1
|
Meanti R, Bresciani E, Rizzi L, Molteni L, Coco S, Omeljaniuk RJ, Torsello A. Cannabinoid Receptor 2 (CB2R) as potential target for the pharmacological treatment of neurodegenerative diseases. Biomed Pharmacother 2025; 186:118044. [PMID: 40209306 DOI: 10.1016/j.biopha.2025.118044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
The endocannabinoid system (ECS) is a ubiquitous physiological system that plays a crucial role in maintaining CNS homeostasis and regulating its functions. It includes cannabinoid receptors (CBRs), endogenous cannabinoids (eCBs), and the enzymes responsible for their synthesis and degradation. In recent years, growing evidence has highlighted the therapeutic potential of the ECS and CBRs, in a wide range of severe diseases and pathological conditions, including Alzheimer's and Parkinson's diseases, Amyotrophic Lateral Sclerosis, Multiple Sclerosis, Huntington's Disease, HIV-1 associated neurocognitive disorders, neuropathic pain and migraine. Targeting the cannabinoid type 2 receptor (CB2R) has gained attention due to its ability to (i) mitigate neuroinflammatory responses, (ii) regulate mitochondrial function and (iii) provide trophic support, all without eliciting the psychotropic actions associated with CB1R activation. This review aims to explore the potential of CB2R modulation as a strategy for the prevention and treatment of neurologic disorders, exploring both preclinical and clinical findings.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Robert J Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| |
Collapse
|
2
|
Hebert FO, Mongeau-Pérusse V, Rizkallah E, Mahroug A, Bakouni H, Morissette F, Brissette S, Bruneau J, Dubreucq S, Jutras-Aswad D. Absence of Evidence for Sustained Effects of Daily Cannabidiol Administration on Anandamide Plasma Concentration in Individuals with Cocaine Use Disorder: Exploratory Findings from a Randomized Controlled Trial. Cannabis Cannabinoid Res 2025; 10:e341-e352. [PMID: 38770686 DOI: 10.1089/can.2023.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Background: Cannabidiol (CBD) has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders, including substance use disorders. Pre-clinical evidence suggests that CBD can increase anandamide (AEA) plasma concentration, possibly mediating some of its therapeutic properties. Whether CBD exerts such an effect on AEA in individuals with cocaine use disorder (CUD) remains unknown. Aims: To explore the sustained effects of daily CBD administration on AEA plasma concentrations compared with placebo in CUD. Methods: We used data from a randomized, double-blind, placebo-controlled trial evaluating CBD's efficacy in CUD. Seventy-eight individuals were randomized to receive a daily oral dose of 800 mg CBD (n = 40) or a placebo (n = 38). Participants stayed in an inpatient detoxification setting for 10 days, after which they were followed in an outpatient setting for 12 weeks. AEA plasma concentration was measured at baseline and at 23-h post CBD ingestion on day 8 and week 4. A generalized estimating equation model was used to assess CBD's effects on AEA, and sensitivity analyses were computed using Bayesian linear regressions. Results: Sixty-four participants were included in the analysis. Similar mean AEA plasma concentrations in both treatment groups (p = 0.357) were observed. At day 8, mean AEA plasma concentrations (± standard deviation) were 0.26 (± 0.07) ng/mL in the CBD group and 0.29 (± 0.08) ng/mL in the placebo group (p = 0.832; Bayes factor [BF] = 0.190). At week 4, they were 0.27 (± 0.09) ng/mL in the CBD group and 0.30 (± 0.09) ng/mL in the placebo group (p = 0.181; BF = 0.194). Conclusion: While not excluding any potential acute and short-term effect, daily CBD administration did not exert a sustained impact on AEA plasma concentrations in individuals with CUD compared with placebo. Registration: clinicaltrials.gov (NCT02559167).
Collapse
Affiliation(s)
| | - Violaine Mongeau-Pérusse
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Elie Rizkallah
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Amani Mahroug
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Hamzah Bakouni
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Florence Morissette
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Suzanne Brissette
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Family and Emergency Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Julie Bruneau
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Family and Emergency Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Simon Dubreucq
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Didier Jutras-Aswad
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
3
|
Kashyap D, Booth MJ. Nucleic Acid Conjugates: Unlocking Therapeutic Potential. ACS BIO & MED CHEM AU 2025; 5:3-15. [PMID: 39990950 PMCID: PMC11843337 DOI: 10.1021/acsbiomedchemau.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 02/25/2025]
Abstract
Nucleic acids have emerged as a powerful class of therapeutics. Through simple base pair complementarity, nucleic acids allow the targeting of a variety of pathologically relevant proteins and RNA molecules. However, despite the preliminary successes of nucleic acids as drugs in the clinic, limited biodistribution, inadequate delivery mechanisms, and target engagement remain key challenges in the field. A key area of research has been the chemical optimization of nucleic acid backbones to significantly enhance their "drug-like" properties. Alternatively, this review focuses on the next generation of nucleic acid chemical modifications: covalent biochemical conjugates. These conjugates are being applied to improve the delivery, functionality, and targeting. Exploiting research on heterobifunctionals, such as PROTACs, RIBOTACs, molecular glues, etc., has the potential to dramatically expand nucleic acid drug functionality and target engagement capabilities. Such next-generation chemistry-based enhancements have the potential to unlock nucleic acids as effective and versatile therapeutic agents.
Collapse
Affiliation(s)
- Disha Kashyap
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Michael J. Booth
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
4
|
Kruk-Slomka M, Dzik A, Biala G. The Effects of Indirect and Direct Modulation of Endocannabinoid System Function on Anxiety-Related Behavior in Mice Assessed in the Elevated Plus Maze Test. Molecules 2025; 30:867. [PMID: 40005177 PMCID: PMC11857936 DOI: 10.3390/molecules30040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is one of the most important systems modulating functions in the body. The ECS, via cannabinoid (CB: CB1 and CB2) receptors, endocannabinoids occurring in the brain (e.g., anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and enzymes degrading endocannabinoids in the brain (fatty-acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)), plays a key role in the regulation of mood and anxiety. However, the effects of cannabinoid compounds on anxiety-related responses are complex and yield mixed results depending on the type of pharmacological manipulation (direct or indirect) of functions of the ECS, as well as the kinds of cannabinoids, dosage and procedure. METHODS The aim of this study was to determine and compare the influence of the direct (via CB receptors ligands) and indirect (via inhibition of enzymes degrading endocannabinoids in the brain) pharmacological modulation of ECS function on anxiety-like responses in mice in the elevated plus maze (EPM) test. For this purpose, in the first step of the experiments, we used selected ligands of CB1, CB1/CB2 and CB2 receptors to assess which types of CB receptors are involved in anxiety-related responses in mice. Next, we used inhibitors of FAAH (which breaks down AEA) or MAGL (which breaks down 2-AG) to assess which endocannabinoid is more responsible for anxiety-related behavior in mice. RESULTS The results of our presented research showed that an acute administration of CB1 receptor agonist oleamide (5-20 mg/kg) had no influence on anxiety-related responses and CB1 receptor antagonist AM 251 (0.25-3 mg/kg) had anxiogenic effects in the EPM test in mice. In turn, an acute administration of mixed CB1/CB2 receptor agonist WIN55,212-2 used at a dose of 1 mg/kg had an anxiolytic effect observed in mice in the EPM test. What is of interest is that both the acute administration of a CB2 receptor agonist (JWH 133 at the doses of 1 and 2 mg/kg) and antagonist (AM 630 at the doses of 0.5-2 mg/kg) had anxiogenic effects in this procedure. Moreover, we revealed that an acute administration of only FAAH inhibitor URB 597 (0.3 mg/kg) had an anxiolytic effect, while MAGL inhibitor JZL 184 (at any used doses (2-40 mg/kg)) after an acute injection had no influence on anxiety behavior in mice, as observed in the EPM test. CONCLUSIONS In our experiments, we confirmed the clearly significant involvement of the ECS in anxiety-related responses. In particular, the pharmacological indirect manipulation of ECS functions is able to elicit promising anxiolytic effects. Therefore, the ECS could be a potential target for novel anxiolytic drugs; however, further studies are needed.
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
- Experimental Medicine Center (OMD), Medical University of Lublin, Jaczewskiego 8D, 20-090 Lublin, Poland
| | - Agnieszka Dzik
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
- Experimental Medicine Center (OMD), Medical University of Lublin, Jaczewskiego 8D, 20-090 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
- Experimental Medicine Center (OMD), Medical University of Lublin, Jaczewskiego 8D, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Luján MÁ, Kim Y, Zhang LY, Cheer JF. Cannabinoid-based Pharmacology for the Management of Substance Use Disorders. Curr Top Behav Neurosci 2025. [PMID: 39813001 DOI: 10.1007/7854_2024_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists. Despite considerable preclinical efforts, an agreement on the efficacy of endocannabinoid-targeting compounds for treating drug substance use disorders in humans has not been reached. In the following chapter, we will summarize preclinical and clinical evidence addressing the therapeutic potential of cannabinoids and endocannabinoid-targeting compounds in substance use disorders. To bridge the gap between animal and clinical research, we capitalize on studies evaluating the impact of endocannabinoid-targeting compounds in relevant settings, such as the management of drug relapse. Finally, we discuss the therapeutic potential of novel cannabinoid compounds that hold promise for treating substance use disorders.
Collapse
Affiliation(s)
- M Á Luján
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Y Kim
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - L Y Zhang
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Tandon D, Taylor RL, Bialowas C, Johnson AR, Orr J, Said A, Currie K, Feinmann M, Ridley CH, Mackinnon SE. Practicing Emotional Self-awareness to Build Surgeon Resilience. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2025; 13:e6462. [PMID: 39882431 PMCID: PMC11778093 DOI: 10.1097/gox.0000000000006462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/25/2024] [Indexed: 01/31/2025]
Abstract
As surgeons, we work in a high-stress, high-stakes environment to take care of our patients. In this setting, it is not uncommon for us to experience microaggressions-subtle or indirect actions or statements that communicate a demeaning or exclusionary message, often unintentionally. Microaggressions can bring us down, taking away from the fulfillment that attracted many of us to this profession. In this article, we introduce the Institute for Professional Excellence in Coaching energy leadership framework as a tool to understand and address microaggressions. We then apply it to real-life scenarios surgeons may encounter, demonstrating how this framework can help us to build resilience and recover our joy for our profession.
Collapse
Affiliation(s)
- Damini Tandon
- From the Division of Plastic Surgery, Department of Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO
| | - Ruby L. Taylor
- From the Division of Plastic Surgery, Department of Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO
| | - Christie Bialowas
- Department of Surgery, Division of Plastic Surgery, Albany Medical Center, Albany, NY
| | - Anna Rose Johnson
- From the Division of Plastic Surgery, Department of Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO
| | - Jonah Orr
- From the Division of Plastic Surgery, Department of Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO
| | - Abdullah Said
- From the Division of Plastic Surgery, Department of Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO
| | - Kelly Currie
- From the Division of Plastic Surgery, Department of Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO
| | - Marcie Feinmann
- Department of Surgery, Sinai Hospital of Baltimore, Baltimore, MD
| | - Clare H. Ridley
- Department of Anesthesia, Barnes Jewish Hospital, Washington University, St. Louis, MO
| | - Susan E. Mackinnon
- From the Division of Plastic Surgery, Department of Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO
| |
Collapse
|
7
|
Kale MB, Umare MD, Wankhede NL, Deshmukh R, Abbot V, Anwer MK, Taksande BG, Upaganlawar AB, Umekar MJ, Ramniwas S, Gulati M, Arora R, Behl T. Decoding the Therapeutic Potential of Cannabis and Cannabinoids in Neurological Disorders. Curr Pharm Des 2025; 31:630-644. [PMID: 39410886 DOI: 10.2174/0113816128318194240918113954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 04/05/2025]
Abstract
For millennia, Cannabis sativa has served diverse roles, from medicinal applications to recreational use. Despite its extensive historical use, only a fraction of its components have been explored until recent times. The therapeutic potential of Cannabis and its constituents has garnered attention, with suggestions for treating various conditions such as Parkinson's disease, epilepsy, Alzheimer's disease, and other neurological disorders. Recent research, particularly on animal experimental models, has unveiled the neuroprotective properties of cannabis. This neuroprotective effect is orchestrated through numerous G protein-coupled receptors (GPCRs) and the two cannabinoid receptors, CB1 and CB2. While the capacity of cannabinoids to safeguard neurons is evident, a significant challenge lies in determining the optimal cannabinoid receptor agonist and its application in clinical trials. The intricate interplay of cannabinoids with the endocannabinoid system, involving CB1 and CB2 receptors, underscores the need for precise understanding and targeted approaches. Unravelling the molecular intricacies of this interaction is vital to harness the therapeutic potential of cannabinoids effectively. As the exploration of cannabis components accelerates, there is a growing awareness of the need for nuanced strategies in utilizing cannabinoid receptor agonists in clinical settings. The evolving landscape of cannabis research presents exciting possibilities for developing targeted interventions that capitalize on the neuroprotective benefits of cannabinoids while navigating the complexities of receptor specificity and clinical applicability.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| |
Collapse
|
8
|
Zhong Z, Mu X, Lang H, Wang Y, Jiang Y, Liu Y, Zeng Q, Xia S, Zhang B, Wang Z, Wang X, Zheng H. Gut symbiont-derived anandamide promotes reward learning in honeybees by activating the endocannabinoid pathway. Cell Host Microbe 2024; 32:1944-1958.e7. [PMID: 39419026 DOI: 10.1016/j.chom.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/28/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) are dietary components participating in neurotransmission and cell signaling. Pollen is a source of PUFAs for honeybees, and disruptions in dietary PUFAs reduce the cognitive performance of honeybees. We reveal that gut bacteria of honeybees contribute to fatty acid metabolism, impacting reward learning. Gut bacteria possess Δ-6 desaturases that mediate fatty acid elongation and compensate for the absence of honeybee factors required for fatty acid metabolism. Colonization with Gilliamella apicola, but not a mutant lacking the Δ-6 desaturase FADS2, increases the production of anandamide (AEA), a ligand of the endocannabinoid system, and alters learning and memory. AEA activates the Hymenoptera-specific transient receptor AmHsTRPA in astrocytes, which induces Ca2+ influx and regulates glutamate re-uptake of glial cells to enhance reward learning. These findings illuminate the roles of gut symbionts in host fatty acid metabolism and the impacts of endocannabinoid signaling on the reward system of social insects.
Collapse
Affiliation(s)
- Zhaopeng Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Yueyi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Yanling Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Yuwen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Qian Zeng
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zilong Wang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China.
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China.
| |
Collapse
|
9
|
Duczmal D, Bazan-Wozniak A, Niedzielska K, Pietrzak R. Cannabinoids-Multifunctional Compounds, Applications and Challenges-Mini Review. Molecules 2024; 29:4923. [PMID: 39459291 PMCID: PMC11510081 DOI: 10.3390/molecules29204923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients. Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous cannabinoids, along with the enzymes responsible for their synthesis and degradation. All of these compounds interact biologically with type 1 (CB1) and/or type 2 (CB2) cannabinoid receptors. A substantial body of evidence from in vitro and in vivo studies has demonstrated that cannabinoids and inhibitors of endocannabinoid degradation possess anti-inflammatory, antioxidant, antitumour and antifibrotic properties with beneficial effects. This review, which spans the period from 1940 to 2024, offers an overview of the potential therapeutic applications of natural and synthetic cannabinoids. The development of these substances is essential for the global market of do-it-yourself drugs to fully exploit the promising therapeutic properties of cannabinoids.
Collapse
Affiliation(s)
- Dominik Duczmal
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Polygen Sp. z o.o., Górnych Wałów 46/1, 44-100 Gliwice, Poland;
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
10
|
Mazurka R, Harkness KL, Hassel S, Stensson N, Nogovitsyn N, Poppenk J, Foster JA, Squires SD, Rowe J, Milev RV, Wynne-Edwards KE, Turecki G, Strother SC, Arnott SR, Lam RW, Rotzinger S, Kennedy SH, Frey BN, Mayo LM. Endocannabinoid concentrations in major depression: effects of childhood maltreatment and relation to hippocampal volume. Transl Psychiatry 2024; 14:431. [PMID: 39394160 PMCID: PMC11470058 DOI: 10.1038/s41398-024-03151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Evidence from preclinical animal models suggests that the stress-buffering function of the endocannabinoid (eCB) system may help protect against stress-related reductions in hippocampal volume, as is documented in major depressive disorder (MDD). However, stress exposure may also lead to dysregulation of this system. Thus, pathways from marked stress histories, such as childhood maltreatment (CM), to smaller hippocampal volumes and MDD in humans may depend on dysregulated versus intact eCB functioning. We examined whether the relation between MDD and peripheral eCB concentrations would vary as a function of CM history. Further, we examined whether eCBs moderate the relation of CM/MDD and hippocampal volume. Ninety-one adults with MDD and 62 healthy comparison participants (HCs) were recruited for a study from the Canadian Biomarker Integration Network in Depression program (CAN-BIND-04). The eCBs, anandamide (AEA) and 2-arachidonylglycerol (2-AG), were assessed from blood plasma. Severe CM history was assessed retrospectively via contextual interview. MDD was associated with eCBs, though not all associations were moderated by CM or in the direction expected. Specifically, MDD was associated with higher AEA compared to HCs regardless of CM history, a difference that could be attributed to psychotropic medications. MDD was also associated with higher 2-AG, but only for participants with CM. Consistent with hypotheses, we found lower left hippocampal volume in participants with versus without CM, but only for those with lower AEA, and not moderate or high AEA. Our study presents the first evidence in humans implicating eCBs in stress-related mechanisms involving reduced hippocampal volume in MDD.
Collapse
Affiliation(s)
- Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University, Providence Care Hospital, Kingston, ON, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Reseach and Education, University of Calgary, Calgary, AB, Canada
| | - Niclas Stensson
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Occupational and Environmental Medicine Centre, Department of Health, Medicine and Caring Sciences, Unit of Clinical Medicine, Linköping University, Linköping, Sweden
| | - Nikita Nogovitsyn
- Mood Disorders Treatment and Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto, ON, Canada
| | - Jordan Poppenk
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Scott D Squires
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Jessie Rowe
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Roumen V Milev
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University, Providence Care Hospital, Kingston, ON, Canada
| | - Katherine E Wynne-Edwards
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Susan Rotzinger
- Mood Disorders Treatment and Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Sidney H Kennedy
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Benicio N Frey
- Mood Disorders Treatment and Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Leah M Mayo
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Reseach and Education, University of Calgary, Calgary, AB, Canada.
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
11
|
Martin-Willett R, Skrzynski CJ, Taylor EM, Sempio C, Klawitter J, Bidwell LC. The Interplay of Exogenous Cannabinoid Use on Anandamide and 2-Arachidonoylglycerol in Anxiety: Results from a Quasi-Experimental Ad Libitum Study. Pharmaceuticals (Basel) 2024; 17:1335. [PMID: 39458976 PMCID: PMC11509978 DOI: 10.3390/ph17101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The public is increasingly reporting using cannabis for anxiety relief. Both cannabis use and the endocannabinoid system have been connected with anxiety relief/anxiolytic properties, but these relationships are complex, and the underlying mechanisms for them are unclear. Background/Objectives: Work is needed to understand how the endocannabinoid system, including the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), may be impacted by the main constituents of cannabis, Δ9-tetrahydrocannabinol (THC), and cannabidiol (CBD). Methods: The current study examined how the ab libitum use of products differing in THC and CBD affected AEA and 2-AG among 292 individuals randomly assigned to THC-dominant use (N = 92), CBD-dominant use (N = 97), THC + CBD use (N = 74), or non-use (N = 29). Results: The findings suggest that AEA levels do not change differently based on 4 weeks of cannabis use or by cannabinoid content, as AEA similarly increased across all conditions from study weeks 2 to 4. In contrast, AEA decreased at an acute administration session with product conditions containing any THC having greater AEA levels on average than the non-use condition. With regard to 2-AG, its levels appeared to primarily be affected by THC-dominant use, both acutely and over 4 weeks, when controlling for baseline cannabis use and examining study product use frequency among use conditions. Conclusions: Overall, the results continue to shed light on the complicated relationship between cannabinoid content and endocannabinoid production, and highlight the need for continued research on their interplay in human subjects.
Collapse
Affiliation(s)
- Renée Martin-Willett
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
| | - Carillon J. Skrzynski
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
| | - Ethan M. Taylor
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
| | - Cristina Sempio
- Department of Anesthesiology, iC42 Clinical Research and Development, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.); (J.K.)
| | - Jost Klawitter
- Department of Anesthesiology, iC42 Clinical Research and Development, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.); (J.K.)
| | - L. Cinnamon Bidwell
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
12
|
Gowatch LC, Evanski JM, Ely SL, Zundel CG, Bhogal A, Carpenter C, Shampine MM, O'Mara E, Mazurka R, Barcelona J, Mayo LM, Marusak HA. Endocannabinoids and Stress-Related Neurospsychiatric Disorders: A Systematic Review and Meta-Analysis of Basal Concentrations and Response to Acute Psychosocial Stress. Cannabis Cannabinoid Res 2024; 9:1217-1234. [PMID: 38683635 PMCID: PMC11535454 DOI: 10.1089/can.2023.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background: Dysregulation of the endocannabinoid (eCB) system is implicated in various stress-related neuropsychiatric disorders (SRDs), including anxiety, depression, and post-traumatic stress disorder (PTSD). In this systematic review and meta-analysis, our objectives were to characterize circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) concentrations at rest and in response to acute laboratory-based psychosocial stress in individuals with SRDs and without (controls). Our primary aims were to assess the effects of acute psychosocial stress on eCB concentrations in controls (Aim 1), compare baseline (prestress) eCB concentrations between individuals with SRDs and controls (Aim 2), and explore differential eCB responses to acute psychosocial stress in individuals with SRDs compared with controls (Aim 3). Methods: On June 8, 2023, a comprehensive review of the MEDLINE (PubMed) database was conducted to identify original articles meeting inclusion criteria. A total of 1072, 1341, and 400 articles were screened for inclusion in Aims 1, 2, and 3, respectively. Results: Aim 1, comprised of seven studies in controls, revealed that most studies reported stress-related increases in AEA (86%, with 43% reporting statistical significance) and 2-AG (83%, though none were statistically significant except for one study in saliva). However, meta-analyses did not support these patterns (p's>0.05). Aim 2, with 20 studies, revealed that most studies reported higher baseline concentrations of both AEA (63%, with 16% reporting statistical significance) and 2-AG (60%, with 10% reporting statistical significance) in individuals with SRDs compared with controls. Meta-analyses confirmed these findings (p's<0.05). Aim 3, which included three studies, had only one study that reported statistically different stress-related changes in 2-AG (but not AEA) between individuals with PTSD (decrease) and controls (increase), which was supported by the meta-analysis (p<0.001). Meta-analyses showed heterogeneity across studies and aims (I2=14-97%). Conclusion: Despite substantial heterogeneity in study characteristics, samples, and methodologies, consistent patterns emerged, including elevated baseline AEA and 2-AG in individuals with SRDs compared with controls, as well as smaller stress-related increases in 2-AG in individuals with SRDs compared with controls. To consider eCBs as reliable biomarkers and potential intervention targets for SRDs, standardized research approaches are needed to clarify the complex relationships between eCBs, SRDs, and psychosocial stress.
Collapse
Affiliation(s)
- Leah C. Gowatch
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Julia M. Evanski
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha L. Ely
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience PhD Program, Wayne State University, Detroit, Michigan, USA
| | - Clara G. Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Amanpreet Bhogal
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Carmen Carpenter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - MacKenna M. Shampine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Emilie O'Mara
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Jeanne Barcelona
- Center for Health and Community Impact, College of Education, Wayne State University, Detroit, Michigan, USA
| | - Leah M. Mayo
- Hotchkiss Brain Institute and Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience PhD Program, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
13
|
Aguirre-Rodríguez CA, Delgado A, Alatorre A, Oviedo-Chávez A, Martínez-Escudero JR, Barrientos R, Querejeta E. Local activation of CB1 receptors by synthetic and endogenous cannabinoids dampens burst firing mode of reticular thalamic nucleus neurons in rats under ketamine anesthesia. Exp Brain Res 2024; 242:2137-2157. [PMID: 38980339 DOI: 10.1007/s00221-024-06889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep. Despite the presence of cannabinoid receptors CB1 (CB1Rs) and mRNA that encodes these receptors in RTN neurons, there are few works that have analyzed the participation of endocannabinoid-mediated transmission on the electrical activity of RTN. Here, we locally blocked or activated CB1Rs in ketamine anesthetized rats to analyze the spontaneous extracellular spiking activity of RTN neurons. Our results show the presence of a tonic endocannabinoid input, since local infusion of AM 251, an antagonist/inverse agonist, modifies RTN neurons electrical activity; furthermore, local activation of CB1Rs by anandamide or WIN 55212-2 produces heterogeneous effects in the basal spontaneous spiking activity, where the main effect is an increase in the spiking rate accompanied by a decrease in bursting activity in a dose-dependent manner; this effect is inhibited by AM 251. In addition, previous activation of GABA-A receptors suppresses the effects of CB1Rs on reticular neurons. Our results show that local activation of CB1Rs primarily diminishes the burst firing mode of RTn neurons.
Collapse
Affiliation(s)
- Carlos A Aguirre-Rodríguez
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Alfonso Delgado
- Departamento de Fisiología Experimental, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31127, Chihuahua, Chihuahua, México
| | - Alberto Alatorre
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Aldo Oviedo-Chávez
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - José R Martínez-Escudero
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rafael Barrientos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Enrique Querejeta
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
| |
Collapse
|
14
|
Abdollahi M, Castaño JD, Salem JB, Beaudry F. Anandamide Modulates Thermal Avoidance in Caenorhabditis elegans Through Vanilloid and Cannabinoid Receptor Interplay. Neurochem Res 2024; 49:2423-2439. [PMID: 38847909 DOI: 10.1007/s11064-024-04186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/09/2024]
Abstract
Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.
Collapse
Affiliation(s)
- Marzieh Abdollahi
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus D Castaño
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
15
|
Guida CR, Maia JM, Ferreira LFR, Rahdar A, Branco LGS, Soriano RN. Advancements in addressing drug dependence: A review of promising therapeutic strategies and interventions. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111070. [PMID: 38908501 DOI: 10.1016/j.pnpbp.2024.111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Substance dependence represents a pervasive global concern within the realm of public health. Presently, it is delineated as a persistent and recurrent neurological disorder stemming from drug-triggered neuroadaptations in the brain's reward circuitry. Despite the availability of various therapeutic modalities, there has been a steady escalation in the mortality rate attributed to drug overdoses. Substantial endeavors have been directed towards the exploration of innovative interventions aimed at mitigating cravings and drug-induced repetitive behaviors. Within this review, we encapsulate the most auspicious contemporary treatment methodologies, accentuating meta-analyses of efficacious pharmacological and non-pharmacological approaches: including gabapentin, topiramate, prazosin, physical exercise regimens, and cerebral stimulation techniques.
Collapse
Affiliation(s)
- Clara Rodrigues Guida
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Juliana Marino Maia
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | | | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904, Brazil; Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35020-360, Brazil.
| |
Collapse
|
16
|
Belali R, Mard SA, Khoshnam SE, Bavarsad K, Sarkaki A, Farbood Y. Anandamide Attenuates Neurobehavioral Deficits and EEG Irregularities in the Chronic Sleep Deprivation Rats: The Role of Oxidative Stress and Neuroinflammation. Neurochem Res 2024; 49:1541-1555. [PMID: 37966567 DOI: 10.1007/s11064-023-04054-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Sleep deprivation increases stress, anxiety, and depression by altering the endocannabinoid system's function. In the present study, we aimed to investigate the anti-anxiety and anti-depressant effects of the endocannabinoid anandamide (AEA) in the chronic sleep deprivation (SD) model in rats. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation + 20 mg/kg AEA (SD + A). The rats were kept in a sleep deprivation device for 18 h (7 to 1 a.m.) daily for 21 days. Open-field (OFT), elevated plus maze, and forced swimming tests (FST) were used to assess anxiety and depression-like behavior. As well as the cortical EEG, CB1R mRNA expression, TNF-α, IL-6, IL-4 levels, and antioxidant activity in the brain were examined following SD induction. AEA administration significantly increased the time spent (p < 0.01), the distance traveled in the central zone (p < 0.001), and the number of climbing (p < 0.05) in the OFT; it also increased the duration and number of entries into the open arms (p < 0.01 and p < 0.05 respectively), and did not reduce immobility time in the FST (p > 0.05), AEA increased CB1R mRNA expression in the anterior and medial parts of the brain (p < 0.01), and IL-4 levels (p < 0.05). AEA also reduced IL-6 and TNF-α (p < 0.05) and modulated cortical EEG. AEA induced anxiolytic-like effects but not anti-depressant effects in the SD model in rats by modulating CB1R mRNA expression, cortical EEG, and inflammatory response.
Collapse
Affiliation(s)
- Rafie Belali
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Ilyas K, Iqbal H, Akash MSH, Rehman K, Hussain A. Heavy metal exposure and metabolomics analysis: an emerging frontier in environmental health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37963-37987. [PMID: 38780845 DOI: 10.1007/s11356-024-33735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Exposure to heavy metals in various populations can lead to extensive damage to different organs, as these metals infiltrate and bioaccumulate in the human body, causing metabolic disruptions in various organs. To comprehensively understand the metal homeostasis, inter-organ "traffic," and extensive metabolic alterations resulting from heavy metal exposure, employing complementary analytical methods is crucial. Metabolomics is pivotal in unraveling the intricacies of disease vulnerability by furnishing thorough understandings of metabolic changes linked to different metabolic diseases. This field offers exciting prospects for enhancing the disease prevention, early detection, and tailoring treatment approaches to individual needs. This article consolidates the existing knowledge on disease-linked metabolic pathways affected by the exposure of diverse heavy metals providing concise overview of the underlying impact mechanisms. The main aim is to investigate the connection between the altered metabolic pathways and long-term complex health conditions induced by heavy metals such as diabetes mellitus, cardiovascular diseases, renal disorders, inflammation, neurodegenerative diseases, reproductive risks, and organ damage. Further exploration of common pathways may unveil the shared targets for treating associated pathological conditions. In this article, the role of metabolomics in disease susceptibility is emphasized that metabolomics is expected to be routinely utilized for the diagnosis and monitoring of diseases and practical value of biomarkers derived from metabolomics, as well as determining their appropriate integration into extensive clinical settings.
Collapse
Affiliation(s)
- Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, Pakistan
| |
Collapse
|
18
|
Iqbal H, Ilyas K, Akash MSH, Rehman K, Hussain A, Iqbal J. Real-time fluorescent monitoring of phase I xenobiotic-metabolizing enzymes. RSC Adv 2024; 14:8837-8870. [PMID: 38495994 PMCID: PMC10941266 DOI: 10.1039/d4ra00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
This article explores the intricate landscape of advanced fluorescent probes crafted for the detection and real-time monitoring of phase I xenobiotic-metabolizing enzymes. Employing state-of-the-art technologies, such as fluorescence resonance energy transfer, intramolecular charge transfer, and solid-state luminescence enhancement, this article unfolds a multifaceted approach to unraveling the dynamics of enzymatic processes within living systems. This encompassing study involves the development and application of a diverse range of fluorescent probes, each intricately designed with tailored mechanisms to heighten sensitivity, providing dynamic insights into phase I xenobiotic-metabolizing enzymes. Understanding the role of phase I xenobiotic-metabolizing enzymes in these pathophysiological processes, is essential for both medical research and clinical practice. This knowledge can guide the development of approaches to prevent, diagnose, and treat a broad spectrum of diseases and conditions. This adaptability underscores their potential clinical applications in cancer diagnosis and personalized medicine. Noteworthy are the trifunctional fluorogenic probes, uniquely designed not only for fluorescence-based cellular imaging but also for the isolation of cellular glycosidases. This innovative feature opens novel avenues for comprehensive studies in enzyme biology, paving the way for potential therapeutic interventions. The research accentuates the selectivity and specificity of the probes, showcasing their proficiency in distinguishing various enzymes and their isoforms. The sophisticated design and successful deployment of these fluorescent probes mark significant advancements in enzymology, providing powerful tools for both researchers and clinicians. Beyond their immediate applications, these probes offer illuminating insights into disease mechanisms, facilitating early detection, and catalyzing the development of targeted therapeutic interventions. This work represents a substantial leap forward in the field, promising transformative implications for understanding and addressing complex biological processes. In essence, this research heralds a new era in the development of fluorescent probes, presenting a comprehensive and innovative approach that not only expands the understanding of cellular enzyme activities but also holds great promise for practical applications in clinical settings and therapeutic endeavors.
Collapse
Affiliation(s)
- Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara Okara Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad 22044 Pakistan
| |
Collapse
|
19
|
Reisdorph N, Doenges K, Levens C, Manke J, Armstrong M, Smith H, Quinn K, Radcliffe R, Reisdorph R, Saba L, Kuhn KA. Oral Cannabis consumption and intraperitoneal THC:CBD dosing results in changes in brain and plasma neurochemicals and endocannabinoids in mice. J Cannabis Res 2024; 6:10. [PMID: 38429800 PMCID: PMC10908076 DOI: 10.1186/s42238-024-00219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND While the use of orally consumed Cannabis, cannabidiol (CBD) and tetrahydrocannabinol (THC) containing products, i.e. "edibles", has expanded, the health consequences are still largely unknown. This study examines the effects of oral consumption of whole Cannabis and a complex Cannabis extract on neurochemicals, endocannabinoids (eCB), and physiological parameters (body temperature, heart rate) in mice. METHODS In this pilot study, C57BL/6 J mice were treated with one of the following every other day for 2 weeks: a complex Cannabis extract by gavage, whole Cannabis mixed with nutritional gel through free feeding, or purified THC/CBD by intraperitoneal (i.p.) injection. Treatments were conducted at 4 doses ranging from 0-100 mg/kg/day of CBD with THC levels of ≤ 1.2 mg/kg/day for free feeding and gavage and 10 mg/kg/day for i.p. Body temperature and heart rate were monitored using surgically implanted telemetry devices. Levels of neurochemicals, eCB, THC, CBD, and 11-OH-THC were measured using mass spectrometry 48 h after the final treatment. Statistical comparisons were conducted using ANOVA and t-tests. RESULTS Differences were found between neurochemicals in the brains and plasma of mice treated by i.p. (e.g. dopamine, p < 0.01), gavage (e.g., phenylalanine, p < 0.05) and in mice receiving whole Cannabis (e.g., 3,4-dihydroxyphenylacetic DOPAC p < 0.05). Tryptophan trended downward or was significantly decreased in the brain and/or plasma of all mice receiving Cannabis or purified CBD/THC, regardless of dose, compared to controls. Levels of the eCB, arachidonoyl glycerol (2-AG) were decreased in mice receiving lowest doses of a complex Cannabis extract by gavage, but were higher in mice receiving highest doses compared to controls (p < 0.05). Plasma and brain levels of THC and 11-OH-THC were higher in mice receiving 1:1 THC:CBD by i.p. compared to those receiving 1:5 or 1:10 THC:CBD. Nominal changes in body temperature and heart rate following acute and repeated exposures were seen to some degree in all treatments. CONCLUSIONS Changes to neurochemicals and eCBs were apparent at all doses regardless of treatment type. Levels of neurochemicals seemed to vary based on the presence of a complex Cannabis extract, suggesting a non-linear response between THC and neurochemicals following repeated oral dosing.
Collapse
Affiliation(s)
- Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Katrina Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cassandra Levens
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jon Manke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michael Armstrong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Harry Smith
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laura Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristine A Kuhn
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
20
|
Gupta S, Bharatha A, Cohall D, Rahman S, Haque M, Azim Majumder MA. Aerobic Exercise and Endocannabinoids: A Narrative Review of Stress Regulation and Brain Reward Systems. Cureus 2024; 16:e55468. [PMID: 38440201 PMCID: PMC10910469 DOI: 10.7759/cureus.55468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/06/2024] Open
Abstract
Aerobic exercise is a widely adopted practice, not solely for enhancing fitness and reducing the risk of various diseases but also for its ability to uplift mood and aid in addressing depression and anxiety disorders. Within the scope of this narrative review, we seek to consolidate current insights into the endocannabinoid-mediated regulation of stress and the brain's reward mechanism resulting from engaging in aerobic exercise. A comprehensive search was conducted across Medline, SPORTDiscus, Pubmed, and Scopus, encompassing data available until November 30, 2023. This review indicates that a bout of aerobic exercise, particularly of moderate intensity, markedly augments circulating levels of endocannabinoids - N-arachidonoyl-ethanolamine (AEA) and 2-acylglycerol (2-AG), that significantly contributes to mood elevation and reducing stress in healthy individuals. The current understanding of how aerobic exercise impacts mental health and mood improvement is still unclear. Moderate and high-intensity aerobic exercise modulates stress through a negative feedback mechanism targeting both the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system, thereby facilitating stress regulation crucial role in endocannabinoid synthesis, ultimately culminating in the orchestration of negative feedback across multiple tiers of the HPA axis, coupled with its influence over cortical and subcortical brain structures. The endocannabinoid has been observed to govern the release of neurotransmitters from diverse neuronal populations, implying a universal mechanism that fine-tunes neuronal activity and consequently modulates both emotional and stress-related responses. Endocannabinoids further assume a pivotal function within brain reward mechanisms, primarily mediated by CB1 receptors distributed across diverse cerebral centers. Notably, these endocannabinoids partake in natural reward processes, as exemplified in aerobic exercise, by synergizing with the dopaminergic reward system. The genesis of this reward pathway can be traced to the ventral tegmental area, with dopamine neurons predominantly projecting to the nucleus accumbens, thereby inciting dopamine release in response to rewarding stimuli.
Collapse
Affiliation(s)
- Subir Gupta
- Physiology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Ambadasu Bharatha
- Pharmacology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Damian Cohall
- Pharmacology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Sayeeda Rahman
- Pharmacology, School of Medicine, American University of Integrative Sciences, Bridgetown, BRB
| | - Mainul Haque
- Pharmacology and Therapeutics, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Md Anwarul Azim Majumder
- Medical Education, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| |
Collapse
|
21
|
Darwish A, Pammer M, Gallyas F, Vígh L, Balogi Z, Juhász K. Emerging Lipid Targets in Glioblastoma. Cancers (Basel) 2024; 16:397. [PMID: 38254886 PMCID: PMC10814456 DOI: 10.3390/cancers16020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
GBM accounts for most of the fatal brain cancer cases, making it one of the deadliest tumor types. GBM is characterized by severe progression and poor prognosis with a short survival upon conventional chemo- and radiotherapy. In order to improve therapeutic efficiency, considerable efforts have been made to target various features of GBM. One of the targetable features of GBM is the rewired lipid metabolism that contributes to the tumor's aggressive growth and penetration into the surrounding brain tissue. Lipid reprogramming allows GBM to acquire survival, proliferation, and invasion benefits as well as supportive modulation of the tumor microenvironment. Several attempts have been made to find novel therapeutic approaches by exploiting the lipid metabolic reprogramming in GBM. In recent studies, various components of de novo lipogenesis, fatty acid oxidation, lipid uptake, and prostaglandin synthesis have been considered promising targets in GBM. Emerging data also suggest a significant role hence therapeutic potential of the endocannabinoid metabolic pathway in GBM. Here we review the lipid-related GBM characteristics in detail and highlight specific targets with their potential therapeutic use in novel antitumor approaches.
Collapse
Affiliation(s)
- Ammar Darwish
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Milán Pammer
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ferenc Gallyas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Vígh
- Institute of Biochemistry, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
22
|
Jones MJ, Uzuneser TC, Clement T, Wang H, Ojima I, Rushlow WJ, Laviolette SR. Inhibition of fatty acid binding protein-5 in the basolateral amygdala induces anxiolytic effects and accelerates fear memory extinction. Psychopharmacology (Berl) 2024; 241:119-138. [PMID: 37747506 DOI: 10.1007/s00213-023-06468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
RATIONALE The endocannabinoid (eCB) system critically controls anxiety and fear-related behaviours. Anandamide (AEA), a prominent eCB ligand, is a hydrophobic lipid that requires chaperone proteins such as Fatty Acid Binding Proteins (FABPs) for intracellular transport. Intracellular AEA transport is necessary for degradation, so blocking FABP activity increases AEA neurotransmission. OBJECTIVE To investigate the effects of a novel FABP5 inhibitor (SBFI-103) in the basolateral amygdala (BLA) on anxiety and fear memory. METHODS We infused SBFI-103 (0.5 μg-5 μg) to the BLA of adult male Sprague Dawley rats and ran various anxiety and fear memory behavioural assays, neurophysiological recordings, and localized molecular signaling analyses. We also co-infused SBFI-103 with the AEA inhibitor, LEI-401 (3 μg and 10 μg) to investigate the potential role of AEA in these phenomena. RESULTS Acute intra-BLA administration of SBFI-103 produced strong anxiolytic effects across multiple behavioural tests. Furthermore, animals exhibited acute and long-term accelerated associative fear memory extinction following intra-BLA FABP5 inhibition. In addition, BLA FABP5 inhibition induced strong modulatory effects on putative PFC pyramidal neurons along with significantly increased gamma oscillation power. Finally, we observed local BLA changes in the phosphorylation activity of various anxiety- and fear memory-related molecular biomarkers in the PI3K/Akt and MAPK/Erk signaling pathways. At all three levels of analyses, we found the functional effects of SBFI-103 depend on availability of the AEA ligand. CONCLUSIONS These findings demonstrate a novel intra-BLA FABP5 signaling mechanism regulating anxiety and fear memory behaviours, neuronal activity states, local anxiety-related molecular pathways, and functional AEA modulation.
Collapse
Affiliation(s)
- Matthew J Jones
- Department of Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
| | - Taygun C Uzuneser
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
| | - Timothy Clement
- Institute of Chemical Biology and Drug Discoveries, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
| | - Hehe Wang
- Institute of Chemical Biology and Drug Discoveries, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discoveries, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada.
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada.
- Lawson Health Research Institute, 268 Grosvenor St, London, ON, Canada.
| |
Collapse
|
23
|
Rodríguez-Serrano LM, Chávez-Hernández ME. Role of the CB2 Cannabinoid Receptor in the Regulation of Food Intake: A Systematic Review. Int J Mol Sci 2023; 24:17516. [PMID: 38139344 PMCID: PMC10743788 DOI: 10.3390/ijms242417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The CB2 cannabinoid receptor has been found in brain areas that are part of the reward system and has been shown to play a role in food intake regulation. Herein, we conducted a systematic review of studies assessing the role of the CB2 receptor in food intake regulation. Records from the PubMed, Scopus, and EBSCO databases were screened, resulting in 13 studies that were used in the present systematic review, following the PRISMA guidelines. A risk of bias assessment was carried out using the tool of the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). The studies analyzed used two main strategies: (1) the intraperitoneal or intracerebroventricular administration of a CB2 agonist/antagonist; and (2) depletion of CB2 receptors via knockout in mice. Both strategies are useful in identifying the role of the CB2 receptor in food intake in standard and palatable diets. The conclusions derived from animal models showed that CB2 receptors are necessary for modulating food intake and mediating energy balance.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Serrano
- Facultad de Psicología, Universidad Anáhuac México, Universidad Anáhuac Avenue #46, Lomas Anáhuac, Huixquilucan 52786, Mexico;
| | | |
Collapse
|
24
|
Stachowicz K. Deciphering the mechanisms of reciprocal regulation or interdependence at the cannabinoid CB1 receptors and cyclooxygenase-2 level: Effects on mood, cognitive implications, and synaptic signaling. Neurosci Biobehav Rev 2023; 155:105439. [PMID: 37898448 DOI: 10.1016/j.neubiorev.2023.105439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
The lipid endocannabinoid system refers to endogenous cannabinoids (eCBs), the enzymes involved in their synthesis and metabolism, and the G protein-coupled cannabinoid receptors (GPCRs), CB1, and CB2. CB1 receptors (CB1Rs) are distributed in the brain at presynaptic terminals. Their activation induces inhibition of neurotransmitter release, which are gamma-aminobutyric acid (GABA), glutamate (Glu), dopamine, norepinephrine, serotonin, and acetylcholine. Postsynaptically localized CB1Rs regulate the activity of selected ion channels and N-methyl-D-aspartate receptors (NMDARs). CB2Rs are mainly peripheral and will not be considered here. Anandamide metabolism, mediated by cyclooxygenase-2 (COX-2), generates anandamide-derived prostanoids. In addition, COX-2 regulates the formation of CB1 ligands, which reduce excitatory transmission in the hippocampus (HC). The role of CB1Rs and COX-2 has been described in anxiety, depression, and cognition, among other central nervous system (CNS) disorders, affecting neurotransmission and behavior of the synapses. This review will analyze common pathways, mechanisms, and behavioral effects of manipulation at the CB1Rs/COX-2 level.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacoslogy, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
25
|
Belali R, Mard SA, Khoshnam SE, Bavarsad K, Sarkaki A, Farbood Y. Anandamide improves food intake and orexinergic neuronal activity in the chronic sleep deprivation induction model in rats by modulating the expression of the CB1 receptor in the lateral hypothalamus. Neuropeptides 2023; 101:102336. [PMID: 37290176 DOI: 10.1016/j.npep.2023.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 06/10/2023]
Abstract
Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.
Collapse
Affiliation(s)
- Rafie Belali
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
26
|
Bornscheuer L, Lundin A, Forsell Y, Lavebratt C, Melas PA. Functional Variation in the FAAH Gene Is Directly Associated with Subjective Well-Being and Indirectly Associated with Problematic Alcohol Use. Genes (Basel) 2023; 14:1826. [PMID: 37761966 PMCID: PMC10530831 DOI: 10.3390/genes14091826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) is an enzyme that degrades anandamide, an endocannabinoid that modulates mesolimbic dopamine release and, consequently, influences states of well-being. Despite these known interactions, the specific role of FAAH in subjective well-being remains underexplored. Since well-being is a dynamic trait that can fluctuate over time, we hypothesized that we could provide deeper insights into the link between FAAH and well-being using longitudinal data. To this end, we analyzed well-being data collected three years apart using the WHO (Ten) Well-Being Index and genotyped a functional polymorphism in the FAAH gene (rs324420, Pro129Thr) in a sample of 2822 individuals. We found that the A-allele of rs324420, which results in reduced FAAH activity and elevated anandamide levels, was associated with lower well-being scores at both time points (Wave I, B: -0.52, p = 0.007; Wave II, B: -0.41, p = 0.03, adjusted for age and sex). A subsequent phenome-wide association study (PheWAS) affirmed our well-being findings in the UK Biobank (N = 126,132, alternative C-allele associated with elevated happiness, p = 0.008) and revealed an additional association with alcohol dependence. In our cohort, using lagged longitudinal mediation analyses, we uncovered evidence of an indirect association between rs324420 and problematic alcohol use (AUDIT-P) through the pathway of lower well-being (indirect effect Boot: 0.015, 95% CI [0.003, 0.030], adjusted for AUDIT in Wave I). We propose that chronically elevated anandamide levels might influence disruptions in the endocannabinoid system-a biological contributor to well-being-which could, in turn, contribute to increased alcohol intake, though multiple factors may be at play. Further genetic studies and mediation analyses are needed to validate and extend these findings.
Collapse
Affiliation(s)
- Lisa Bornscheuer
- Department of Public Health Sciences, Stockholm University, 10691 Stockholm, Sweden;
| | - Andreas Lundin
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden; (A.L.); (Y.F.)
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden; (A.L.); (Y.F.)
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden;
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Philippe A. Melas
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| |
Collapse
|
27
|
Best LM, Hendershot CS, Buckman JF, Jagasar S, McPhee MD, Muzumdar N, Tyndale RF, Houle S, Logan R, Sanches M, Kish SJ, Le Foll B, Boileau I. Association Between Fatty Acid Amide Hydrolase and Alcohol Response Phenotypes: A Positron Emission Tomography Imaging Study With [ 11C]CURB in Heavy-Drinking Youth. Biol Psychiatry 2023; 94:405-415. [PMID: 36868890 DOI: 10.1016/j.biopsych.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reductions in fatty acid amide hydrolase (FAAH), the catabolic enzyme for the endocannabinoid anandamide, may play a role in drinking behavior and risk for alcohol use disorder. We tested the hypotheses that lower brain FAAH levels in heavy-drinking youth are related to increased alcohol intake, hazardous drinking, and differential response to alcohol. METHODS FAAH levels in the striatum, prefrontal cortex, and whole brain were determined using positron emission tomography imaging of [11C]CURB in heavy-drinking youth (N = 31; 19-25 years of age). C385A FAAH genotype (rs324420) was determined. Behavioral (n = 29) and cardiovascular (n = 22) responses to alcohol were measured during a controlled intravenous alcohol infusion. RESULTS Lower [11C]CURB binding was not significantly related to frequency of use but was positively associated with hazardous drinking and reduced sensitivity to the negative effects of alcohol. During alcohol infusion, lower [11C]CURB binding related to greater self-reported stimulation and urges and lower sedation (p < .05). Lower heart rate variability was related to both greater alcohol-induced stimulation and lower [11C]CURB binding (p < .05). Family history of alcohol use disorder (n = 14) did not relate to [11C]CURB binding. CONCLUSIONS In line with preclinical studies, lower FAAH in the brain was related to a dampened response to the negative, impairing effects of alcohol, increased drinking urges, and alcohol-induced arousal. Lower FAAH might alter positive or negative effects of alcohol and increase urges to drink, thereby contributing to the addiction process. Determining whether FAAH influences motivation to drink through increased positive/arousing effects of alcohol or greater tolerance should be investigated.
Collapse
Affiliation(s)
- Laura M Best
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christian S Hendershot
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer F Buckman
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey; Center of Alcohol and Substance Use Studies, Rutgers University, New Brunswick, New Jersey
| | - Samantha Jagasar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Matthew D McPhee
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neel Muzumdar
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Renee Logan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marcos Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bernard Le Foll
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Community and Family Medicine, University of Toronto, Toronto, Ontario, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Ontario, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Nayak P, Pantvaidya G, Ranganathan P, Jiwnani S, Joshi S, Gogtay NJ. Clinical studies with Cannabis in India - A need for guidelines for the investigators and ethics committees. Perspect Clin Res 2023; 14:146-151. [PMID: 37554245 PMCID: PMC10405537 DOI: 10.4103/picr.picr_159_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 10/04/2022] [Indexed: 08/10/2023] Open
Abstract
Cannabis is one of the world's oldest cultivated plants and the most commonly used recreational drug worldwide. The plant relevant for medicinal use is Cannabis sativa that has two pharmacologically active ingredients - delta-9-tetrahydrocannabinol that is psychoactive and cannabidiol that does not have psychotropic activity. The policy tapestry of Cannabis has undergone a significant change in the past few decades worldwide. Different countries have diverse policies, ranging from classifying use of Cannabis as illicit, to legalization of its use, both for medicinal and recreational purposes. Cannabis products are approved for use, for instance, in multiple sclerosis and Dravet syndrome (US Food Drug and Administration). Against this backdrop, we find that the knowledge foundations for use of Cannabis in clinical trials in India are still evolving. Conducting ethical research within a clinical trials framework is essential to understand dosing, formulation, shelf life, drug-drug interaction, tolerability, and safety before establishing its utility for various indications. In the absence of guidelines or a regulatory framework for conduct of these studies, the various Institutional Ethics Committees (IECs), which are responsible for reviewing projects related to Cannabis, face unique challenges with respect to the basic requirements. The principal investigators (PIs) are equally strained to find local guidance, recommendations, and literature in support of their application to the respective IEC, thus leading to an impasse and delay in initiating the proposed clinical studies with Cannabis. The present article addresses considerations, questions, and issues that affect the conduct of these clinical studies and recommends mandatory documents and some suggested guidelines for use by both PIs and IECs to take studies with Cannabis forward until such time that an interdisciplinary regulatory framework is firmed up by regulatory authority.
Collapse
Affiliation(s)
- Prakash Nayak
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gouri Pantvaidya
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Priya Ranganathan
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sabita Jiwnani
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Shalaka Joshi
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | | |
Collapse
|
29
|
Gräfe EL, Reid HMO, Shkolnikov I, Conway K, Kit A, Acosta C, Christie BR. Women are Taking the Hit: Examining the Unique Consequences of Cannabis Use Across the Female Lifespan. Front Neuroendocrinol 2023; 70:101076. [PMID: 37217080 DOI: 10.1016/j.yfrne.2023.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Cannabis use has risen dramatically in recent years due to global decriminalization and a resurgence in the interest of potential therapeutic benefits. While emerging research is shaping our understanding of the benefits and harms of cannabis, there remains a paucity of data specifically focused on how cannabis affects the female population. The female experience of cannabis use is unique, both in the societal context and because of the biological ramifications. This is increasingly important given the rise in cannabis potency, as well as the implications this has for the prevalence of Cannabis Use Disorder (CUD). Therefore, this scoping review aims to discuss the prevalence of cannabis use and CUD in women throughout their lifespan and provide a balanced prospective on the positive and negative consequences of cannabis use. In doing so, this review will highlight the necessity for continued research that goes beyond sex differences.
Collapse
Affiliation(s)
- E L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - H M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - I Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - K Conway
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - A Kit
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Acosta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.
| |
Collapse
|
30
|
Arceri L, Nguyen TK, Gibson S, Baker S, Wingert RA. Cannabinoid Signaling in Kidney Disease. Cells 2023; 12:1419. [PMID: 37408253 DOI: 10.3390/cells12101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
Endocannabinoid signaling plays crucial roles in human physiology in the function of multiple systems. The two cannabinoid receptors, CB1 and CB2, are cell membrane proteins that interact with both exogenous and endogenous bioactive lipid ligands, or endocannabinoids. Recent evidence has established that endocannabinoid signaling operates within the human kidney, as well as suggests the important role it plays in multiple renal pathologies. CB1, specifically, has been identified as the more prominent ECS receptor within the kidney, allowing us to place emphasis on this receptor. The activity of CB1 has been repeatedly shown to contribute to both diabetic and non-diabetic chronic kidney disease (CKD). Interestingly, recent reports of acute kidney injury (AKI) have been attributed to synthetic cannabinoid use. Therefore, the exploration of the ECS, its receptors, and its ligands can help provide better insight into new methods of treatment for a range of renal diseases. This review explores the endocannabinoid system, with a focus on its impacts within the healthy and diseased kidney.
Collapse
Affiliation(s)
- Liana Arceri
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Gibson
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sophia Baker
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
31
|
Nikbakhtzadeh M, Ranjbar H, Moradbeygi K, Zahedi E, Bayat M, Soti M, Shabani M. Cross-talk between the HPA axis and addiction-related regions in stressful situations. Heliyon 2023; 9:e15525. [PMID: 37151697 PMCID: PMC10161713 DOI: 10.1016/j.heliyon.2023.e15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Addiction is a worldwide problem that has a negative impact on society by imposing significant costs on health care, public security, and the deactivation of the community economic cycle. Stress is an important risk factor in the development of addiction and relapse vulnerability. Here we review studies that have demonstrated the diverse roles of stress in addiction. Term searches were conducted manually in important reference journals as well as in the Google Scholar and PubMed databases, between 2010 and 2022. In each section of this narrative review, an effort has been made to use pertinent sources. First, we will provide an overview of changes in the Hypothalamus-Pituitary-Adrenal (HPA) axis component following stress, which impact reward-related regions including the ventral tegmental area (VTA) and nucleus accumbens (NAc). Then we will focus on internal factors altered by stress and their effects on drug addiction vulnerability. We conclude that alterations in neuro-inflammatory, neurotrophic, and neurotransmitter factors following stress pathways can impact related mechanisms on craving and relapse susceptibility.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | | | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monavareh Soti
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
- Corresponding author. Neuroscience Research Center, Neuropharmacology institute, Kerman University of Medical Sciences, Kerman, Postal Code: 76198-13159, Iran.
| | - Mohammad Shabani
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
- Corresponding author. Neuroscience Research Center, Neuropharmacology institute, Kerman University of Medical Sciences, Kerman, Postal Code: 76198-13159, Iran.
| |
Collapse
|
32
|
Jîtcă G, Ősz BE, Vari CE, Rusz CM, Tero-Vescan A, Pușcaș A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants (Basel) 2023; 12:antiox12020485. [PMID: 36830042 PMCID: PMC9952814 DOI: 10.3390/antiox12020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The literature provides scientific evidence for the beneficial effects of cannabidiol (CBD), and these effects extend beyond epilepsy treatment (e.g., Lennox-Gastaut and Dravet syndromes), notably the influence on oxidative status, neurodegeneration, cellular protection, cognitive function, and physical performance. However, products containing CBD are not allowed to be marketed everywhere in the world, which may ultimately have a negative effect on health as a result of the uncontrolled CBD market. After the isolation of CBD follows the discovery of CB1 and CB2 receptors and the main enzymatic components (diacylglycerol lipase (DAG lipase), monoacyl glycerol lipase (MAGL), fatty acid amino hydrolase (FAAH)). At the same time, the antioxidant potential of CBD is due not only to the molecular structure but also to the fact that this compound increases the expression of the main endogenous antioxidant systems, superoxide dismutase (SOD), and glutathione peroxidase (GPx), through the nuclear complex erythroid 2-related factor (Nrf2)/Keep1. Regarding the role in the control of inflammation, this function is exercised by inhibiting (nuclear factor kappa B) NF-κB, and also the genes that encode the expression of molecules with a pro-inflammatory role (cytokines and metalloproteinases). The other effects of CBD on cognitive function and physical performance should not be excluded. In conclusion, the CBD market needs to be regulated more thoroughly, given the previously listed properties, with the mention that the safety profile is a very good one.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Amalia Pușcaș
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
33
|
The mechanisms underlying montelukast's neuropsychiatric effects - new insights from a combined metabolic and multiomics approach. Life Sci 2022; 310:121056. [DOI: 10.1016/j.lfs.2022.121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
34
|
Clouse G, Penman S, Hadjiargyrou M, Komatsu DE, Thanos PK. Examining the role of cannabinoids on osteoporosis: a review. Arch Osteoporos 2022; 17:146. [PMID: 36401719 DOI: 10.1007/s11657-022-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE Prior research studies have shown that the endocannabinoid system, influenced by CBD and THC, plays a role in bone remodeling. As both the research on cannabis and use of cannabis continue to grow, novel medicinal uses of both its constituents as well as the whole plant are being discovered. This review examines the role of cannabinoids on osteoporosis, more specifically, the endocannabinoid system and its role in bone remodeling and the involvement of the cannabinoid receptors 1 and 2 in bone health, as well as the effects of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and synthetic cannabinoids on bone. METHODS A comprehensive literature search of online databases including PUBMED was utilized. RESULTS A total of 29 studies investigating the effects of cannabis and/or its constituents as well as the activation or inactivation of cannabinoid receptors 1 and 2 were included and discussed. CONCLUSION While many of the mechanisms are still not yet fully understood, both preclinical and clinical studies show that the effects of cannabis mediated through the endocannabinoid system may prove to be an effective treatment option for individuals with osteoporosis.
Collapse
Affiliation(s)
- Grace Clouse
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David E Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory On Addictions (BNNLA), Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA. .,Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
35
|
Rossi GN, Guerra LTL, Baker GB, Dursun SM, Saiz JCB, Hallak JEC, dos Santos RG. Molecular Pathways of the Therapeutic Effects of Ayahuasca, a Botanical Psychedelic and Potential Rapid-Acting Antidepressant. Biomolecules 2022; 12:1618. [PMID: 36358968 PMCID: PMC9687782 DOI: 10.3390/biom12111618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 03/30/2025] Open
Abstract
Ayahuasca is a psychoactive brew traditionally used in indigenous and religious rituals and ceremonies in South America for its therapeutic, psychedelic, and entheogenic effects. It is usually prepared by lengthy boiling of the leaves of the bush Psychotria viridis and the mashed stalks of the vine Banisteriopsis caapi in water. The former contains the classical psychedelic N,N-dimethyltryptamine (DMT), which is thought to be the main psychoactive alkaloid present in the brew. The latter serves as a source for β-carbolines, known for their monoamine oxidase-inhibiting (MAOI) properties. Recent preliminary research has provided encouraging results investigating ayahuasca's therapeutic potential, especially regarding its antidepressant effects. On a molecular level, pre-clinical and clinical evidence points to a complex pharmacological profile conveyed by the brew, including modulation of serotoninergic, glutamatergic, dopaminergic, and endocannabinoid systems. Its substances also interact with the vesicular monoamine transporter (VMAT), trace amine-associated receptor 1 (TAAR1), and sigma-1 receptors. Furthermore, ayahuasca's components also seem to modulate levels of inflammatory and neurotrophic factors beneficially. On a biological level, this translates into neuroprotective and neuroplastic effects. Here we review the current knowledge regarding these molecular interactions and how they relate to the possible antidepressant effects ayahuasca seems to produce.
Collapse
Affiliation(s)
- Giordano Novak Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Lorena T. L. Guerra
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Glen B. Baker
- National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 3900, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Serdar M. Dursun
- National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 3900, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - José Carlos Bouso Saiz
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- ICEERS Foundation, International Center for Ethnobotanical Education, Research and Services, 08015 Barcelona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, 43001 Tarragona, Spain
| | - Jaime E. C. Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 3900, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Rafael G. dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 3900, Brazil
- ICEERS Foundation, International Center for Ethnobotanical Education, Research and Services, 08015 Barcelona, Spain
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Hospital das Clínicas, Terceiro Andar, Av. Bandeirantes, Ribeirão Preto 3900, Brazil
| |
Collapse
|
36
|
Zou G, Xia J, Luo H, Xiao D, Jin J, Miao C, Zuo X, Gao Q, Zhang Z, Xue T, You Y, Zhang Y, Zhang L, Xiong W. Combined alcohol and cannabinoid exposure leads to synergistic toxicity by affecting cerebellar Purkinje cells. Nat Metab 2022; 4:1138-1149. [PMID: 36109623 DOI: 10.1038/s42255-022-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Combined use of cannabis and alcohol results in greater psychoactive toxicity than either substance alone, but the underlying central mechanisms behind this worsened outcome remain unclear. Here we show that the synergistic effect of Δ9-tetrahydrocannabinol (THC) and ethanol on motor incoordination in mice is achieved by activating presynaptic type 1 cannabinoid receptors (CB1R) and potentiating extrasynaptic glycine receptors (GlyR) within cerebellar Purkinje cells (PCs). The combination of ethanol and THC significantly reduces miniature excitatory postsynaptic current frequency in a CB1R-dependent manner, while increasing the extrasynaptic GlyR-mediated chronic chloride current, both leading to decreased PC activity. Ethanol enhances THC actions by boosting the blood-brain-barrier permeability of THC and enriching THC in the cell membrane. Di-desoxy-THC, a designed compound that specifically disrupts THC-GlyR interaction without affecting the basic functions of CB1R and GlyR, is able to restore PC function and motor coordination in mice. Our findings provide potential therapeutic strategies for overcoming the synergistic toxicity caused by combining cannabis and alcohol use.
Collapse
Affiliation(s)
- Guichang Zou
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Jing Xia
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Heyi Luo
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Xiao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jin Jin
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenjian Miao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Zuo
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianqian Gao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xue
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Wei Xiong
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, China.
| |
Collapse
|
37
|
Lomas T, Bartels M, Van De Weijer M, Pluess M, Hanson J, VanderWeele TJ. The Architecture of Happiness. EMOTION REVIEW 2022. [DOI: 10.1177/17540739221114109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Happiness is an increasingly prominent topic of interest across academia. However, relatively little attention has been paid to how it is created, especially not in a multidimensional sense. By ‘created’ we do not mean its influencing factors, for which there is extensive research, but how it actually forms in the person. The work that has been done in this arena tends to focus on physiological dynamics, which are certainly part of the puzzle. But they are not the whole picture, with psychological, phenomenological, and socio cultural processes also playing their part. As a result, this paper offers a multidimensional overview of scholarship on the ‘architecture’ of happiness, providing a stimulus for further work into this important topic.
Collapse
|
38
|
Meah F, Lundholm M, Emanuele N, Amjed H, Poku C, Agrawal L, Emanuele MA. The effects of cannabis and cannabinoids on the endocrine system. Rev Endocr Metab Disord 2022; 23:401-420. [PMID: 34460075 DOI: 10.1007/s11154-021-09682-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 01/24/2023]
Abstract
With the increase in cannabis use due to policy changes and areas of decriminalization, it is important to recognize the potential impact of these substances on endocrine processes. Cannabinoids have many effects by activating the endocannabinoid system. This system plays a role in the normal functioning of nearly every organ and consists of the body's natural endocannabinoids, the cannabinoid receptors, and the enzymes and processes that regulate endocannabinoids. Exogenous cannabinoids such as Δ9-tetrahydrocannabinol (THC) are known to act through cannabinoid type 1 and 2 receptors, and have been shown to mimic endocannabinoid signaling and affect receptor expression. This review summarizes the known impacts of cannabis on thyroid, adrenal, and gonadal function in addition to glucose control, lipids, and bone metabolism, including: reduced female fertility, increased risk of adverse pregnancy outcomes, reduced sperm counts and function, lower thyroid hormone levels with acute use, blunting of stress response with chronic use, increased risk of prediabetes but lower risk of diabetes, suggested improvement of high density lipoproteins and triglycerides, and modest increase in fracture risk. The known properties of endocannabinoids, animal data, population data, and the possible benefits and concerns of cannabinoid use on hormonal function are discussed. The interconnectivity of the endocrine and endocannabinoid systems suggests opportunities for future therapeutic modalities which are an area of active investigation.
Collapse
Affiliation(s)
- Farah Meah
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Michelle Lundholm
- Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Nicholas Emanuele
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Hafsa Amjed
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA
| | - Caroline Poku
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA
| | - Lily Agrawal
- Endocrinology Section, Medical Service, VA Hospital, Hines, Illinois, USA
| | - Mary Ann Emanuele
- Department of Medicine, Division of Endocrinology, Loyola University Health Care System, Maywood, Illinois, USA.
| |
Collapse
|
39
|
Fonnesu R, Thunuguntla VBSC, Veeramachaneni GK, Bondili JS, La Rocca V, Filipponi C, Spezia PG, Sidoti M, Plicanti E, Quaranta P, Freer G, Pistello M, Mathai ML, Lai M. Palmitoylethanolamide (PEA) Inhibits SARS-CoV-2 Entry by Interacting with S Protein and ACE-2 Receptor. Viruses 2022; 14:1080. [PMID: 35632821 PMCID: PMC9146540 DOI: 10.3390/v14051080] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 01/08/2023] Open
Abstract
Lipids play a crucial role in the entry and egress of viruses, regardless of whether they are naked or enveloped. Recent evidence shows that lipid involvement in viral infection goes much further. During replication, many viruses rearrange internal lipid membranes to create niches where they replicate and assemble. Because of the close connection between lipids and inflammation, the derangement of lipid metabolism also results in the production of inflammatory stimuli. Due to its pivotal function in the viral life cycle, lipid metabolism has become an area of intense research to understand how viruses seize lipids and to design antiviral drugs targeting lipid pathways. Palmitoylethanolamide (PEA) is a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that also counteracts SARS-CoV-2 entry and its replication. Our work highlights for the first time the antiviral potency of PEA against SARS-CoV-2, exerting its activity by two different mechanisms. First, its binding to the SARS-CoV-2 S protein causes a drop in viral infection of ~70%. We show that this activity is specific for SARS-CoV-2, as it does not prevent infection by VSV or HSV-2, other enveloped viruses that use different glycoproteins and entry receptors to mediate their entry. Second, we show that in infected Huh-7 cells, treatment with PEA dismantles lipid droplets, preventing the usage of these vesicular bodies by SARS-CoV-2 as a source of energy and protection against innate cellular defenses. This is not surprising since PEA activates PPAR-α, a transcription factor that, once activated, generates a cascade of events that leads to the disruption of fatty acid droplets, thereby bringing about lipid droplet degradation through β-oxidation. In conclusion, the present work demonstrates a novel mechanism of action for PEA as a direct and indirect antiviral agent against SARS-CoV-2. This evidence reinforces the notion that treatment with this compound might significantly impact the course of COVID-19. Indeed, considering that the protective effects of PEA in COVID-19 are the current objectives of two clinical trials (NCT04619706 and NCT04568876) and given the relative lack of toxicity of PEA in humans, further preclinical and clinical tests will be needed to fully consider PEA as a promising adjuvant therapy in the current COVID-19 pandemic or against emerging RNA viruses that share the same route of replication as coronaviruses.
Collapse
Affiliation(s)
- Rossella Fonnesu
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| | | | - Ganesh Kumar Veeramachaneni
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India; (G.K.V.); (J.S.B.)
| | - Jayakumar Singh Bondili
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India; (G.K.V.); (J.S.B.)
| | - Veronica La Rocca
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| | - Carolina Filipponi
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| | - Pietro Giorgio Spezia
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| | - Maria Sidoti
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| | - Erika Plicanti
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| | - Paola Quaranta
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| | - Giulia Freer
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| | - Michael Lee Mathai
- Institute of Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (V.B.S.C.T.); (M.L.M.)
| | - Michele Lai
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy; (R.F.); (V.L.R.); (C.F.); (P.G.S.); (M.S.); (E.P.); (P.Q.); (G.F.); (M.P.)
| |
Collapse
|
40
|
Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl) 2022; 239:1157-1177. [PMID: 33644820 PMCID: PMC9110536 DOI: 10.1007/s00213-021-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. AIMS We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. METHODS This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis RESULTS: There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. CONCLUSIONS There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK.
| |
Collapse
|
41
|
Smith AP, Lindeque JZ, van der Walt MM. Untargeted Metabolomics Reveals the Potential Antidepressant Activity of a Novel Adenosine Receptor Antagonist. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072094. [PMID: 35408500 PMCID: PMC9000263 DOI: 10.3390/molecules27072094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022]
Abstract
Depression is the most common mental illness, affecting approximately 4.4% of the global population. Despite many available treatments, some patients exhibit treatment-resistant depression. Thus, the need to develop new and alternative treatments cannot be overstated. Adenosine receptor antagonists have emerged as a promising new class of antidepressants. The current study investigates a novel dual A1/A2A adenosine receptor antagonist, namely 2-(3,4-dihydroxybenzylidene)-4-methoxy-2,3-dihydro-1H-inden-1-one (1a), for antidepressant capabilities by determining its metabolic profiles and comparing them to those of two reference compounds (imipramine and KW-6002). The metabolic profiles were obtained by treating male Sprague-Dawley rats with 1a and the reference compounds and subjecting them to the forced swim test. Serum and brain material was consequently collected from the animals following euthanasia, after which the metabolites were extracted and analyzed through untargeted metabolomics using both 1H-NMR and GC-TOFMS. The current study provides insight into compound 1a's metabolic profile. The metabolic profile of 1a was similar to those of the reference compounds. They potentially exhibit their antidepressive capabilities via downstream effects on amino acid and lipid metabolism.
Collapse
|
42
|
Fradkin SI, Silverstein SM. Resistance to Depth Inversion Illusions: A Biosignature of Psychosis with Potential Utility for Monitoring Positive Symptom Emergence and Remission in Schizophrenia. Biomark Neuropsychiatry 2022. [DOI: 10.1016/j.bionps.2022.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Karimi-Haghighi S, Razavi Y, Iezzi D, Scheyer AF, Manzoni O, Haghparast A. Cannabidiol and substance use disorder: Dream or reality. Neuropharmacology 2022; 207:108948. [PMID: 35032495 PMCID: PMC9157244 DOI: 10.1016/j.neuropharm.2022.108948] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the major constituents of Cannabis sativa L. that lacks psychotomimetic and rewarding properties and inhibits the rewarding and reinforcing effects of addictive drugs such as cocaine, methamphetamine (METH), and morphine. Additionally, CBD's safety profile and therapeutic potential are currently evaluated in several medical conditions, including pain, depression, movement disorders, epilepsy, multiple sclerosis, Alzheimer's disease, ischemia, and substance use disorder. There is no effective treatment for substance use disorders such as addiction, and this review aims to describe preclinical and clinical investigations into the effects of CBD in various models of opioid, psychostimulant, cannabis, alcohol, and nicotine abuse. Furthermore, the possible mechanisms underlying the therapeutic potential of CBD on drug abuse disorders are reviewed. METHODS The current review considers and summarizes the preclinical and clinical investigations into CBD's effects in various models of drug abuse include opioids, psychostimulants, cannabis, alcohol, and nicotine. RESULTS Several preclinical and clinical studies have proposed that CBD may be a reliable agent to inhibit the reinforcing and rewarding impact of drugs. CONCLUSIONS While the currently available evidence converges to suggest that CBD could effectively reduce the rewarding and reinforcing effects of addictive drugs, more preclinical and clinical studies are needed before CBD can be added to the therapeutic arsenal for treating addiction.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Razavi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Iezzi
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Andrew F Scheyer
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Olivier Manzoni
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Zanfirescu A, Nitulescu G, Mihai DP, Nitulescu GM. Identifying FAAH Inhibitors as New Therapeutic Options for the Treatment of Chronic Pain through Drug Repurposing. Pharmaceuticals (Basel) 2021; 15:38. [PMID: 35056095 PMCID: PMC8781999 DOI: 10.3390/ph15010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/29/2023] Open
Abstract
Chronic pain determines a substantial burden on individuals, employers, healthcare systems, and society. Most of the affected patients report dissatisfaction with currently available treatments. There are only a few and poor therapeutic options-some therapeutic agents are an outgrowth of drugs targeting acute pain, while others have several serious side effects. One of the primary degradative enzymes for endocannabinoids, fatty acid amide hydrolase (FAAH) attracted attention as a significant molecular target for developing new therapies for neuropsychiatric and neurological diseases, including chronic pain. Using chemical graph mining, quantitative structure-activity relationship (QSAR) modeling, and molecular docking techniques we developed a multi-step screening protocol to identify repurposable drugs as FAAH inhibitors. After screening the DrugBank database using our protocol, 273 structures were selected, with five already approved drugs, montelukast, repaglinide, revefenacin, raloxifene, and buclizine emerging as the most promising repurposable agents for treating chronic pain. Molecular docking studies indicated that the selected compounds interact with the enzyme mostly non-covalently (except for revefenacin) through shape complementarity to the large substrate-binding pocket in the active site. A molecular dynamics simulation was employed for montelukast and revealed stable interactions with the enzyme. The biological activity of the selected compounds should be further confirmed by employing in vitro and in vivo studies.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Georgiana Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dragos Paul Mihai
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
45
|
de Ceglia M, Decara J, Gaetani S, Rodríguez de Fonseca F. Obesity as a Condition Determined by Food Addiction: Should Brain Endocannabinoid System Alterations Be the Cause and Its Modulation the Solution? Pharmaceuticals (Basel) 2021; 14:ph14101002. [PMID: 34681224 PMCID: PMC8538206 DOI: 10.3390/ph14101002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is a complex disorder, and the number of people affected is growing every day. In recent years, research has confirmed the hypothesis that food addiction is a determining factor in obesity. Food addiction is a behavioral disorder characterized by disruptions in the reward system in response to hedonic eating. The endocannabinoid system (ECS) plays an important role in the central and peripheral control of food intake and reward-related behaviors. Moreover, both obesity and food addiction have been linked to impairments in the ECS function in various brain regions integrating peripheral metabolic signals and modulating appetite. For these reasons, targeting the ECS could be a valid pharmacological therapy for these pathologies. However, targeting the cannabinoid receptors with inverse agonists failed when used in clinical contexts as a consequence of the induction of affective disorders. In this context, new classes of drugs acting either on CB1 and/or CB2 receptors or on synthetic and degradation enzymes of endogenous cannabinoids are being studied. However, further investigation is necessary to find safe and effective treatments that can exert anti-obesity effects, normalizing reward-related behaviors without causing important adverse mood effects.
Collapse
Affiliation(s)
- Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| | - Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
- Correspondence: (M.d.C.); (F.R.d.F.)
| |
Collapse
|
46
|
Guschina IA, Ninkina N, Roman A, Pokrovskiy MV, Buchman VL. Triple-Knockout, Synuclein-Free Mice Display Compromised Lipid Pattern. Molecules 2021; 26:3078. [PMID: 34064018 PMCID: PMC8196748 DOI: 10.3390/molecules26113078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies have implicated synucleins in several reactions during the biosynthesis of lipids and fatty acids in addition to their recognised role in membrane lipid binding and synaptic functions. These are among aspects of decreased synuclein functions that are still poorly acknowledged especially in regard to pathogenesis in Parkinson's disease. Here, we aimed to add to existing knowledge of synuclein deficiency (i.e., the lack of all three family members), with respect to changes in fatty acids and lipids in plasma, liver, and two brain regions in triple synuclein-knockout (TKO) mice. We describe changes of long-chain polyunsaturated fatty acids (LCPUFA) and palmitic acid in liver and plasma, reduced triacylglycerol (TAG) accumulation in liver and non-esterified fatty acids in plasma of synuclein free mice. In midbrain, we observed counterbalanced changes in the relative concentrations of phosphatidylcholine (PC) and cerebrosides (CER). We also recorded a notable reduction in ethanolamine plasmalogens in the midbrain of synuclein free mice, which is an important finding since the abnormal ether lipid metabolism usually associated with neurological disorders. In summary, our data demonstrates that synuclein deficiency results in alterations of the PUFA synthesis, storage lipid accumulation in the liver, and the reduction of plasmalogens and CER, those polar lipids which are principal compounds of lipid rafts in many tissues. An ablation of all three synuclein family members causes more profound changes in lipid metabolism than changes previously shown to be associated with γ-synuclein deficiency alone. Possible mechanisms by which synuclein deficiency may govern the reported modifications of lipid metabolism in TKO mice are proposed and discussed.
Collapse
Affiliation(s)
- Irina A. Guschina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Andrei Roman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Mikhail V. Pokrovskiy
- Research Institute of Living Systems Pharmacology, Belgorod State National Research University, 85 Pobedy Street, Belgorod 308015, Belgorod Oblast, Russia;
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|
47
|
The endocannabinoid system in humans: significant associations between anandamide, brain function during reward feedback and a personality measure of reward dependence. Neuropsychopharmacology 2021; 46:1020-1027. [PMID: 33007775 PMCID: PMC8114914 DOI: 10.1038/s41386-020-00870-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/24/2023]
Abstract
Preclinical evidence indicates that the endocannabinoid system is involved in neural responses to reward. This study aimed to investigate associations between basal serum concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) with brain functional reward processing. Additionally, a personality measure of reward dependence was obtained. Brain functional data were obtained of 30 right-handed adults by conducting fMRI at 3 Tesla using a reward paradigm. Reward dependence was obtained using the subscale reward dependence of the Tridimensional Personality Questionnaire (TPQ). Basal concentrations of AEA and 2-AG were determined in serum. Analyzing the fMRI data, for AEA and 2-AG ANCOVAs were calculated using a full factorial model, with condition (reward > control, loss > control) and concentrations for AEA and 2-AG as factors. Regression analyses were conducted for AEA and 2-AG on TPQ-RD scores. A whole-brain analysis showed a significant interaction effect of AEA concentration by condition (positive vs. negative) within the putamen (x = 26, y = 16, z = -8, F13.51, TFCE(1, 54) = 771.68, k = 70, PFWE = 0.044) resulting from a positive association of basal AEA concentrations and putamen activity to rewarding stimuli, while this association was absent in the loss condition. AEA concentrations were significantly negatively correlated with TPQ reward dependence scores (rspearman = -0.56, P = 0.001). These results show that circulating AEA may modulate brain activation during reward feedback and that the personality measure reward dependence is correlated with AEA concentrations in healthy human volunteers. Future research is needed to further characterize the nature of the lipids' influence on reward processing, the impact on reward anticipation and outcome, and on vulnerability for psychiatric disorders.
Collapse
|
48
|
Best LM, Wardell JD, Tyndale RF, McPhee MD, Le Foll B, Kish SJ, Boileau I, Hendershot CS. Association of the Fatty Acid Amide Hydrolase C385A Polymorphism With Alcohol Use Severity and Coping Motives in Heavy‐Drinking Youth. Alcohol Clin Exp Res 2021; 45:507-517. [DOI: 10.1111/acer.14552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Laura M. Best
- Brain Health Imaging Centre Centre for Addiction and Mental Health Toronto ON Canada
- Institute of Medical Sciences University of Toronto Toronto ON Canada
| | - Jeffrey D. Wardell
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health Toronto ON Canada
- Department of Psychiatry University of Toronto Toronto ON Canada
- Institute for Mental Health Policy Research Centre for Addiction and Mental Health Toronto ON Canada
- Department of Psychology York University Toronto ON Canada
| | - Rachel F. Tyndale
- Brain Health Imaging Centre Centre for Addiction and Mental Health Toronto ON Canada
- Institute of Medical Sciences University of Toronto Toronto ON Canada
- Department of Psychiatry University of Toronto Toronto ON Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto ON Canada
| | | | - Bernard Le Foll
- Brain Health Imaging Centre Centre for Addiction and Mental Health Toronto ON Canada
- Institute of Medical Sciences University of Toronto Toronto ON Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health Toronto ON Canada
- Department of Psychiatry University of Toronto Toronto ON Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto ON Canada
| | - Stephen J. Kish
- Brain Health Imaging Centre Centre for Addiction and Mental Health Toronto ON Canada
- Institute of Medical Sciences University of Toronto Toronto ON Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health Toronto ON Canada
- Department of Psychiatry University of Toronto Toronto ON Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto ON Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre Centre for Addiction and Mental Health Toronto ON Canada
- Institute of Medical Sciences University of Toronto Toronto ON Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health Toronto ON Canada
- Department of Psychiatry University of Toronto Toronto ON Canada
| | - Christian S. Hendershot
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health Toronto ON Canada
- Department of Psychiatry University of Toronto Toronto ON Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto ON Canada
- Department of Psychology University of Toronto Toronto ON Canada
| |
Collapse
|
49
|
Ferrara MS. Peak-experience and the entheogenic use of cannabis in world religions. JOURNAL OF PSYCHEDELIC STUDIES 2021. [DOI: 10.1556/2054.2020.00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractThis paper demonstrates that cannabis can evoke “peak-experiences”—the name psychologist Abraham Maslow gave to fleeting moments of expanded perception indicative of self-transcendence—when used alongside more traditional religious practices such as meditation, fasting, contemplative prayer, and sacramental ritual. For that reason, religious seekers around the globe have deployed cannabis as a deliberate psychoactive to trigger the peak-experiences that stir feelings of ecstasy, wonder, and awe and resolve the “dichotomies, polarities, and conflicts of life.” As such, peak-experiences exemplify a form of spiritual revelation that has played a pivotal role in the history of religion, and because of its ability to elicit unitive consciousness at the heart of mystical insight, cannabis has been utilized as a mild entheogen across culture and tradition for millennia.
Collapse
Affiliation(s)
- Mark S. Ferrara
- State University of New York, 108 Ravine Parkway, Oneonta, NY, 13820, USA
| |
Collapse
|
50
|
Charalambous C, Lapka M, Havlickova T, Syslova K, Sustkova-Fiserova M. Alterations in Rat Accumbens Dopamine, Endocannabinoids and GABA Content During WIN55,212-2 Treatment: The Role of Ghrelin. Int J Mol Sci 2020; 22:ijms22010210. [PMID: 33379212 PMCID: PMC7795825 DOI: 10.3390/ijms22010210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
The endocannabinoid/CB1R system as well as the central ghrelin signalling with its growth hormone secretagogoue receptors (GHS-R1A) are importantly involved in food intake and reward/reinforcement processing and show distinct overlaps in distribution within the relevant brain regions including the hypothalamus (food intake), the ventral tegmental area (VTA) and the nucleus accumbens (NAC) (reward/reinforcement). The significant mutual interaction between these systems in food intake has been documented; however, the possible role of ghrelin/GHS-R1A in the cannabinoid reinforcement effects and addiction remain unclear. Therefore, the principal aim of the present study was to investigate whether pretreatment with GHS-R1A antagonist/JMV2959 could reduce the CB1R agonist/WIN55,212-2–induced dopamine efflux in the nucleus accumbens shell (NACSh), which is considered a crucial trigger impulse of the addiction process. The synthetic aminoalklylindol cannabinoid WIN55,212-2 administration into the posterior VTA induced significant accumbens dopamine release, which was significantly reduced by the 3 mg/kg i.p. JMV2959 pretreatment. Simultaneously, the cannabinoid-increased accumbens dopamine metabolic turnover was significantly augmented by the JMV2959 pretreament. The intracerebral WIN55,212-2 administration also increased the endocannabinoid arachidonoylethanolamide/anandamide and the 2-arachidonoylglycerol/2-AG extracellular levels in the NACSh, which was moderately but significantly attenuated by the JMV2959 pretreatment. Moreover, the cannabinoid-induced decrease in accumbens γ-aminobutyric acid/gamma-aminobutyric acid levels was reversed by the JMV2959 pretreatment. The behavioural study in the LABORAS cage showed that 3 mg/kg JMV2959 pretreatment also significantly reduced the systemic WIN55,212-2-induced behavioural stimulation. Our results demonstrate that the ghrelin/GHS-R1A system significantly participates in the rewarding/reinforcing effects of the cannabinoid/CB1 agonist that are involved in cannabinoid addiction processing.
Collapse
Affiliation(s)
- Chrysostomos Charalambous
- Department of Addictology, First Faculty of Medicine, Charles University, Apolinarska 4, 128 00 Prague 2, Czech Republic;
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (M.L.); (T.H.)
| | - Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (M.L.); (T.H.)
| | - Kamila Syslova
- Laboratory of Medicinal Diagnostics, Department of Organic Technology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic;
| | - Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 34 Prague 10, Czech Republic; (M.L.); (T.H.)
- Correspondence: ; Tel.: +420-267-102-450; Fax: +420-267-102-461
| |
Collapse
|