1
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Chu A, Wei W, Liu N, Zhang F, Zhang X, Li X, Zheng R, Ma Z, Li Y, Rong S, Zhong Y. Therapeutic effects of Kangxian Yanshen formula on patients with chronic kidney disease stages 3-4: a retrospective cohort study. Front Med (Lausanne) 2024; 11:1450561. [PMID: 39380733 PMCID: PMC11458470 DOI: 10.3389/fmed.2024.1450561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Background This study retrospectively evaluated the actual efficacy of Kangxian Yanshen Formula Chinese medicine on renal function-related indicators in chronic kidney disease (CKD) stage 3-4 patients. Methods In this retrospective cohort study, we collected 212 adult CKD patients with baseline estimated glomerular filtration rate (eGFR) of 15-60 ml/min/1.73 m2. All participants received usual care (i.e., Western medications), and participants in the exposure group (n = 109) were additionally prescribed Kangxian Yanshen Formula Chinese medicine. The primary outcome was an adjusted hazard risk and 95% confidence interval (95% CI) of a 30% decrease in eGFR at month 36 from baseline. Results In terms of eGFR, among participants treated with additional Kangxian Yanshen Formula, after adjusting for covariates, there was a 57.1% reduction in the risk of a 30% decline from baseline in eGFR among participants in the Kangxian Yanshen Formula group compared with the Western medicine group (adjusted hazard risk: 0.429; 95% CI 0.269-0.682). In addition, participants in the Kangxian Yanshen Formula group had a significantly higher change in eGFR from baseline to month 12 than those in the western medicine group (3.40 ± 11.62 versus -3.87 ± 8.39; between-group difference Δ5.61 [± 2.26 standard deviation] mL/min/1.73 m2; P = 0.014). Participants in both groups showed a decreasing trend in eGFR at months 24 and 36. Conclusion In patients with stage 3-4 CKD, Kangxian Yanshen Formula Chinese medicine therapy may help delay eGFR decline, but high-quality randomized controlled trials are needed to validate the results further.
Collapse
Affiliation(s)
- Aojiao Chu
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenqian Wei
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Ni Liu
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Zhang
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwen Zhang
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zheng
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifang Ma
- Shanghai Fengxian District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yi Li
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Abdelfattah AM, Mohammed ZA, Talaat A, Samy W, Eldesoqui M, Elgarhi RI. A PDE1 inhibitor, vinpocetine, ameliorates epithelial-mesenchymal transition and renal fibrosis in adenine-induced chronic kidney injury in rats by targeting the DNMT1/Klotho/β-catenin/Snail 1 and MMP-7 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03393-0. [PMID: 39276250 DOI: 10.1007/s00210-024-03393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
Tubulointerstitial fibrosis (TIF) is present with chronic kidney disease (CKD). Vinpocetine (Vinpo) is used for treating cerebrovascular deficits, exhibiting some kidney-beneficial effects; however, its role in TIF is uncertain. So, the aim of this study was to investigate its potential impact on adenine-induced fibrotic CKD and explore the underlying mechanistic aspects. Eighteen male Wistar rats were categorized into three groups (n = 6 each). Group I was kept as controls and given saline; group II received adenine (300 mg/kg, twice weekly, i.p.) for induction of the CKD model; and group III was administered Vinpo (20 mg/kg/d, orally) concurrently with adenine. All treatments were administered for 4 weeks. Vinpo revealed an improvement in renal function and an alleviation of inflammation triggered by adenine via diminishing serum tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels. Further, Vinpo repressed the epithelial-mesenchymal transition (EMT) with preserved E-cadherin mRNA expression and lowered gene and immune expression of fibronectin and vimentin, respectively, besides attenuating the elevated G2/M arrest-related molecules (renal Ki67 protein contents and p21 gene expression). Renal pathological alterations caused by adenine were attenuated upon Vinpo administration. Interestingly, Vinpo suppressed abnormal renal β-catenin immunoreactivity, Snail 1, and MMP-7 gene expression while simultaneously restored Klotho protein expression by downregulating DNA methyltransferase 1 enzyme (DNMT1) protein expression in the kidney. These data indicated that Vinpo effectively mitigated EMT and G2/M arrest-induced renal fibrosis in adenine-induced CKD rats by targeting DNMT1-associated Klotho suppression, subsequently inhibiting β-catenin and its fibrotic downstream genes.
Collapse
Affiliation(s)
| | - Zeinab A Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Aliaa Talaat
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Reham I Elgarhi
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
4
|
Zhao X, Han D, Zhao C, Yang F, Wang Z, Gao Y, Jin M, Tao R. New insights into the role of Klotho in inflammation and fibrosis: molecular and cellular mechanisms. Front Immunol 2024; 15:1454142. [PMID: 39308872 PMCID: PMC11412887 DOI: 10.3389/fimmu.2024.1454142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
As the body's defense mechanism against damage and infection, the inflammatory response is a pathological process that involves a range of inflammatory cells and cytokines. A healthy inflammatory response helps the body repair by eliminating dangerous irritants. However, tissue fibrosis can result from an overly intense or protracted inflammatory response. The anti-aging gene Klotho suppresses oxidation, delays aging, and fosters development of various organs. Numerous investigations conducted in the last few years have discovered that Klotho expression is changed in a variety of clinical diseases and is strongly linked to the course and outcome of a disease. Klotho functions as a co-receptor for FGF and as a humoral factor that mediates intracellular signaling pathways such as transforming growth factor β (TGF-β), toll-like receptors (TLRs), nuclear factor-kappaB (NF-κB), renin -angiotensin system (RAS), and mitogen-activated protein kinase (MAPK). It also interferes with the phenotype and function of inflammatory cells, such as monocytes, macrophages, T cells, and B cells. Additionally, it regulates the production of inflammatory factors. This article aims to examine Klotho's scientific advances in terms of tissue fibrosis and the inflammatory response in order to provide novel therapy concepts for fibrotic and inflammatory disorders.
Collapse
Affiliation(s)
- Xinyue Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Donghe Han
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Chun Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Fengfan Yang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Zhimei Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Yujiao Gao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Meihua Jin
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Li XJ, Wang YN, Wang WF, Nie X, Miao H, Zhao YY. Barleriside A, an aryl hydrocarbon receptor antagonist, ameliorates podocyte injury through inhibiting oxidative stress and inflammation. Front Pharmacol 2024; 15:1386604. [PMID: 39239643 PMCID: PMC11374728 DOI: 10.3389/fphar.2024.1386604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Increasing evidence shows that hyperactive aryl hydrocarbon receptor (AHR) signalling is involved in renal disease. However, no currently available intervention strategy is effective in halting disease progression by targeting the AHR signalling. Our previous study showed that barleriside A (BSA), a major component of Plantaginis semen, exhibits renoprotective effects. Methods In this study, we determined the effects of BSA on AHR expression in 5/6 nephrectomized (NX) rats. We further determined the effect of BSA on AHR, nuclear factor kappa B (NF-ƙB), and the nuclear factor erythroid 2-related factor 2 (Nrf2) signalling cascade in zymosan-activated serum (ZAS)-stimulated MPC5 cells. Results BSA treatment improved renal function and inhibited intrarenal nuclear AHR protein expression in NX-treated rats. BSA mitigated podocyte lesions and suppressed AHR mRNA and protein expression in ZAS-stimulated MPC5 cells. BSA inhibited inflammation by improving the NF-ƙB and Nrf2 pathways in ZAS-stimulated MPC5 cells. However, BSA did not markedly upregulate the expression of podocyte-specific proteins in the ZAS-mediated MPC5 cells treated with CH223191 or AHR siRNA compared to untreated ZAS-induced MPC5 cells. Similarly, the inhibitory effects of BSA on nuclear NF-ƙB p65, Nrf2, and AHR, as well as cytoplasmic cyclooxygenase-2, heme oxygenase-1, and AHR, were partially abolished in ZAS-induced MPC5 cells treated with CH223191 or AHRsiRNA compared with untreated ZAS-induced MPC5 cells. These results indicated that BSA attenuated the inflammatory response, partly by inhibiting AHR signalling. Discussion Both pharmacological and siNRA findings suggested that BSA mitigated podocyte lesions by improving the NF-ƙB and Nrf2 pathways via inhibiting AHR signalling. Therefore, BSA is a high-affinity AHR antagonist that abolishes oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wen-Feng Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoli Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Zhang Y, Yu C, Li X. Kidney Aging and Chronic Kidney Disease. Int J Mol Sci 2024; 25:6585. [PMID: 38928291 PMCID: PMC11204319 DOI: 10.3390/ijms25126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Fan J, Liu X, Guo SW. Hypermethylation of Klotho and Peroxisome Proliferator-Activated Receptor γ Concomitant with Overexpression of DNA Methyltransferase 1 in Adenomyosis. Reprod Sci 2024:10.1007/s43032-024-01599-4. [PMID: 38816595 DOI: 10.1007/s43032-024-01599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Cellular senescence is known to be involved in tissue repair, but its role in adenomyosis remains unclear. This study was tasked to evaluate the expression of Klotho, a well-known aging-suppressing protein, as well as PPARγ and DNMT1 in adenomyotic lesions (AD) in comparison with that of control endometrium (CT). We performed immunohistochemistry analysis of markers of cellular senescence p16 and p21, along with Klotho, PPARγ and DNMT1 in CT and AD samples, followed by the quantification of gene expression of Klotho, PPARγ and DNMT1 in epithelial organoids derived from AD and CT samples and methylation-specific PCR to evaluate promoter methylation status. The effect of forced expression and knockdown of DNMT1 on Klotho and PPARγ expression in ectopic endometrial epithelial cells was evaluated. We found that both p16 and p21 immunoreactivity in AD was significantly higher while that of Klotho and PPARγ was significantly lower than CT samples, which was concomitant with elevated immunoexpression of DNMT1. The results were confirmed by transcriptional analysis using epithelial organoids derived from AD and CT samples. In addition, the promoter regions of both Klotho and PPARγ genes were hypermethylated in AD as compared with CT, and treatment with HDAC and DNMT inhibitors reactivated the expression of both Klotho and PPARγ. Forced expression of DNMT1 resulted in downregulation of both Klotho and PPARγ but its knockdown increased their expression. Thus, overexpression of DNMT1 seems to facilitate the promoter hypermethylation of both Klotho and PPARγ in AD, resulting in their reduced expression that is suggestive of the role of senescence in adenomyosis.
Collapse
Affiliation(s)
- Jiao Fan
- Department of General Gynecology, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China
| | - Xishi Liu
- Department of General Gynecology, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China
| | - Sun-Wei Guo
- Research Institute, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
8
|
Zheng X, Lu X, Li Q, Gong S, Chen B, Xie Q, Yan F, Li J, Su Z, Liu Y, Guo Z, Chen J, Li Y. Discovery of 2,8-dihydroxyadenine in HUA patients with uroliths and biomarkers for its associated nephropathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167051. [PMID: 38336103 DOI: 10.1016/j.bbadis.2024.167051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Currently, it is acknowledged that gout is caused by uric acid (UA). However, some studies have revealed no correlation between gout and UA levels, and growing evidence suggests that 2,8-dihydroxyadenine (2,8-DHA), whose structural formula is similar to UA but is less soluble, may induce gout. Hence, we hypothesized that uroliths from hyperuricemia (HUA) patients, which is closely associated with gout, may contain 2,8-DHA. In this study, 2,8-DHA in uroliths and serum of HUA patients were determined using HPLC. Moreover, bioinformatics was used to investigate the pathogenic mechanisms of 2,8-DHA nephropathy. Subsequently, a mouse model of 2,8-DHA nephropathy established by the gavage administration of adenine, as well as a model of injured HK-2 cells induced by 2,8-DHA were used to explore the pathogenesis of 2,8-DHA nephropathy. Interestingly, 2,8-DHA could readily deposit in the cortex of the renal tubules, and was found in the majority of these HUA patients. Additionally, the differentially expressed genes between 2,8-DHA nephropathy mice and control mice were found to be involved in inflammatory reactions. Importantly, CCL2 and IL-1β genes had the maximum degree, closeness, and betweenness centrality scores. The expressions of CCL2 and IL-1β genes were significantly increased in the serum of 24 HUA patients with uroliths, indicating that they may be significant factors for 2,8-DHA nephropathy. Further analysis illustrated that oxidative damage and inflammation were the crucial processes of 2,8-DHA renal injury, and CCL2 and IL-1β genes were verified to be essential biomarkers for 2,8-DHA nephropathy. These findings revealed further insights into 2,8-DHA nephropathy, and provided new ideas for its diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Xiaowei Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Qiuxian Li
- Clinical Laboratory Department, Guangzhou Panyu Central Hospital, Guangzhou 511486, China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qingfeng Xie
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Fang Yan
- The Second Clinical College Guangdong University of Chinese Medicine, Guangzhou 510120, China
| | - Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhonghui Guo
- Clinical Laboratory Department, Guangzhou Panyu Central Hospital, Guangzhou 511486, China.
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| |
Collapse
|
9
|
Liu HL, Huang Z, Li QZ, Cao YZ, Wang HY, Alolgab RN, Deng XY, Zhang ZH. Schisandrin A alleviates renal fibrosis by inhibiting PKCβ and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155372. [PMID: 38382281 DOI: 10.1016/j.phymed.2024.155372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Renal fibrosis is a common pathway that drives the advancement of numerous kidney maladies towards end-stage kidney disease (ESKD). Suppressing renal fibrosis holds paramount clinical importance in forestalling or retarding the transition of chronic kidney diseases (CKD) to renal failure. Schisandrin A (Sch A) possesses renoprotective effect in acute kidney injury (AKI), but its effects on renal fibrosis and underlying mechanism(s) have not been studied. STUDY DESIGN Serum biochemical analysis, histological staining, and expression levels of related proteins were used to assess the effect of PKCβ knockdown on renal fibrosis progression. Untargeted metabolomics was used to assess the effect of PKCβ knockdown on serum metabolites. Unilateral Ureteral Obstruction (UUO) model and TGF-β induced HK-2 cells and NIH-3T3 cells were used to evaluate the effect of Schisandrin A (Sch A) on renal fibrosis. PKCβ overexpressed NIH-3T3 cells were used to verify the possible mechanism of Sch A. RESULTS PKCβ was upregulated in the UUO model. Knockdown of PKCβ mitigated the progression of renal fibrosis by ameliorating perturbations in serum metabolites and curbing oxidative stress. Sch A alleviated renal fibrosis by downregulating the expression of PKCβ in kidney. Treatment with Sch A significantly attenuated the upregulated proteins levels of FN, COL-I, PKCβ, Vimentin and α-SMA in UUO mice. Moreover, Sch A exhibited a beneficial impact on markers associated with oxidative stress, including MDA, SOD, and GSH-Px. Overexpression of PKCβ was found to counteract the renoprotective efficacy of Sch A in vitro. CONCLUSION Sch A alleviates renal fibrosis by inhibiting PKCβ and attenuating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ling Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhou Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qing-Zhen Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi-Zhi Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Han-Yu Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Raphael N Alolgab
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xue-Yang Deng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhi-Hao Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W. Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 2024; 170:116039. [PMID: 38157643 DOI: 10.1016/j.biopha.2023.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Yun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Si-Min Luo
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Pei-Yu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Yu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying-Qi Chen
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Song-Qi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Chang J, Xin C, Wang Y, Wang Y. Dihydroartemisinin inhibits liver cancer cell migration and invasion by reducing ATP synthase production through CaMKK2/NCLX. Oncol Lett 2023; 26:540. [PMID: 38020296 PMCID: PMC10660190 DOI: 10.3892/ol.2023.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and mitochondrial sodium/calcium exchanger protein (NCLX) are key regulatory factors in calcium homeostasis. Finding natural drugs that target regulators of calcium homeostasis is critical. Dihydroartemisinin (DHA) is considered to have anticancer effects. The present study aimed to investigate the mechanism of DHA in regulating liver cancer migration and invasion. The present study used HepG2 and HuH-7 cells and overexpressed CaMKK2 and knocked down CaMKK2 and NCLX. The antiproliferative activity of DHA on liver cancer cells was assessed through colony formation and EdU assays. Cell apoptosis was detected through YO-PRO-1/PI staining. The levels of reactive oxygen species (ROS) were measured using a ROS detection kit (DCFH-DA fluorescent probe). Cell migratory and invasive abilities were examined using wound healing and Transwell assays. The ATP production of liver cancer cells was detected using ATP fluorescent probes. Cell microfilaments were monitored for changes using Actin-Tracker Green-488. The effects of DHA on the expression of CaMKK2, NCLX, sodium/potassium-transporting ATPase subunit α-1 (ATP1A1) and ATP synthase subunit d, mitochondrial (ATP5H) were determined by western blotting and reverse transcription-quantitative PCR. The results revealed that DHA significantly inhibited proliferation, reduced ROS levels and promoted apoptosis in liver cancer cells. CaMKK2 overexpression significantly enhanced the invasive and migratory ability of liver cancer cells, whereas DHA inhibited the pro-migratory effects of CaMKK2 overexpression. DHA significantly reduced the mitochondrial ATP production and altered the arrangement of microfilaments in liver cancer cells. In addition, DHA significantly decreased the expression of CaMKK2, NCLX, ATP1A1 and ATP5H. Furthermore, by knockdown experiments of NCLX the results demonstrated that CaMKK2 downregulated the expression of ATP1A1 and ATP5H in liver cancer cells through NCLX. In conclusion, DHA may reduce ATP synthase production via the CaMKK2/NCLX signaling pathway to inhibit the invasive phenotype of liver cancer cells. It is essential to further investigate the effectiveness of DHA in the anticancer mechanism of liver cancer cells.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Chengyi Xin
- Department of Pharmacy, Bayannur Hospital, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Yong Wang
- Department of Neurosurgery, Hainan West Central Hospital, Danzhou, Hainan 571700, P.R. China
| | - Ying Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
12
|
Liu H, Huang Z, Jiang H, Su K, Si Z, Wu W, Wang H, Li D, Tan N, Zhang Z. Dihydroartemisinin attenuates ischemia/reperfusion-induced renal tubular senescence by activating autophagy. Chin J Nat Med 2023; 21:682-693. [PMID: 37777318 DOI: 10.1016/s1875-5364(23)60398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 10/02/2023]
Abstract
Acute kidney injury (AKI) is an important factor for the occurrence and development of CKD. The protective effect of dihydroartemisinin on AKI and and reported mechanism have not been reported. In this study, we used two animal models including ischemia-reperfusion and UUO, as well as a high-glucose-stimulated HK-2 cell model, to evaluate the protective effect of dihydroartemisinin on premature senescence of renal tubular epithelial cells in vitro and in vivo. We demonstrated that dihydroartemisinin improved renal aging and renal injury by activating autophagy. In addition, we found that co-treatment with chloroquine, an autophagy inhibitor, abolished the anti-renal aging effect of dihydroartemisinin in vitro. These findings suggested that activation of autophagy/elimination of senescent cell might be a useful strategy to prevent AKI/UUO induced renal tubular senescence and fibrosis.
Collapse
Affiliation(s)
- Huiling Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhou Huang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hong Jiang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ke Su
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilin Si
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenhui Wu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hanyu Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Dongxue Li
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhihao Zhang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
13
|
Wang K, Liao Q, Chen X. Research progress on the mechanism of renal interstitial fibrosis in obstructive nephropathy. Heliyon 2023; 9:e18723. [PMID: 37593609 PMCID: PMC10428074 DOI: 10.1016/j.heliyon.2023.e18723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Renal fibrosis is a common result for various chronic kidney diseases developing to the end stage. It is a pathological process characterized by the destruction of normal kidney structure and the subsequent replacement with fibrous tissue, which primarily involves fibroblast proliferation and extracellular matrix deposition. Obstruction is a common cause of renal fibrosis, and obstructive renal fibrosis is a common disease in urology. Obstructive renal fibrosis, characterized by its insidious onset, is the result of a complex interplay of multiple factors. These factors encompass renal tubular epithelial cell injury, the presence of a hypoxic microenvironment in affected kidney tissue, inflammatory cell infiltration, release of inflammatory mediators, and the release of renal fibrosis growth factors, among others. This paper reviews the research progress on the mechanism and treatment of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Kangning Wang
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410008, China
| | - Qiuling Liao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410011, China
| | - Xiang Chen
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
14
|
Lin Y, Wei J, Zhang Y, Huang J, Wang S, Luo Q, Yu H, Ji L, Zhou X, Li C. Shen Qi Wan attenuates renal interstitial fibrosis through upregulating AQP1. Chin J Nat Med 2023; 21:359-370. [PMID: 37245874 DOI: 10.1016/s1875-5364(23)60453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 05/30/2023]
Abstract
Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-β1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-β1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.
Collapse
Affiliation(s)
- Yiyou Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiale Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yehui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junhao Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sichen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongxia Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaojie Zhou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
15
|
Lv J, Zhu J, Wang P, Liu T, Yuan J, Yin H, Lan Y, Sun Q, Zhang Z, Ding G, Zhou C, Wang H, Wang Z, Wang Y. Artemisinin exerts a protective effect in the MPTP mouse model of Parkinson's disease by inhibiting microglial activation via the TLR4/Myd88/NF-KB pathway. CNS Neurosci Ther 2023; 29:1012-1023. [PMID: 36691817 PMCID: PMC10018080 DOI: 10.1111/cns.14063] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS We performed cell and animal experiments to explore the therapeutic effect of artemisinin on Parkinson's disease (PD) and the TLR4/Myd88 signaling pathway. METHODS C57 mice were randomly divided into the blank, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced and artemisinin-treated groups. Clinical symptoms, the number of dopaminergic (DAergic) neurons in the substantia nigra, and microglial cell activation were compared among the three groups. Subsequently, BV-2 cell activation and TLR4/Myd88 pathway component expression were compared among the blank, MPP+ -treated, artemisinin-treated, and TLR4 activator-treated groups. RESULTS Behavioral symptoms were improved, the number of DAergic neurons in the substantia nigra of the midbrain was increased, and microglial cell activation was decreased in artemisinin-treated MPTP-induced PD model mice compared with control-treated MPTP-induced PD model mice (p < 0.05). The cell experiments revealed that artemisinin treatment reduced MPP+ -induced BV-2 cell activation and inhibited the TLR4/Myd88 signaling pathway. Moreover, the effect of artemisinin on the BV-2 cell model was inhibited by the TLR4 activator LPS (p < 0.05). CONCLUSION Artemisinin may reduce damage to DAergic neurons in a PD mouse model by decreasing microglial activation through the TLR4-mediated MyD88-dependent signaling pathway. However, this finding cannot explain the relationship between microglia and DAergic neurons.
Collapse
Affiliation(s)
- Jing Lv
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China.,Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Jing Zhu
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Peihan Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Tongyu Liu
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Jiang Yuan
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Huan Yin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yiran Lan
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Qiang Sun
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zhifeng Zhang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Guoda Ding
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China
| | - Chenxi Zhou
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China
| | - Huajie Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zihan Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yunfu Wang
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China.,Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| |
Collapse
|
16
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|