu Hospital, Hebei Hospital, Capital Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Laboratory of Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei, 050000, China
- Neurological Function Examination and Treatment Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Ning Wang
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Department of Neurology, Xuanwu Hospital, Hebei Hospital, Capital Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Laboratory of Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei, 050000, China
| | - Yanyong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
- Department of Neurology, Xuanwu Hospital, Hebei Hospital, Capital Medical University, Shijiazhuang, Hebei, 050000, China.
- Hebei Laboratory of Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei, 050000, China.
- The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
3
|
Kaurani L, Pradhan R, Schröder S, Burkhardt S, Schuetz AL, Krüger DM, Pena T, Heutink P, Sananbenesi F, Fischer A. A role for astrocytic miR-129-5p in frontotemporal dementia. Transl Psychiatry 2025; 15:142. [PMID: 40216778 PMCID: PMC11992244 DOI: 10.1038/s41398-025-03338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Frontotemporal dementia is a debilitating neurodegenerative disorder characterized by frontal and temporal lobe degeneration, resulting in behavioral changes, language difficulties, and cognitive decline. In this study, smallRNA sequencing was conducted on postmortem brain tissues obtained from the frontal and temporal of FTD patients with GRN, MAPT, or C9ORF72 mutations. Our analysis identified miR-129-5p as consistently deregulated across all analyzed mutation conditions and brain regions. Functional investigations in in-vitro models revealed a novel role of miR-129-5p in astrocytes, where its loss led to neuroinflammation and impaired neuronal support functions, including reduced glutamate uptake. Depletion of miR-129-5p in astrocytes also resulted in the loss of neuronal spines and altered neuronal network activity in a cell culture system. These findings highlight miR-129-5p as a potential therapeutic target in neurodegenerative diseases and also sheds light on the role of astrocytes in Frontotemporal dementia pathogenesis.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Ranjit Pradhan
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sophie Schröder
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna-Lena Schuetz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dennis M Krüger
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tonatiuh Pena
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Andre Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Sartorius A, Karl S, Janke C, Beck G. Intersections of Anesthesiology and Psychiatry: Comment. Anesthesiology 2025; 142:577-578. [PMID: 39932352 DOI: 10.1097/aln.0000000000005310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
|
5
|
Ammer-Herrmenau C, Hamm J, Neesse A, Günther K, Besse M, Zilles-Wegner D. Response to electroconvulsive therapy is associated with a more diverse oral microbiome- a prospective longitudinal cohort pilot study. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-01976-3. [PMID: 39953120 DOI: 10.1007/s00406-025-01976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Recently it has been shown that psychiatric disorders are associated with changes in the host microbiome. Little is known about the association of electroconvulsive therapy (ECT) and microbiome alterations. In our pilot-study, 15 patients with severe or treatment resistant depression were prospectively recruited and oral swabs were collected pre- and post-ECT. Compared to a control group, ECT did not lead to a significant microbial shift in longitudinal samples (p = 0.65). However, alpha diversity measurements significantly differed between responders and non-responders before ECT (observed species p = 0.014, Shannon p = 0.03) and after ECT (observed species p = 0.015, Shannon p = 0.13).
Collapse
Affiliation(s)
- Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Jacob Hamm
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Kilian Günther
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Matthias Besse
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
6
|
Miao HT, Wang J, Shao JJ, Song RX, Li WG, Sun JK, Jia SY, Zhang DX, Li XM, Zhao JY, Zhang LM. Astrocytic NLRP3 cKO mitigates depression-like behaviors induced by mild TBI in mice. Neurobiol Dis 2025; 205:106785. [PMID: 39793767 DOI: 10.1016/j.nbd.2024.106785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Reports indicate that depression is a common mental health issue following traumatic brain injury (TBI). Our prior research suggests that Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-related neuroinflammation, modulated by glial cells such as astrocytes, is likely to play a crucial role in the progression of anxiety and cognitive dysfunction. However, there is limited understanding of the potential of astrocytic NLRP3 in treating depression under mild TBI condition. This study aimed to determine whether astrocytic NLRP3 knockout (KO) could mitigate depressive-like behaviors following mild TBI and explore potential variations in such behaviors between genders post-mild TBI. METHODS Mild TBI was induced in mice using Feeney's weight-drop method. Behavioral assessments included neurological severity scores (NSS), social interaction test (SI), tail suspension test (TST), and forced swimming test (FST). Pathological changes were evaluated through immunofluorescence and local field potential (LFP) recordings at various time points post-injury. RESULTS Our findings indicated that astrocyte-specific NLRP3 KO decreased cleaved caspase-1 colocalized with astrocytes, decreased pathogenic astrocytes and increased Postsynaptic density protein 95 (PSD95) intensity, and significantly alleviated mild TBI-induced depression-like behaviors. It also led to the upregulation of protective astrocytes and apoptosis-associated factors, including cleaved caspase-3 post-mild TBI. Additionally, astrocyte-specific NLRP3 deletion resulting in improved θ and γ power and θ-γ phase coupling in the social interaction test (SI). Notably, under mild TBI conditions, astrocyte-specific NLRP3 exhibited greater neuroprotective effects in female knockout mice compared to males. CONCLUSION Astrocyte NLRP3 knockout demonstrated a protective mechanism in mice subjected to mild TBI, possibly attributed to the inhibition of pyroptosis through the NLRP3 signaling pathway in astrocytes.
Collapse
Affiliation(s)
- Hui-Tao Miao
- Department of Anesthesiology, Hebei Province, Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China,; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Jun Wang
- Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jing-Jing Shao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Hebei Province, Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Wen-Guang Li
- Graduated School, Hebei Medical University, Shijiazhuang, China
| | - Jian-Kai Sun
- Graduated School, Hebei Medical University, Shijiazhuang, China
| | - Shi-Yan Jia
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Jian-Yong Zhao
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province, Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China,.
| |
Collapse
|
7
|
Khodagholi F, Dezfouli MA, Yazdanfar N, Rashidi SK, Meymand AZ, Javadpour P, Mirbehbahani SH, Zare N. Prenatal Methamphetamine Exposure Impairs Helping Behaviour in Male Offspring: The Possible Role of miR-223 and NLRP3 Inflammasomes in the Amygdala. Int J Dev Neurosci 2025; 85:e10410. [PMID: 39723593 DOI: 10.1002/jdn.10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing prevalence of methamphetamine abuse among women, particularly pregnant females, is a global concern. Methamphetamine can readily cross anatomical barriers like the blood-placenta barrier and cause detrimental impacts on the growing fetus. The current research evaluated the effects of prenatal methamphetamine exposure on helping behaviour and neuroinflammatory cascade in the amygdala of male offspring. On the tenth day of pregnancy, female rats received either saline or methamphetamine (5 mg/kg) until delivery. Once the offspring reached 21 days of age, the male ones were sep arated from their mothers and housed with normal male rats. An empathy-like behaviour test, which measured helping behaviour towards the cage mate, was conducted. The expression levels of miR-223-3p, NLRP3, Caspase 1, and gasdermin D (GSDMD) were evaluated in the amygdala of male offspring. Moreover, interleukin-1β (IL-1β) protein level was measured. Findings of this study revealed that male offspring exposed to methamphetamine during pregnancy had impaired helping behaviour. At the molecular level, prenatal methamphetamine exposure decreased miR-223-3p and increased inflammasome signaling by raising the levels of NLRP3, caspase-1, and GSDMD along with IL-1β levels. These findings indicate that prenatal methamphetamine exposure impairs emotional behaviour and activates inflammasome pathway in the amygdala.
Collapse
Affiliation(s)
- Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Yazdanfar
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nayereh Zare
- Department of Anatomical Sciences and Cognitive Neurosciences, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Houtenbos SP, He Y, Cazzanelli P, Soultoukis G, Wuertz-Kozak K, Schulz TJ, Wippert PM. The underlying mechanisms of the association of bone health with depression - an experimental study. Mol Biol Rep 2025; 52:163. [PMID: 39869252 PMCID: PMC11772516 DOI: 10.1007/s11033-025-10230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication. AIMS (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism. METHODS AND RESULTS Blood samples from depressed patients (n = 11) were obtained from a previous study and healthy controls (n = 9) were recruited. Sociodemographic, depression diagnosis and depressive symptom (BDI-II) data were collected through questionnaires. Blood plasma was collected from each participant and real-time-quantitative PCR was performed on isolated plasma EVs; differences in miRNA expression between groups were analyzed using qbase+. Regression models assessed the associations of differentially regulated miRNAs with bone turnover markers procollagen-1 N-terminal-peptide, osteocalcin, and crosslaps; enriched pathways and miRNA target gene networks were analyzed. 19 miRNAs were differentially expressed between groups (p < 0.05). MiR-26b-5p and miR-106a-5p showed an association with procollagen-1 N-terminal-peptide; miR-330-5p and miR-377-3p were associated with osteocalcin, and miR-26b-5p, miR-34c-3p and miR-145 with crosslaps. Pathway analysis including the differentially expressed miRNAs predicted enriched pathways, including the FoxO signaling and p53 signaling pathway. Seven target genes were identified. CONCLUSIONS MiRNAs (e.g. miR-26b-5p, miR-377-3p), genes (TNRC6B, HSPA8), and pathways (FoxO- and Hippo-signaling pathway) are identified which could be mediators between the influence of depression on bone health and could possibly serve as biomarkers in the treatment of bone diseases among people with mental disorders.
Collapse
Affiliation(s)
- Sanne Paulien Houtenbos
- Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
- Faculty of Health Sciences Brandenburg, Joint Faculty of the University of Potsdam, The Brandenburg, Medical School Theodor Fontane and The Brandenburg University of Technology Cottbus-Senftenberg, 14469, Potsdam, Germany.
| | - Yangyang He
- Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the University of Potsdam, The Brandenburg, Medical School Theodor Fontane and The Brandenburg University of Technology Cottbus-Senftenberg, 14469, Potsdam, Germany
| | - Petra Cazzanelli
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY, 14623, USA
| | - George Soultoukis
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14458, Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY, 14623, USA
- Spine Center, Schön Klinik München Harlaching, Academic Teaching Hospital and Spine Research Institute of The Paracelsus Private Medical University Salzburg (Austria), 81547, Munich, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14458, Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Pia-Maria Wippert
- Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the University of Potsdam, The Brandenburg, Medical School Theodor Fontane and The Brandenburg University of Technology Cottbus-Senftenberg, 14469, Potsdam, Germany
| |
Collapse
|
9
|
Xiang G, Li Q, Lian D, Su C, Li X, Deng S, Xie L. FOXO1-mediated autophagy regulation by miR-223 in sepsis-induced immunosuppression. Front Pharmacol 2024; 15:1469286. [PMID: 39439897 PMCID: PMC11493625 DOI: 10.3389/fphar.2024.1469286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Immunosuppression is the main cause of the high mortality rate in patients with sepsis. The decrease in the number and dysfunction of CD4+ T lymphocytes is crucial to the immunosuppressed state of sepsis, in turn affecting the development and prognosis of sepsis. Autophagy has been shown to play an important role in the immune imbalance exhibited during sepsis. Methods In this study, we modulate the expression of miR-223 in CD4+ T lymphocytes, via the transfection of a mimic or an inhibitor of miR-223 to establish cell models of miR-223 overexpression and knockdown, respectively. Levels of autophagy were monitored using a double-labeled lentivirus (mRFP-GFP-LC3) and electron microscopy, and western blot analysis was used to estimate the levels of autophagy-related proteins and FOXO1 in the two cell models after co-treatment with lipopolysaccharide (LPS) and siRNA against FOXO1. Results We found that when the expression of miR-223 increased, FOXO1 expression decreased and autophagy decreased; whereas, when FOXO1 expression was inhibited, autophagy decreased significantly in different cell models after LPS induction. Conclusion Thus, this study proved that miR-223 participate in the regulation of LPS-induced autophagy via the regulation of FOXO1 expression in CD4+ T lymphocytes which shed a new light for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guoan Xiang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Qi Li
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Di Lian
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chengcheng Su
- Department of Respiratory and Critical Care Medicine, Pingjin Hospital, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, China
| | - Xin Li
- Department of Emergency, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| |
Collapse
|
10
|
Daskalakis NP, Iatrou A, Chatzinakos C, Jajoo A, Snijders C, Wylie D, DiPietro CP, Tsatsani I, Chen CY, Pernia CD, Soliva-Estruch M, Arasappan D, Bharadwaj RA, Collado-Torres L, Wuchty S, Alvarez VE, Dammer EB, Deep-Soboslay A, Duong DM, Eagles N, Huber BR, Huuki L, Holstein VL, Logue ΜW, Lugenbühl JF, Maihofer AX, Miller MW, Nievergelt CM, Pertea G, Ross D, Sendi MSE, Sun BB, Tao R, Tooke J, Wolf EJ, Zeier Z, PTSD Working Group of Psychiatric Genomics Consortium, Berretta S, Champagne FA, Hyde T, Seyfried NT, Shin JH, Weinberger DR, Nemeroff CB, Kleinman JE, Ressler KJ. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood. Science 2024; 384:eadh3707. [PMID: 38781393 PMCID: PMC11203158 DOI: 10.1126/science.adh3707] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Nikolaos P. Daskalakis
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Artemis Iatrou
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Chris Chatzinakos
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| | - Aarti Jajoo
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Clara Snijders
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Christopher P. DiPietro
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ioulia Tsatsani
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | | | - Cameron D. Pernia
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marina Soliva-Estruch
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stefan Wuchty
- Departments of Computer Science, University of Miami, Miami, FL, 33146, USA
- Department of Biology, University of Miami, Miami, FL, 33146, USA
| | - Victor E. Alvarez
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Duc M. Duong
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Nick Eagles
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Bertrand R. Huber
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Louise Huuki
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Vincent L Holstein
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Μark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Justina F. Lugenbühl
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Adam X. Maihofer
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Geo Pertea
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Deanna Ross
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
| | - Mohammad S. E Sendi
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Ran Tao
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - James Tooke
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Erika J. Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine; Miami, FL, 33136, USA
| | | | - Sabina Berretta
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Thomas Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Charles B. Nemeroff
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin; Austin, TX, 78712, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Kerry J. Ressler
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
Collaborators
Caroline M Nievergelt, Adam X Maihofer, Elizabeth G Atkinson, Chia-Yen Chen, Karmel W Choi, Jonathan R I Coleman, Nikolaos P Daskalakis, Laramie E Duncan, Renato Polimanti, Cindy Aaronson, Ananda B Amstadter, Soren B Andersen, Ole A Andreassen, Paul A Arbisi, Allison E Ashley-Koch, S Bryn Austin, Esmina Avdibegoviç, Dragan Babić, Silviu-Alin Bacanu, Dewleen G Baker, Anthony Batzler, Jean C Beckham, Sintia Belangero, Corina Benjet, Carisa Bergner, Linda M Bierer, Joanna M Biernacka, Laura J Bierut, Jonathan I Bisson, Marco P Boks, Elizabeth A Bolger, Amber Brandolino, Gerome Breen, Rodrigo Affonseca Bressan, Richard A Bryant, Angela C Bustamante, Jonas Bybjerg-Grauholm, Marie Bækvad-Hansen, Anders D Børglum, Sigrid Børte, Leah Cahn, Joseph R Calabrese, Jose Miguel Caldas-de-Almeida, Chris Chatzinakos, Sheraz Cheema, Sean A P Clouston, Lucía Colodro-Conde, Brandon J Coombes, Carlos S Cruz-Fuentes, Anders M Dale, Shareefa Dalvie, Lea K Davis, Jürgen Deckert, Douglas L Delahanty, Michelle F Dennis, Frank Desarnaud, Christopher P DiPietro, Seth G Disner, Anna R Docherty, Katharina Domschke, Grete Dyb, Alma Džubur Kulenović, Howard J Edenberg, Alexandra Evans, Chiara Fabbri, Negar Fani, Lindsay A Farrer, Adriana Feder, Norah C Feeny, Janine D Flory, David Forbes, Carol E Franz, Sandro Galea, Melanie E Garrett, Bizu Gelaye, Joel Gelernter, Elbert Geuze, Charles F Gillespie, Slavina B Goleva, Scott D Gordon, Aferdita Goçi, Lana Ruvolo Grasser, Camila Guindalini, Magali Haas, Saskia Hagenaars, Michael A Hauser, Andrew C Heath, Sian M J Hemmings, Victor Hesselbrock, Ian B Hickie, Kelleigh Hogan, David Michael Hougaard, Hailiang Huang, Laura M Huckins, Kristian Hveem, Miro Jakovljević, Arash Javanbakht, Gregory D Jenkins, Jessica Johnson, Ian Jones, Tanja Jovanovic, Karen-Inge Karstoft, Milissa L Kaufman, James L Kennedy, Ronald C Kessler, Alaptagin Khan, Nathan A Kimbrel, Anthony P King, Nastassja Koen, Roman Kotov, Henry R Kranzler, Kristi Krebs, William S Kremen, Pei-Fen Kuan, Bruce R Lawford, Lauren A M Lebois, Kelli Lehto, Daniel F Levey, Catrin Lewis, Israel Liberzon, Sarah D Linnstaedt, Mark W Logue, Adriana Lori, Yi Lu, Benjamin J Luft, Michelle K Lupton, Jurjen J Luykx, Iouri Makotkine, Jessica L Maples-Keller, Shelby Marchese, Charles Marmar, Nicholas G Martin, Gabriela A Martínez-Levy, Kerrie McAloney, Alexander McFarlane, Katie A McLaughlin, Samuel A McLean, Sarah E Medland, Divya Mehta, Jacquelyn Meyers, Vasiliki Michopoulos, Elizabeth A Mikita, Lili Milani, William Milberg, Mark W Miller, Rajendra A Morey, Charles Phillip Morris, Ole Mors, Preben Bo Mortensen, Mary S Mufford, Elliot C Nelson, Merete Nordentoft, Sonya B Norman, Nicole R Nugent, Meaghan O'Donnell, Holly K Orcutt, Pedro M Pan, Matthew S Panizzon, Gita A Pathak, Edward S Peters, Alan L Peterson, Matthew Peverill, Robert H Pietrzak, Melissa A Polusny, Bernice Porjesz, Abigail Powers, Xue-Jun Qin, Andrew Ratanatharathorn, Victoria B Risbrough, Andrea L Roberts, Alex O Rothbaum, Barbara O Rothbaum, Peter Roy-Byrne, Kenneth J Ruggiero, Ariane Rung, Heiko Runz, Bart P F Rutten, Stacey Saenz de Viteri, Giovanni Abrahão Salum, Laura Sampson, Sixto E Sanchez, Marcos Santoro, Carina Seah, Soraya Seedat, Julia S Seng, Andrey Shabalin, Christina M Sheerin, Derrick Silove, Alicia K Smith, Jordan W Smoller, Scott R Sponheim, Dan J Stein, Synne Stensland, Jennifer S Stevens, Jennifer A Sumner, Martin H Teicher, Wesley K Thompson, Arun K Tiwari, Edward Trapido, Monica Uddin, Robert J Ursano, Unnur Valdimarsdóttir, Miranda Van Hooff, Eric Vermetten, Christiaan H Vinkers, Joanne Voisey, Yunpeng Wang, Zhewu Wang, Monika Waszczuk, Heike Weber, Frank R Wendt, Thomas Werge, Michelle A Williams, Douglas E Williamson, Bendik S Winsvold, Sherry Winternitz, Christiane Wolf, Erika J Wolf, Yan Xia, Ying Xiong, Rachel Yehuda, Keith A Young, Ross McD Young, Clement C Zai, Gwyneth C Zai, Mark Zervas, Hongyu Zhao, Lori A Zoellner, John-Anker Zwart, Terri deRoon-Cassini, Sanne J H van Rooij, Leigh L van den Heuvel, Murray B Stein, Kerry J Ressler, Karestan C Koenen,
Collapse
|
11
|
Cai L, Xu J, Liu J, Luo H, Yang R, Gui X, Wei L. miRNAs in treatment-resistant depression: a systematic review. Mol Biol Rep 2024; 51:638. [PMID: 38727891 DOI: 10.1007/s11033-024-09554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/15/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Treatment-resistant depression (TRD) is a condition in a subset of depressed patients characterized by resistance to antidepressant medications. The global prevalence of TRD has been steadily increasing, yet significant advancements in its diagnosis and treatment remain elusive despite extensive research efforts. The precise underlying pathogenic mechanisms are still not fully understood. Epigenetic mechanisms play a vital role in a wide range of diseases. In recent years, investigators have increasingly focused on the regulatory roles of miRNAs in the onset and progression of TRD. miRNAs are a class of noncoding RNA molecules that regulate the translation and degradation of their target mRNAs via interaction, making the exploration of their functions in TRD essential for elucidating their pathogenic mechanisms. METHODS AND RESULTS A systematic search was conducted in four databases, namely PubMed, Web of Science, Cochrane Library, and Embase, focusing on studies related to treatment-resistant depression and miRNAs. The search was performed using terms individually or in combination, such as "treatment-resistant depression," "medication-resistant depression," and "miRNAs." The selected articles were reviewed and collated, covering the time period from the inception of each database to the end of February 2024. We found that miRNAs play a crucial role in the pathophysiology of TRD through three main aspects: 1) involvement in miRNA-mediated inflammatory responses (including miR-155, miR-345-5p, miR-146a, and miR-146a-5p); 2) influence on 5-HT transport processes (including miR-674,miR-708, and miR-133a); and 3) regulation of synaptic plasticity (including has-miR-335-5p,has-miR- 1292-3p, let-7b, and let-7c). Investigating the differential expression and interactions of these miRNAs could contribute to a deeper understanding of the molecular mechanisms underlying TRD. CONCLUSIONS miRNAs might play a pivotal role in the pathogenesis of TRD. Gaining a deeper understanding of the roles and interrelations of miRNAs in TRD will contribute to elucidating disease pathogenesis and potentially provide avenues for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lun Cai
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Jingwen Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Huazheng Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Rongrong Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Xiongbin Gui
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530000, Guangxi, People's Republic of China.
| | - Liping Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530000, Guangxi, People's Republic of China
| |
Collapse
|
12
|
Kaurani L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int J Mol Sci 2024; 25:2866. [PMID: 38474112 PMCID: PMC10931847 DOI: 10.3390/ijms25052866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Depression is a major contributor to the overall global burden of disease. The discovery of biomarkers for diagnosis or prediction of treatment responses and as therapeutic agents is a current priority. Previous studies have demonstrated the importance of short RNA molecules in the etiology of depression. The most extensively researched of these are microRNAs, a major component of cellular gene regulation and function. MicroRNAs function in a temporal and tissue-specific manner to regulate and modify the post-transcriptional expression of target mRNAs. They can also be shuttled as cargo of extracellular vesicles between the brain and the blood, thus informing about relevant mechanisms in the CNS through the periphery. In fact, studies have already shown that microRNAs identified peripherally are dysregulated in the pathological phenotypes seen in depression. Our article aims to review the existing evidence on microRNA dysregulation in depression and to summarize and evaluate the growing body of evidence for the use of microRNAs as a target for diagnostics and RNA-based therapies.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|