1
|
Somay K, Albayrak Ö, Kızılırmak AB, Akan T, Üre ÜB, Akay OM, Ferhanoğlu B, Ateşoğlu EB. T cell subgroup analysis and T cell exhaustion after autologous stem cell transplantation in lymphoma patients. Transfus Apher Sci 2025; 64:104117. [PMID: 40222329 DOI: 10.1016/j.transci.2025.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Autologous stem cell transplantation (ASCT) is a common treatment option for relapsed/refractory (R/R) lymphomas and it is considered standard of care as primary consolidation therapy for some types of Non-Hodgkin Lymphomas (NHL). Although ASCT benefits patients by allowing cytoreduction with intensive chemotherapy and reconstituting with stem cells, the effects of immunological changes in T cell subgroups after ASCT are still poorly understood. OBJECTIVES We evaluated changes in frequencies of T cell subsets and T cells expressing some of the exhaustion markers (such as LAG-3 and PD-1) from peripheral blood samples before and after ASCT to investigate bone marrow reconstruction and whether exhaustion predicts relapse. STUDY DESIGN Blood samples were collected on the day before conditioning and at the 1st, 3rd, and 6th months post-ASCT. Flow cytometry analysis was conducted to examine T cell subgroup composition and exhaustion markers, including PD-1 and LAG-3. Additionally, functional analysis was performed using assays for IFN-g and TNF-a production. Furthermore, a CSFE proliferation assay was utilized to assess proliferation capacity. RESULTS In our data set, dominant cells post-transplantation were memory cells, as the naïve cell population did not recover for 6 months. Both single and combined expressions of LAG-3 and PD-1 were found to be high before transplantation, and decreased after transplantation. However, LAG-3 and PD-1 expression increased in the 3rd and 6th month after transplantation respectively. These changes were more evident for the relapsed patients when compared to non-relapsed patients within 3 months follow-up time. Notably, the expression of inhibitory receptors in the relapsed patients was significantly higher at the first month post-transplantation. CD107a+ cytotoxic T lymphocytes (CTL), IFN-g+, TNF-a.+ CTL and T helper lymphocyte (THL) populations significantly decreased in relapsed patients 3rd month after transplantation. Decreased proliferation capacities of CTLs and THLs were also observed in these patients. CONCLUSION These results suggest that increased surface PD-1 and LAG-3 expressions along with functional decline after 3 months of ASCT can be used as prognostic data about the relapse status of transplant patients.
Collapse
Affiliation(s)
- Kayra Somay
- Department of Internal Medicine, Koç University Hospital, Istanbul, Turkey
| | - Özgür Albayrak
- Koç University Research Center for Translational Medicine (KUTTAM) Koç University Hospital, Istanbul, Turkey.
| | - Ali Burak Kızılırmak
- Koç University Research Center for Translational Medicine (KUTTAM) Koç University Hospital, Istanbul, Turkey.
| | - Tuba Akan
- Department of Hematology, Koç University Hospital, Istanbul, Turkey.
| | - Ümit Barbaros Üre
- Department of Hematology, Koç University Hospital, Istanbul, Turkey.
| | - Olga Meltem Akay
- Department of Hematology, Koç University Hospital, Istanbul, Turkey.
| | | | | |
Collapse
|
2
|
Dhodapkar MV. Immune status and selection of patients for immunotherapy in myeloma: a proposal. Blood Adv 2024; 8:2424-2432. [PMID: 38564776 PMCID: PMC11112605 DOI: 10.1182/bloodadvances.2023011242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
ABSTRACT Newer immune-based approaches based on recruitment and redirection of endogenous and/or synthetic immunity such as chimeric antigen receptor T cells or bispecific antibodies are transforming the clinical management of multiple myeloma (MM). Contributions of the immune system to the antitumor effects of myeloma therapies are also increasingly appreciated. Clinical malignancy in MM originates in the setting of systemic immune alterations that begin early in myelomagenesis and regional changes in immunity affected by spatial contexture. Preexisting and therapy-induced changes in immune cells correlate with outcomes in patients with MM including after immune therapies. Here, we discuss insights from and limitations of available data about immune status and outcomes after immune therapies in patients with MM. Preexisting variation in systemic and/or regional immunity is emerging as a major determinant of the efficacy of current immune therapies as well as vaccines. However, MM is a multifocal malignancy. As with solid tumors, integrating spatial aspects of the tumor and consideration of immune targets with the biology of immune cells may be critical to optimizing the application of immune therapy, including T-cell redirection, in MM. We propose 5 distinct spatial immune types of MM that may provide an initial framework for the optimal application of specific immune therapies in MM: immune depleted, immune permissive, immune excluded, immune suppressed, and immune resistant. Such considerations may also help optimize rational patient selection for emerging immune therapies to improve outcomes.
Collapse
Affiliation(s)
- Madhav V. Dhodapkar
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
3
|
Jiménez C, Garrote-de-Barros A, López-Portugués C, Hernández-Sánchez M, Díez P. Characterization of Human B Cell Hematological Malignancies Using Protein-Based Approaches. Int J Mol Sci 2024; 25:4644. [PMID: 38731863 PMCID: PMC11083628 DOI: 10.3390/ijms25094644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The maturation of B cells is a complex, multi-step process. During B cell differentiation, errors can occur, leading to the emergence of aberrant versions of B cells that, finally, constitute a malignant tumor. These B cell malignancies are classified into three main groups: leukemias, myelomas, and lymphomas, the latter being the most heterogeneous type. Since their discovery, multiple biological studies have been performed to characterize these diseases, aiming to define their specific features and determine potential biomarkers for diagnosis, stratification, and prognosis. The rise of advanced -omics approaches has significantly contributed to this end. Notably, proteomics strategies appear as promising tools to comprehensively profile the final molecular effector of these cells. In this narrative review, we first introduce the main B cell malignancies together with the most relevant proteomics approaches. Then, we describe the core studies conducted in the field and their main findings and, finally, we evaluate the advantages and drawbacks of flow cytometry, mass cytometry, and mass spectrometry for the profiling of human B cell disorders.
Collapse
Affiliation(s)
- Cristina Jiménez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain;
| | - Alba Garrote-de-Barros
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Carlos López-Portugués
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Paula Díez
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Faculty of Medicine and Health Science, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Gudgeon N, Giles H, Bishop EL, Fulton-Ward T, Escribano-Gonzalez C, Munford H, James-Bott A, Foster K, Karim F, Jayawardana D, Mahmood A, Cribbs AP, Tennant DA, Basu S, Pratt G, Dimeloe S. Uptake of long-chain fatty acids from the bone marrow suppresses CD8+ T-cell metabolism and function in multiple myeloma. Blood Adv 2023; 7:6035-6047. [PMID: 37276076 PMCID: PMC10582277 DOI: 10.1182/bloodadvances.2023009890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
T cells demonstrate impaired function in multiple myeloma (MM) but suppressive mechanisms in the bone marrow microenvironment remain poorly defined. We observe that bone marrow CD8+ T-cell function is decreased in MM compared with controls, and is also consistently lower within bone marrow samples than in matched peripheral blood samples. These changes are accompanied by decreased mitochondrial mass and markedly elevated long-chain fatty acid uptake. In vitro modeling confirmed that uptake of bone marrow lipids suppresses CD8+ T function, which is impaired in autologous bone marrow plasma but rescued by lipid removal. Analysis of single-cell RNA-sequencing data identified expression of fatty acid transport protein 1 (FATP1) in bone marrow CD8+ T cells in MM, and FATP1 blockade also rescued CD8+ T-cell function, thereby identifying this as a novel target to augment T-cell activity in MM. Finally, analysis of samples from cohorts of patients who had received treatment identified that CD8+ T-cell metabolic dysfunction resolves in patients with MM who are responsive to treatment but not in patients with relapsed MM, and is associated with substantial T-cell functional restoration.
Collapse
Affiliation(s)
- Nancy Gudgeon
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hannah Giles
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Emma L. Bishop
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Taylor Fulton-Ward
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Escribano-Gonzalez
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Haydn Munford
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anna James-Bott
- Nuffield Department of Orthopaedics, Botnar Research Centre, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit, University of Oxford, Oxford, United Kingdom
| | - Kane Foster
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Farheen Karim
- Clinical Haematology Unit, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom
| | - Dedunu Jayawardana
- Clinical Haematology Unit, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom
| | - Ansar Mahmood
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics, Botnar Research Centre, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit, University of Oxford, Oxford, United Kingdom
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Supratik Basu
- Clinical Haematology Unit, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom
| | - Guy Pratt
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Sarah Dimeloe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Liu Z, Zhao X, Shen H, Liu X, Xu X, Fu R. Cellular immunity in the era of modern multiple myeloma therapy. Int J Cancer 2023; 153:1436-1447. [PMID: 37306091 DOI: 10.1002/ijc.34609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a relapsing clonal plasma cell malignancy and incurable thus far. With the increasing understanding of myeloma, highlighting the critical importance of the immune system in the pathogenesis of MM is essential. The immune changes in MM patients after treatment are associated with prognosis. In this review, we summarize currently available MM therapies and discuss how they affect cellular immunity. We find that the modern anti-MM treatments enhance antitumour immune responses. A deeper understanding of the therapeutic activity of individual drugs offers more effective treatment approaches that enhance the beneficial immunomodulatory effects. Furthermore, we show that the immune changes after treatment in MM patients can provide useful prognostic marker. Analysing cellular immune responses offers new perspectives for evaluating clinical data and making comprehensive predictions for applying novel therapies in MM patients.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
6
|
Zanwar S, Jacob EK, Greiner C, Pavelko K, Strausbauch M, Anderson E, Arsana A, Weivoda M, Shah MV, Kourelis T. The immunome of mobilized peripheral blood stem cells is predictive of long-term outcomes and therapy-related myeloid neoplasms in patients with multiple myeloma undergoing autologous stem cell transplant. Blood Cancer J 2023; 13:151. [PMID: 37752130 PMCID: PMC10522581 DOI: 10.1038/s41408-023-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Upfront autologous stem cell transplant (ASCT) is the standard of care for newly diagnosed multiple myeloma (MM) patients. However, relapse is ubiquitous and therapy-related myeloid neoplasms (t-MN) post-ASCT are commonly associated with poor outcomes. We hypothesized that the enrichment of abnormal myeloid progenitors and immune effector cells (IEC) in the peripheral blood stem cells (PBSCs) is associated with a higher risk of relapse and/or development of t-MN. We performed a comprehensive myeloid and lymphoid immunophenotyping on PBSCs from 54 patients with MM who underwent ASCT. Median progression-free (PFS), myeloid neoplasm-free (MNFS), and overall survival (OS) from ASCT were 49.6 months (95% CI: 39.5-Not Reached), 59.7 months (95% CI: 55-74), and 75.6 months (95% CI: 62-105), respectively. Abnormal expression of CD7 and HLA-DR on the myeloid progenitor cells was associated with an inferior PFS, MNFS, and OS. Similarly, enrichment of terminally differentiated (CD27/CD28-, CD57/KLRG1+) and exhausted (TIGIT/PD-1+) T-cells, and inhibitory NK-T like (CD159a+/CD56+) T-cells was associated with inferior PFS, MNFS, and OS post-transplant. Our observation of abnormal myeloid and IEC phenotype being present even before ASCT and maintenance therapy suggests an early predisposition to t-MN and inferior outcomes for MM, and has the potential to guide sequencing of future treatment modalities.
Collapse
Affiliation(s)
| | - Eapen K Jacob
- Division of Transfusion Medicine, Human Cellular Therapy Laboratory, Rochester, MN, USA
| | - Carl Greiner
- Division of Transfusion Medicine, Human Cellular Therapy Laboratory, Rochester, MN, USA
| | - Kevin Pavelko
- Immune Monitoring Core, Mayo Clinic, Rochester, MN, USA
| | | | - Emilie Anderson
- Division of Hematology Research, Mayo Clinic, Rochester, MN, USA
| | - Arini Arsana
- Division of Hematology Research, Mayo Clinic, Rochester, MN, USA
| | - Megan Weivoda
- Division of Hematology Research, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
7
|
Samur MK, Szalat R, Munshi NC. Single-cell profiling in multiple myeloma: insights, problems, and promises. Blood 2023; 142:313-324. [PMID: 37196627 PMCID: PMC10485379 DOI: 10.1182/blood.2022017145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
In a short time, single-cell platforms have become the norm in many fields of research, including multiple myeloma (MM). In fact, the large amount of cellular heterogeneity in MM makes single-cell platforms particularly attractive because bulk assessments can miss valuable information about cellular subpopulations and cell-to-cell interactions. The decreasing cost and increasing accessibility of single-cell platform, combined with breakthroughs in obtaining multiomics data for the same cell and innovative computational programs for analyzing data, have allowed single-cell studies to make important insights into MM pathogenesis; yet, there is still much to be done. In this review, we will first focus on the types of single-cell profiling and the considerations for designing a single-cell profiling experiment. Then, we will discuss what have learned from single-cell profiling about myeloma clonal evolution, transcriptional reprogramming, and drug resistance, and about the MM microenvironment during precursor and advanced disease.
Collapse
Affiliation(s)
- Mehmet Kemal Samur
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Raphael Szalat
- Department of Hematology and Medical Oncology, Boston University Medical Center, Boston, MA
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
8
|
Dhodapkar MV. The immune system in multiple myeloma and precursor states: Lessons and implications for immunotherapy and interception. Am J Hematol 2023; 98 Suppl 2:S4-S12. [PMID: 36194782 PMCID: PMC9918687 DOI: 10.1002/ajh.26752] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Multiple myeloma (MM) and its precursor monoclonal gammopathy of undetermined significance (MGUS) are distinct disorders that likely originate in the setting of chronic immune activation. Evolution of these lesions is impacted by cross-talk with both innate and adaptive immune systems of the host. Harnessing the immune system may, therefore, be an attractive strategy to prevent clinical malignancy. While clinical MM is characterized by both regional and systemic immune suppression and paresis, immune-based approaches, particularly redirecting T cells have shown remarkable efficacy in MM patients. Optimal application and sequencing of these new immune therapies and their integration into clinical MM management may depend on the underlying immune status, in turn impacted by host, tumor, and environmental features. Immune therapies carry the potential to achieve durable unmaintained responses and cures in MM.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Recent advances and typical applications in mass spectrometry-based technologies for single-cell metabolite analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Chedid C, Andrieu T, Kokhreidze E, Tukvadze N, Biswas S, Ather MF, Uddin MKM, Banu S, De Maio F, Delogu G, Endtz H, Goletti D, Vocanson M, Dumitrescu O, Hoffmann J, Ader F. In-Depth Immunophenotyping With Mass Cytometry During TB Treatment Reveals New T-Cell Subsets Associated With Culture Conversion. Front Immunol 2022; 13:853572. [PMID: 35392094 PMCID: PMC8980213 DOI: 10.3389/fimmu.2022.853572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a difficult-to-treat infection because of multidrug regimen requirements based on drug susceptibility profiles and treatment observance issues. TB cure is defined by mycobacterial sterilization, technically complex to systematically assess. We hypothesized that microbiological outcome was associated with stage-specific immune changes in peripheral whole blood during TB treatment. The T-cell phenotypes of treated TB patients were prospectively characterized in a blinded fashion using mass cytometry after Mycobacterium tuberculosis (Mtb) antigen stimulation with QuantiFERON-TB Gold Plus, and then correlated to sputum culture status. At two months of treatment, cytotoxic and terminally differentiated CD8+ T-cells were under-represented and naïve CD4+ T-cells were over-represented in positive- versus negative-sputum culture patients, regardless of Mtb drug susceptibility. At treatment completion, a T-cell immune shift towards differentiated subpopulations was associated with TB cure. Overall, we identified specific T-cell profiles associated with slow sputum converters, which brings new insights in TB prognostic biomarker research designed for clinical application.
Collapse
Affiliation(s)
- Carole Chedid
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Medical and Scientific Department, Fondation Mérieux, Lyon, France.,Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Thibault Andrieu
- Cytometry Core Facility, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Eka Kokhreidze
- National Center for Tuberculosis and Lung Diseases (NCTBLD), Tbilisi, Georgia
| | - Nestani Tukvadze
- National Center for Tuberculosis and Lung Diseases (NCTBLD), Tbilisi, Georgia
| | - Samanta Biswas
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Fahim Ather
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Khaja Mafij Uddin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sayera Banu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Flavio De Maio
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Hubert Endtz
- Medical and Scientific Department, Fondation Mérieux, Lyon, France
| | - Delia Goletti
- Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases-IRCCS, Rome, Italy
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Oana Dumitrescu
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France.,Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| | - Jonathan Hoffmann
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Medical and Scientific Department, Fondation Mérieux, Lyon, France
| | - Florence Ader
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Département des Maladies Infectieuses et Tropicales, Lyon, France
| |
Collapse
|
11
|
Visram A, Kourelis TV. Aging-associated immune system changes in multiple myeloma: The dark side of the moon. Cancer Treat Res Commun 2021; 29:100494. [PMID: 34837796 DOI: 10.1016/j.ctarc.2021.100494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Multiple myeloma (MM) is a disease of the elderly. Changes that occur in the immune system with aging, also known as immunosenescence, have been associated with decreased tumor immunosurveillance and are thought to contribute to the development of MM and other cancers in the elderly. Once MM establishes itself in the bone marrow, immunosenescence related changes have been observed in the immune tumor microenvironment (iTME) and are driven by the malignant cells. The efficacy of novel immunotherapies used to treat MM has been blunted by detrimental iTME changes that occur at later disease stages and are, to some extent, driven by prior therapies. In this review, we discuss general changes that occur in the immune system with aging as well as our current knowledge of immunosenescence in MM. We discuss the differences and overlap between T cell senescence and exhaustion as well as potential methods to prevent or reverse immunosenescence. We focus predominantly on T cell immunosenescence which has been better evaluated in this disease and is more pertinent to novel MM immunotherapies. Our lack of understanding of the drivers of immunosenescence at each stage of the disease, from precursor stages to heavily pretreated MM, represents a major barrier to improving the efficacy of novel and existing therapies.
Collapse
Affiliation(s)
- Alissa Visram
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN United States; Department of Medicine, Division of Hematology, University of Ottawa, Ottawa Hospital Research Institute, Ontario, Canada
| | - Taxiarchis V Kourelis
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN United States.
| |
Collapse
|
12
|
Wang Y, Xu L, Zhao W, Chen X, Wen L, Duan W, Yu X, De Zhou F, Liu Y, Hao J, Huang X, Lu J, Ge Q. T cell landscape and dynamics in immunoglobulin light chain amyloidosis before and after daratumumab-based therapy. Clin Transl Med 2021; 11:e582. [PMID: 34845849 PMCID: PMC8630449 DOI: 10.1002/ctm2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/07/2022] Open
Abstract
Amyloid light-chain (AL) is characterized by the presence of small, poorly proliferating plasma cell clones with the production and deposition of light chains into tissues. T cell changes within the tumour microenvironment in AL are poorly understood. By sequencing at a single-cell level of CD3+ T cells purified from bone marrow (BM) and blood of newly diagnosed AL patients before and after a combination of daratumumab with cyclophosphamide, bortezomib, and dexamethasone (Dara-BCD), we analysed the transcriptomic features of T cells and found an expansion, activation and type I cytokine upregulation in BM and circulating T cells after the treatment. More prominent changes were shown in CD8+ T cells. In particular, we found the presence of CD8+ BM resident memory T cells (TRM ) with high expression of inhibitory molecules in AL patients at diagnosis. After Dara-BCD, these TRM cells were quickly activated with downregulation of suppressive molecules and upregulation of IFNG expression. These data collectively demonstrate that Dara-based therapy in patients with AL amyloidosis promotes anti-tumour T cell responses. The similar transcriptomic features of BM and circulating T cells before and after therapy further provide a less invasive approach for molecular monitoring of T cell response in AL amyloidosis.
Collapse
Affiliation(s)
- Yujia Wang
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Lushuang Xu
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Weijia Zhao
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | | | - Lei Wen
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Wenbing Duan
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Xiao‐Juan Yu
- Renal DivisionDepartment of MedicineInstitute of NephrologyPeking University First Hospital, & Renal Pathology CenterPeking UniversityBeijingChina
- Renal Pathology CenterInstitute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of CKD Prevention and TreatmentMinistry of Education of ChinaBeijingChina
| | - Fu‐ De Zhou
- Renal DivisionDepartment of MedicineInstitute of NephrologyPeking University First Hospital, & Renal Pathology CenterPeking UniversityBeijingChina
- Renal Pathology CenterInstitute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of CKD Prevention and TreatmentMinistry of Education of ChinaBeijingChina
| | - Yang Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Jie Hao
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Jin Lu
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
- Collaborative Innovation Center of HaematologySoochow UniversitySuzhouJiangsuChina
| | - Qing Ge
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
- Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking UniversityBeijingChina
- National Key Laboratory of Human Factors EngineeringChina Astronauts Research and Training CenterBeijingChina
| |
Collapse
|
13
|
Suzuki K, Nishiwaki K, Yano S. Treatment Strategy for Multiple Myeloma to Improve Immunological Environment and Maintain MRD Negativity. Cancers (Basel) 2021; 13:4867. [PMID: 34638353 PMCID: PMC8508145 DOI: 10.3390/cancers13194867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Improving the immunological environment and eradicating minimal residual disease (MRD) are the two main treatment goals for long-term survival in patients with multiple myeloma (MM). Immunomodulatory drugs (IMiDs), monoclonal antibody drugs (MoAbs), and autologous grafts for autologous stem cell transplantation (ASCT) can improve the immunological microenvironment. ASCT, MoAbs, and proteasome inhibitors (PIs) may be important for the achievement of MRD negativity. An improved immunological environment may be useful for maintaining MRD negativity, although the specific treatment for persistent MRD negativity is unknown. However, whether the ongoing treatment should be continued or changed if the MRD status remains positive is controversial. In this case, genetic, immunophenotypic, and clinical analysis of residual myeloma cells may be necessary to select the effective treatment for the residual myeloma cells. The purpose of this review is to discuss the MM treatment strategy to "cure MM" based on currently available therapies, including IMiDs, PIs, MoAbs, and ASCT, and expected immunotherapies, such as chimeric antigen receptor T cell (CAR-T) therapy, via improvement of the immunological environment and maintenance of MRD negativity.
Collapse
Affiliation(s)
- Kazuhito Suzuki
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, Tokyo 277-8567, Japan;
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Kaichi Nishiwaki
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, Tokyo 277-8567, Japan;
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Shingo Yano
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| |
Collapse
|
14
|
Casey M, Nakamura K. The Cancer-Immunity Cycle in Multiple Myeloma. Immunotargets Ther 2021; 10:247-260. [PMID: 34295843 PMCID: PMC8291851 DOI: 10.2147/itt.s305432] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma is a plasma cell malignancy that primarily affects the elderly. The global burden of multiple myeloma is increasing in many countries due to an aging population. Despite recent advances in therapy, myeloma remains an incurable disease, highlighting the pressing need for new therapies. Accumulating evidence supports that triggering the host immune system is a critical therapeutic mechanism of action by various anti-myeloma therapies. These anti-myeloma therapies include proteasome inhibitors, immunomodulatory drugs, monoclonal antibody drugs, and autologous stem cell transplantation. More recently, T cell-based immunotherapeutics (including chimeric antigen receptor T-cell therapies and bispecific T-cell engagers) have shown dramatic clinical benefits in patients with relapsed or refractory multiple myeloma. While immune-based therapeutic approaches are recognized as key modalities for improved clinical outcomes in myeloma patients, understanding the immune system in multiple myeloma patients remains elusive. The cancer-immunity cycle is a conceptual framework illustrating how immune cells recognize and eliminate tumor cells. Based on this framework, this review will provide an overview of the immune system in multiple myeloma patients and discuss potential therapeutic approaches to stimulate anti-tumor immunity.
Collapse
Affiliation(s)
- Mika Casey
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Australia
| | - Kyohei Nakamura
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Australia
| |
Collapse
|
15
|
Barilà G, Pavan L, Vedovato S, Berno T, Lo Schirico M, Arangio Febbo M, Teramo A, Calabretto G, Vicenzetto C, Gasparini VR, Fregnani A, Manni S, Trimarco V, Carraro S, Facco M, Piazza F, Semenzato G, Zambello R. Treatment Induced Cytotoxic T-Cell Modulation in Multiple Myeloma Patients. Front Oncol 2021; 11:682658. [PMID: 34211851 PMCID: PMC8239308 DOI: 10.3389/fonc.2021.682658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
The biology of plasma cell dyscrasias (PCD) involves both genetic and immune-related factors. Since genetic lesions are necessary but not sufficient for Multiple Myeloma (MM) evolution, several authors hypothesized that immune dysfunction involving both B and T cell counterparts plays a key role in the pathogenesis of the disease. The aim of this study is to evaluate the impact of cornerstone treatments for Multiple Myeloma into immune system shaping. A large series of 976 bone marrow samples from 735 patients affected by PCD was studied by flow analysis to identify discrete immune subsets. Treated MM samples displayed a reduction of CD4+ cells (p<0.0001) and an increase of CD8+ (p<0.0001), CD8+/DR+ (p<0.0001) and CD3+/CD57+ (p<0.0001) cells. Although these findings were to some extent demonstrated also following bortezomib treatment, a more pronounced cytotoxic polarization was shown after exposure to autologous stem cell transplantation (ASCT) and Lenalidomide (Len) treatment. As a matter of fact, samples of patients who received ASCT (n=110) and Len (n=118) were characterized, towards untreated patients (n=138 and n=130, respectively), by higher levels of CD8+ (p<0.0001 and p<0.0001, respectively), CD8+/DR+ (p=0.0252 and p=0.0001, respectively) and CD3+/CD57+ cells (p<0.0001 and p=0.0006, respectively) and lower levels of CD4+ lymphocytes (p<0.0001 and p=0.0005, respectively). We demonstrated that active MM patients are characterized by a relevant T cell modulation and that most of these changes are therapy-related. Current Myeloma treatments, notably ASCT and Len treatments, polarize immune system towards a dominant cytotoxic response, likely contributing to the anti-Myeloma effect of these regimens.
Collapse
Affiliation(s)
- Gregorio Barilà
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Laura Pavan
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Susanna Vedovato
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Tamara Berno
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Mariella Lo Schirico
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Massimiliano Arangio Febbo
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Antonella Teramo
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Giulia Calabretto
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Cristina Vicenzetto
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Vanessa Rebecca Gasparini
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Anna Fregnani
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Sabrina Manni
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Valentina Trimarco
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Samuela Carraro
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Monica Facco
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| | - Renato Zambello
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padua University School of Medicine, Padova, Italy
| |
Collapse
|
16
|
Microenvironment immune reconstitution patterns correlate with outcomes after autologous transplant in multiple myeloma. Blood Adv 2021; 5:1797-1804. [PMID: 33787859 DOI: 10.1182/bloodadvances.2020003857] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
The immediate postautologous stem cell transplant (ASCT) period in multiple myeloma represents a unique opportunity for long-term disease control because many patients have eradicated most of their disease but also a challenge because it is characterized by the increase of immune subsets detrimental to tumor immunosurveillance. The impact of the tumor immune microenvironment (iTME) in post-ASCT outcomes is not known. In this study, we included 58 patients undergoing upfront ASCT and evaluated their cellular and humoral iTME with cytometry by time of flight (CyTOF) and luminex, respectively, at day +60 to 100 post-ASCT. We identified 2 cellular iTME patterns. Group 1 was enriched in T-cell subsets at the opposite ends of the spectrum of T-cell differentiation compared with the rest of the patients, that is, cells already terminally differentiated (immune senescent or exhausted) and naive T cells. This group had worse hematologic responses post-ASCT, inferior survival, and shorter time to hematologic progression independent of established risk factors. No differences in the humoral iTME were noted between the 2 groups. In addition, no differences in the cellular/humoral iTME were noted according to high-risk fluorescence in situ hybridization status, early or late relapse. Finally, males had higher levels of natural killer cells negative for CD16, a key receptor mediating antibody-dependent cell cytotoxicity, a major mechanism of antitumor efficacy by therapeutic antibodies such as elotuzumab. Our findings suggest that T-cell iTME dysfunction post-ASCT, some of which could be reversible (exhaustion), correlates with worse outcomes. These results could be used to guide rational selection of post-ASCT maintenance/consolidation approaches in these patients.
Collapse
|
17
|
Inverse relationship between oligoclonal expanded CD69- TTE and CD69+ TTE cells in bone marrow of multiple myeloma patients. Blood Adv 2021; 4:4593-4604. [PMID: 32986791 DOI: 10.1182/bloodadvances.2020002237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
CD8+CD57+ terminal effector T (TTE) cells are a component of marrow-infiltrating lymphocytes and may contribute to the altered immune responses in multiple myeloma (MM) patients. We analyzed TTE cells in the bone marrow (BM) and peripheral blood (PB) of age-matched controls and patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering MM (SMM), and newly diagnosed (ND) MM using flow cytometry, mass cytometry, and FlowSOM clustering. TTE cells are heterogeneous in all subjects, with BM containing both CD69- and CD69+ subsets, while only CD69- cells are found in PB. Within the BM-TTE compartment, CD69- and CD69+ cells are found in comparable proportions in controls, while CD69- cells are dominant in MGUS and SMM and predominantly either CD69- or CD69+ cells in NDMM. A positive relationship between CD69+TTE and CD69-TTE cells is observed in the BM of controls, lost in MGUS, and converted to an inverse relationship in NDMM. CD69-TTE cells include multiple oligoclonal expansions of T-cell receptor/Vβ families shared between BM and PB of NDMM. Oligoclonal expanded CD69-TTE cells from the PB include myeloma-reactive cells capable of killing autologous CD38hi plasma cells in vitro, involving degranulation and high expression of perforin and granzyme. In contrast to CD69-TTE cells, oligoclonal expansions are not evident within CD69+TTE cells, which possess low perforin and granzyme expression and high inhibitory checkpoint expression and resemble T resident memory cells. Both CD69-TTE and CD69+TTE cells from the BM of NDMM produce large amounts of the inflammatory cytokines interferon-γ and tumor necrosis factor α. The balance between CD69- and CD69+ cells within the BM-TTE compartment may regulate immune responses in NDMM and contribute to the clinical heterogeneity of the disease.
Collapse
|
18
|
Braunstein M, Weltz J, Davies F. A new decade: novel immunotherapies on the horizon for relapsed/refractory multiple myeloma. Expert Rev Hematol 2021; 14:377-389. [PMID: 33769179 DOI: 10.1080/17474086.2021.1909469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Survival in multiple myeloma (MM) has improved due to the ongoing revolution of therapeutic approaches. Nevertheless, many patients relapse, and additional novel approaches are required to prolong remissions and prevent disease progression. AREAS COVERED Considering the success of monoclonal antibodies (mAbs) against CD38 and SLAMF7 in relapsed/refractory MM (R/R MM), additional antigens expressed on malignant plasma cells are being investigated as treatment targets. Among these, many trials are focusing on B cell maturation antigen (BCMA), using either antibody-drug conjugates (ADCs), bispecific T cell engagers (TCE), or chimeric antigen receptor T cells (CAR-T). Other potential targets include the myeloma markers CD138, GPRC5D, FcRH5, the plasma cell differentiating factors APRIL, TACI and BAFF, and the immune checkpoint proteins CD47 and TIGIT. Additionally, novel immunomodulatory Cereblon E3 Ligase Modulators (CELMoDs) offer the potential to overcome resistance to conventional immunomodulatory agents. Based upon PubMed and abstract searches primarily from the past 4 years, here we review the data supporting novel immunotherapies for R/R MM. EXPERT OPINION Overcoming disease resistance remains a challenge in R/R MM. Novel therapeutic approaches targeting MM antigens and/or enhancing immune cell function offer the potential to prolong survival and are actively being investigated in clinical trials.
Collapse
Affiliation(s)
- Marc Braunstein
- Department of Medicine, Division of Oncology-Hematology, NYU Long Island School of Medicine, New York, United States of America.,NYU Perlmutter Cancer Center, New York, United States of America
| | - Jonathan Weltz
- NYU Perlmutter Cancer Center, New York, United States of America
| | - Faith Davies
- NYU Perlmutter Cancer Center, New York, United States of America.,Department of Medicine, Division of Hematology/Oncology, NYU Grossman School of Medicine, New York, United States of America
| |
Collapse
|
19
|
Cancer immunoediting and immune dysregulation in multiple myeloma. Blood 2021; 136:2731-2740. [PMID: 32645135 DOI: 10.1182/blood.2020006540] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Avoiding immune destruction is a hallmark of cancer. Over the past few years, significant advances have been made in understanding immune dysfunction and immunosuppression in multiple myeloma (MM), and various immunotherapeutic approaches have delivered improved clinical responses. However, it is still challenging to completely eliminate malignant plasma cells (PCs) and achieve complete cure. The interplay between the immune system and malignant PCs is implicated throughout all stages of PC dyscrasias, including asymptomatic states called monoclonal gammopathy of undetermined significance and smoldering myeloma. Although the immune system effectively eliminates malignant PCs, or at least induces functional dormancy at early stages, malignant PCs eventually evade immune elimination, leading to progression to active MM, in which dysfunctional effector lymphocytes, tumor-educated immunosuppressive cells, and soluble mediators coordinately act as a barrier for antimyeloma immunity. An in-depth understanding of this dynamic process, called cancer immunoediting, will provide important insights into the immunopathology of PC dyscrasias and MM immunotherapy. Moreover, a growing body of evidence suggests that, together with nonhematopoietic stromal cells, bone marrow (BM) immune cells with unique functions support the survival of normal and malignant PCs in the BM niche, highlighting the diverse roles of immune cells beyond antimyeloma immunity. Together, the immune system critically acts as a rheostat that fine-tunes the balance between dormancy and disease progression in PC dyscrasias.
Collapse
|
20
|
Li L, Lenahan C, Liao Z, Ke J, Li X, Xue F, Zhang JH. Novel Technologies in Studying Brain Immune Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6694566. [PMID: 33791073 PMCID: PMC7997736 DOI: 10.1155/2021/6694566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Over the past few decades, the immune system, including both the adaptive and innate immune systems, proved to be essential and critical to brain damage and recovery in the pathogenesis of several diseases, opening a new avenue for developing new immunomodulatory therapies and novel treatments for many neurological diseases. However, due to the specificity and structural complexity of the central nervous system (CNS), and the limit of the related technologies, the biology of the immune response in the brain is still poorly understood. Here, we discuss the application of novel technologies in studying the brain immune response, including single-cell RNA analysis, cytometry by time-of-flight, and whole-genome transcriptomic and proteomic analysis. We believe that advancements in technology related to immune research will provide an optimistic future for brain repair.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88003, USA
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
| | - Zhihui Liao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Jingdong Ke
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Xiuliang Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - John H. Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
| |
Collapse
|
21
|
Relapsed multiple myeloma demonstrates distinct patterns of immune microenvironment and malignant cell-mediated immunosuppression. Blood Cancer J 2021; 11:45. [PMID: 33649314 PMCID: PMC7921408 DOI: 10.1038/s41408-021-00440-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has shown efficacy in relapsed multiple myeloma (MM). However, these therapies may depend on a functional tumor immune microenvironment (iTME) for their efficacy. Characterizing the evolution of the iTME over the disease course is necessary to optimize the timing of immunotherapies. We performed mass cytometry, cytokine analysis, and RNA sequencing on bone marrow samples from 39 (13 newly diagnosed [NDMM], 11 relapsed pre-daratumumab exposure [RMM], and 13 triple-refractory [TRMM]) MM patients. Three distinct cellular iTME clusters were identified; cluster 1 comprised mainly of NDMM and RMM patients; and clusters 2 and 3 comprised primarily of TRMM patients. We showed that naive T cells were decreased in clusters 2 and 3, cluster 2 was characterized by increased senescent T cells, and cluster 3 by decreased early memory T cells. Plasma cells in clusters 2 and 3 upregulated E2F transcription factors and MYC proliferation pathways, and downregulated interferon, TGF-beta, interleuking-6, and TNF-αlpha signaling pathways compared to cluster 1. This study suggests that the MM iTME becomes increasingly dysfunctional with therapy whereas the MM clone may be less dependent on inflammation-mediated growth pathways and less sensitive to IFN-mediated immunosurveillance. Our findings may explain the decreased sensitivity of TRMM patients to novel immunotherapies.
Collapse
|
22
|
McCachren SS, Dhodapkar KM, Dhodapkar MV. Co-evolution of Immune Response in Multiple Myeloma: Implications for Immune Prevention. Front Immunol 2021; 12:632564. [PMID: 33717170 PMCID: PMC7952530 DOI: 10.3389/fimmu.2021.632564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM), a malignant neoplasm of plasma cells that reside in the bone marrow (BM), is universally preceded by a precursor state termed monoclonal gammopathy of undetermined significance (MGUS). Many individuals with MGUS never progress to MM or progress over many years. Therefore, MGUS provides a unique opportunity to surveil changes in the BM tumor microenvironment throughout disease progression. It is increasingly appreciated that MGUS cells carry many of the genetic changes found in MM. Prior studies have also shown that MGUS cells can be recognized by the immune system, leading to early changes in the BM immune environment compared to that of healthy individuals, including alterations in both innate and adaptive immunity. Progression to clinical MM is associated with attrition of T cells with stem memory-like features and instead accumulation of T cells with more terminally differentiated features. Recent clinical studies have suggested that early application of immune-modulatory drugs, which are known to activate both innate and adaptive immunity, can delay the progression to clinical MM. Understanding the biology of how the immune response and tumors coevolve over time is needed to develop novel immune-based approaches to achieve durable and effective prevention of clinical malignancy.
Collapse
Affiliation(s)
- Samuel S. McCachren
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kavita M. Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Atlanta, GA, United States
| | - Madhav V. Dhodapkar
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Atlanta, GA, United States
| |
Collapse
|
23
|
Papale M. A Review of Proteomics Strategies to Study T-Cell Activation and Function in Cancer Disease. Methods Mol Biol 2021; 2325:125-136. [PMID: 34053055 DOI: 10.1007/978-1-0716-1507-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Cytotoxic T-cells play a key role in natural response to cancer and in immunotherapy. Understanding in an ever more thorough and complete way the mechanisms underlying their activation and/or those that prevent it is a crucial challenge for the success of the therapy. Proteomics can make a decisive contribution to achieving this goal as it brings together a range of technologies that potentially allow the expression levels of thousands of proteins to be analyzed at the same time. In the first part of this chapter, after an overview of the main mechanisms that determine T-cell dysfunction, new MS-based approaches to characterizing T-cell subpopulations in the tumor microenvironment will be described. The second part of the chapter will focus on the main strategies for cancer immunotherapy, from the selective blockage of inhibitory receptor to CAR T therapy. Examples of proteomics application to tumor microenvironment analysis will be reported to illustrate how these innovative approaches can contribute significantly to understanding the cellular and molecular mechanisms that regulate an effective response to therapy.
Collapse
Affiliation(s)
- Massimo Papale
- Clinical Pathology Unit, Department of Laboratory Diagnostics, Policlinic University Hospital "Riuniti", Foggia, Italy.
| |
Collapse
|
24
|
Bianchi G, Kumar S. Systemic Amyloidosis Due to Clonal Plasma Cell Diseases. Hematol Oncol Clin North Am 2020; 34:1009-1026. [PMID: 33099420 DOI: 10.1016/j.hoc.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunoglobulin light chain amyloidosis is the most common systemic amyloidosis. The pathogenetic mechanism is deposition of fibrils of misfolded immunoglobulin free light chains, more often lambda, typically produced by clonal plasma cells. Distinct Ig light chain variable region genotypes underlie most light chain amyloidosis and dictate tissue tropism. Light chain amyloidosis fibrils cause distortion of the histologic architecture and direct cytotoxicity, leading to rapidly progressive organ dysfunction and eventually patient demise. A high index of clinical suspicion with rapid tissue diagnosis and commencement of combinatorial, highly effective cytoreductive therapy is crucial to avoid irreversible organ damage and early mortality.
Collapse
Affiliation(s)
- Giada Bianchi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaji Kumar
- Myeloma, Amyloidosis, Dysproteinemia Group, Mayo Clinic, First Street Southwest, Rochester, MN 55904, USA.
| |
Collapse
|
25
|
Single Cell Sequencing: A New Dimension in Cancer Diagnosis and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:109-121. [PMID: 32949394 DOI: 10.1007/978-981-15-4494-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is one of the leading causes of death worldwide and well known for its complexity. Cancer cells within the same tumor or from different tumors are highly heterogeneous. Furthermore, stromal and immune cells within tumor microenvironment interact with cancer cells to play important roles in how tumors progress and respond to different treatments. Recent advances in single cell technologies, especially massively parallel single cell sequencing, have made it possible to analyze cancer cells and cells in its tumor microenvironment in parallel with unprecedented high resolution. In this chapter, we will review recent developments in single cell sequencing technologies and their applications in cancer research. We will also explain how insights generated from single cell sequencing can be used to develop novel diagnostic and therapeutic approaches to conquer cancer.
Collapse
|
26
|
Cooke RE, Quinn KM, Quach H, Harrison S, Prince HM, Koldej R, Ritchie D. Conventional Treatment for Multiple Myeloma Drives Premature Aging Phenotypes and Metabolic Dysfunction in T Cells. Front Immunol 2020; 11:2153. [PMID: 33013907 PMCID: PMC7494758 DOI: 10.3389/fimmu.2020.02153] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
New diagnoses of multiple myeloma (MM) tend to occur after the age of 60, by which time thymic output is severely reduced. As a consequence, lymphocyte recovery after lymphopenia-inducing anti-MM therapies relies on homeostatic proliferation of peripheral T cells rather than replenishment by new thymic emigrants. To assess lymphocyte recovery and phenotype in patients with newly diagnosed MM (NDMM) and relapsed/refractory MM (RRMM), we tracked CD4+ and CD8+ T cell populations at serial time points throughout treatment and compared them to age-matched healthy donors (HD). Anti-MM therapies and autologous stem cell transplant (ASCT) caused a permanent reduction in the CD4:8 ratio, a decrease in naïve CD4+ T cells, and an increase in effector memory T cells and PD1-expressing CD4+ T cells. Transcriptional profiling highlighted that genes associated with fatty acid β-oxidation were upregulated in T cells in RRMM, suggesting increased reliance on mitochondrial respiration. High mitochondrial mass was seen in all T cell subsets in RRMM but with relatively suppressed reactive oxygen species and mitochondrial membrane potential, indicating mitochondrial dysfunction. These findings highlight that anti-MM and ASCT therapies perturb the composition of the T cell compartment and drive substantial metabolic remodeling, which may affect the fitness of T cells for immunotherapies. This is particularly pertinent to chimeric antigen receptor (CAR)-T therapy, which might be more efficacious if T cells were stored prior to ASCT rather than at relapse.
Collapse
Affiliation(s)
- Rachel Elizabeth Cooke
- Australian Cancer Research Foundation Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Kylie Margaret Quinn
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hang Quach
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Simon Harrison
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Henry Miles Prince
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rachel Koldej
- Australian Cancer Research Foundation Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - David Ritchie
- Australian Cancer Research Foundation Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Wang J, Zheng Y, Tu C, Zhang H, Vanderkerken K, Menu E, Liu J. Identification of the immune checkpoint signature of multiple myeloma using mass cytometry-based single-cell analysis. Clin Transl Immunology 2020; 9:e01132. [PMID: 32355560 PMCID: PMC7190397 DOI: 10.1002/cti2.1132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES New targets or strategies are needed to increase the success of immune checkpoint-based immunotherapy for multiple myeloma (MM). However, immune checkpoint signals in MM microenvironment have not been fully elucidated. Here, we aimed to have a broad overview of the different immune subsets and their immune checkpoint status, within the MM microenvironment, and to provide novel immunotherapeutic targets to treat MM patients. METHODS We performed immune checkpoint profiling of bone marrow (BM) samples from MM patients and healthy controls using mass cytometry. With high-dimensional single-cell analysis of 30 immune proteins containing 10 pairs of immune checkpoint axes in 0.55 million of BM cells, an immune landscape of MM was mapped. RESULTS We identified an abnormality of immune cell composition by demonstrating a significant increase in activated CD4 T, CD8 T, CD8+ natural killer T-like and NK cells in MM BM. Our data suggest a correlation between MM cells and immune checkpoint phenotypes and expand the view of MM immune signatures. Specifically, several critical immune checkpoints, such as programmed cell death 1 (PD-1)/PD ligand 2, galectin-9/T-cell immunoglobulin mucin-3, and inducible T-cell costimulator (ICOS)/ICOS ligand, on both MM and immune effector cells and a number of activated PD-1+ CD8 T cells lacking CD28 were distinguished in MM patients. CONCLUSION A clear interaction between MM cells and the surrounding immune cells was established, leading to immune checkpoint dysregulation. The analysis of the immune landscape enhances our understanding of the MM immunological milieu and proposes novel targets for improving immune checkpoint blockade-based MM immunotherapy.
Collapse
Affiliation(s)
- Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationState Key Laboratory of Respiratory DiseaseSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Yongjiang Zheng
- Department of HematologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationState Key Laboratory of Respiratory DiseaseSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationState Key Laboratory of Respiratory DiseaseSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Karin Vanderkerken
- Department of Hematology and ImmunologyMyeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Eline Menu
- Department of Hematology and ImmunologyMyeloma Center BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationState Key Laboratory of Respiratory DiseaseSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
28
|
Lombard-Banek C, Schiel JE. Mass Spectrometry Advances and Perspectives for the Characterization of Emerging Adoptive Cell Therapies. Molecules 2020; 25:E1396. [PMID: 32204371 PMCID: PMC7144572 DOI: 10.3390/molecules25061396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy is an emerging anti-cancer modality, whereby the patient's own immune cells are engineered to express T-cell receptor (TCR) or chimeric antigen receptor (CAR). CAR-T cell therapies have advanced the furthest, with recent approvals of two treatments by the Food and Drug Administration of Kymriah (trisagenlecleucel) and Yescarta (axicabtagene ciloleucel). Recent developments in proteomic analysis by mass spectrometry (MS) make this technology uniquely suited to enable the comprehensive identification and quantification of the relevant biochemical architecture of CAR-T cell therapies and fulfill current unmet needs for CAR-T product knowledge. These advances include improved sample preparation methods, enhanced separation technologies, and extension of MS-based proteomic to single cells. Innovative technologies such as proteomic analysis of raw material quality attributes (MQA) and final product quality attributes (PQA) may provide insights that could ultimately fuel development strategies and lead to broad implementation.
Collapse
Affiliation(s)
- Camille Lombard-Banek
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - John E. Schiel
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| |
Collapse
|
29
|
Caers J. Mass cytometry in POEMS (polyneuropathy, organomegaly, endocrinopathy, M-protein, skin changes) syndrome: looking for a needle in a haystack. Br J Haematol 2020; 190:16-17. [PMID: 32125694 DOI: 10.1111/bjh.16554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jo Caers
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium.,Department of Hematology, CHU de Liège, Liège, Belgium
| |
Collapse
|
30
|
Kourelis TV, Jevremovic D, Jessen E, Dasari S, Villasboas JC, Dispenzieri A, Kumar S. Mass cytometry identifies expansion of double positive and exhausted T cell subsets in the tumour microenvironment of patients with POEMS syndrome. Br J Haematol 2020; 190:79-83. [PMID: 32080834 DOI: 10.1111/bjh.16522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 11/28/2022]
Abstract
We sought to dissect the tumour microenvironment in a small cohort (N = 10) of patients with POEMS at diagnosis and after therapy using mass cytometry. We included 10 MGUS patients as controls. We identified 29 immune cell subsets in the CD45+ and CD3+ compartments. Double positive T cells and PD-1 positive CD4 T cells were expanded and naïve CD4 T cells were decreased in the bone marrow of patients with newly diagnosed/progressing POEMS. These findings provide evidence for possible antigenic-driven selection as a driver of disease pathogenesis in POEMS.
Collapse
Affiliation(s)
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Erik Jessen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jose C Villasboas
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Angela Dispenzieri
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|