1
|
Arenas V, Castaño JL, Domínguez JJ, Yáñez L, Pipaón C. Distinct NF-kB Regulation Favors a Synergic Action of Pevonedistat and Laduviglusib in B-Chronic Lymphocytic Leukemia Cells Ex Vivo. Cancers (Basel) 2025; 17:533. [PMID: 39941899 PMCID: PMC11816723 DOI: 10.3390/cancers17030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Chronic lymphocytic leukemia (CLL) remains an incurable B-cell malignancy. B-CLL cells exhibit an extended lifespan in part due to the activation of survival pathways such as NF-kB. A crosstalk between NF-kB and GSK-3β pathways has been reported. NF-kB has also been identified as a primary target of the NEDD8-activating enzyme inhibitor MLN4924. Our objective was to investigate potential synergies of MLN4924 with other NF-kB-targeting agents for the treatment of CLL and elucidate the mechanisms of action underlying this pathway regulation. Methods: To assess the cytotoxic efficacy of the combined ex vivo treatment with CHIR-99021 and MLN4924, we employed 7-AAD staining and XTT viability assays on primary samples from CLL patients. Subsequently, we conducted various analyses to identify the molecular mechanisms underlying the cytotoxic effects of this combination. Results: We discovered a discrepancy between the mRNA and protein levels of IkBɑ and provided evidence of translational control over its expression. This observation may explain why, unlike other cell types, B-CLL cells did not activate NF-kB signaling following inhibition of GSK-3ß. Furthermore, we describe a synergistic effect between a specific GSK-3ß inhibitor, CHIR-99021/Laduviglusib, and the NEDD8-activating enzyme inhibitor MLN4924/Pevonedistat, at doses that only slightly affect healthy B cell viability ex vivo. We investigated the molecular basis of this co-induction of cell death by analyzing the alterations in apoptosis-related gene expression. We found that the combinational treatment enhances a reduction in BCL2 mRNA expression levels, providing an alternative approach for BCL-2 inhibition in CLL that could have therapeutic implications for the treatment of refractory CLL cases. Conclusions: our findings revealed a unique interaction between GSK-3ß and NF-kB pathways in CLL and their regulation of BCL2 expression.
Collapse
Affiliation(s)
- Víctor Arenas
- Molecular Hematology Laboratory, Marqués de Valdecilla Research Institute, 39008 Santander, Spain; (V.A.); (J.L.C.)
| | - Jose Luis Castaño
- Molecular Hematology Laboratory, Marqués de Valdecilla Research Institute, 39008 Santander, Spain; (V.A.); (J.L.C.)
| | - Juan José Domínguez
- Hematology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (J.J.D.); (L.Y.)
| | - Lucrecia Yáñez
- Hematology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (J.J.D.); (L.Y.)
| | - Carlos Pipaón
- Molecular Hematology Laboratory, Marqués de Valdecilla Research Institute, 39008 Santander, Spain; (V.A.); (J.L.C.)
| |
Collapse
|
2
|
Claridge SE, Nath S, Baum A, Farias R, Cavallo J, Rizvi NM, De Boni L, Park E, Granados GL, Hauesgen M, Fernandez‐Rodriguez R, Kozan EN, Kanshin E, Huynh KQ, Chen P, Wu K, Ueberheide B, Mosquera JM, Hirsch FR, DeVita RJ, Elemento O, Pauli C, Pan Z, Hopkins BD. Functional genomics pipeline identifies CRL4 inhibition for the treatment of ovarian cancer. Clin Transl Med 2025; 15:e70078. [PMID: 39856363 PMCID: PMC11761363 DOI: 10.1002/ctm2.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The goal of precision oncology is to find effective therapeutics for every patient. Through the inclusion of emerging therapeutics in a high-throughput drug screening platform, our functional genomics pipeline inverts the common paradigm to identify patient populations that are likely to benefit from novel therapeutic strategies. APPROACH Utilizing drug screening data across a panel of 46 cancer cell lines from 11 tumor lineages, we identified an ovarian cancer-specific sensitivity to the first-in-class CRL4 inhibitors KH-4-43 and 33-11. CRL4 (i.e., Cullin-4 RING E3 ubiquitin ligase) is known to be dysregulated in a variety of cancer contexts, making it an attractive therapeutic target. Unlike proteasome inhibitors that are associated with broad toxicity, CRL4 inhibition offers the potential for tumor-specific effects. RESULTS We observed that CRL4 inhibition negatively regulates core gene signatures that are upregulated in ovarian tumors and significantly slowed tumor growth as compared to the standard of care, cisplatin, in OVCAR8 xenografts. Building on this, we performed combination drug screening in conjunction with proteomic and transcriptomic profiling to identify ways to improve the antitumor effects of CRL4 inhibition in ovarian cancer models. CRL4 inhibition consistently resulted in activation of the mitogen-activated protein kinase (MAPK) signaling cascade at both the transcriptomic and protein levels, suggesting that survival signaling is induced in response to CRL4 inhibition. These observations were concordant with the results of the combination drug screens in seven ovarian cancer cell lines that showed CRL4 inhibition cooperates with MEK inhibition. Preclinical studies in OVCAR8 and A2780 xenografts confirmed the therapeutic potential of the combination of KH-4-43 and trametinib, which extended overall survival and slowed tumor progression relative to either single agent or the standard of care. CONCLUSIONS Together, these data demonstrate the prospective utility of functional modeling pipelines for therapeutic development and underscore the clinical potential of CRL4 inhibition in the ovarian cancer context. HIGHLIGHTS A precision medicine pipeline identifies ovarian cancer sensitivity to CRL4 inhibitors. CRL4 inhibition induces activation of MAPK signalling as identified by RNA sequencing, proteomics, and phosphoproteomics. Inhibitor combinations that target both CRL4 and this CRL4 inhibitor-induced survival signalling enhance ovarian cancer sensitivity to treatment.
Collapse
Affiliation(s)
- Sally E. Claridge
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shalini Nath
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Anneliese Baum
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Richard Farias
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Julie‐Ann Cavallo
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nile M. Rizvi
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lamberto De Boni
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eric Park
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Genesis Lara Granados
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Matthew Hauesgen
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruben Fernandez‐Rodriguez
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eda Nur Kozan
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Evgeny Kanshin
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkNew YorkUSA
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
| | - Khoi Q. Huynh
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Peng‐Jen Chen
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kenneth Wu
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkNew YorkUSA
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Fred R. Hirsch
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Medicine, Hematology, and Medical OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Robert J. DeVita
- Proteomics LaboratoryNew York University School of MedicineNew YorkNew YorkUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
- Institute for Computational Biomedicine, Weill Cornell MedicineNew YorkNew YorkUSA
- Clinical and Translational Science Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Chantal Pauli
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Zhen‐Qiang Pan
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Benjamin D. Hopkins
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York Presbyterian HospitalNew YorkNew YorkUSA
| |
Collapse
|
3
|
Wang J, Zhang J, Shi M, Ma X, Chen S, Zhou Q, Zhu C. Metabolomic analysis revealed the inflammatory and oxidative stress regulation in response to Vibrio infection in Plectropomus leopardus. JOURNAL OF FISH BIOLOGY 2024; 105:1694-1702. [PMID: 39180247 DOI: 10.1111/jfb.15905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Frequent outbreaks of infectious diseases in aquaculture have led to significant economic losses. The leopard coral grouper (Plectropomus leopardus) often suffers from vibriosis. Improving host immunity presents a superior strategy for disease control, with minimal side effects compared to the use of antibiotics, highlighting the necessity of exploring the mechanisms underlying the fish's response to pathogen infections. Here, we conducted a comparative metabolomic analysis on the livers of the P. leopardus infected with Vibrio harveyi. A total of 1124 differential metabolites (DMs) were identified, with 190, 218, 359, and 353 DMs being identified at 6, 12, 24, and 48 h post-infection (hpi), respectively. Then, based on the time series analysis, we found that the lipid metabolism pathways were modulated in response to the Vibrio infection, with an increase in the quantity of eicosanoids and gycerophospholipids (GPLs), as well as a decrease in the quantity of bile acids (BAs), vitamin D, and sex hormones. Furthermore, 13 enriched pathways involving 31 DMs were identified through KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses. We identified histamine, 15(S)-HpETE, and anandamide in the transient receptor potential (TRP) channels pathway, as well as (7S,8S)-DiHODE, 5S,8R-DiHODE, and 13(S)-HpODE in the linoleic acid (LA) metabolism pathway. The DM levels increased, which may be attributed to inflammation. The DMs in the thyroid hormone synthesis pathway were identified, and the contents of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) decreased, which may be crucial in antioxidants. Our findings highlighted the dynamic adjustments in lipid metabolism and the response to inflammation and oxidative stress during the infection of V. harveyi in P. leopardus. This study not only deepens our understanding of the metabolic underpinnings of fish immune responses but also lays the groundwork for research into functional metabolomics and mechanisms of disease resistance.
Collapse
Affiliation(s)
- Jie Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangdong Research Centre on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Junwei Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Meng Shi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xinran Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Qian Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangdong Research Centre on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
4
|
Yang G, Wang Y, Hu S, Chen J, Chen L, Miao H, Li N, Luo H, He Y, Qian Y, Miao C, Feng R. Inhibition of neddylation disturbs zygotic genome activation through histone modification change and leads to early development arrest in mouse embryos. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167292. [PMID: 38871031 DOI: 10.1016/j.bbadis.2024.167292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Post-translational modification and fine-tuned protein turnover are of great importance in mammalian early embryo development. Apart from the classic protein degradation promoting ubiquitination, new forms of ubiquitination-like modification are yet to be fully understood. Here, we demonstrate the function and potential mechanisms of one ubiquitination-like modification, neddylation, in mouse preimplantation embryo development. Treated with specific inhibitors, zygotes showed a dramatically decreased cleavage rate and almost all failed to enter the 4-cell stage. Transcriptional profiling showed genes were differentially expressed in pathways involving cell fate determination and cell differentiation, including several down-regulated zygotic genome activation (ZGA) marker genes. A decreased level of phosphorylated RNA polymerase II was detected, indicating impaired gene transcription inside the embryo cell nucleus. Proteomic data showed that differentially expressed proteins were enriched in histone modifications. We confirmed the lowered in methyltransferase (KMT2D) expression and a decrease in histone H3K4me3. At the same time, acetyltransferase (CBP/p300) reduced, while deacetylase (HDAC6) increased, resulting in an attenuation in histone H3K27ac. Additionally, we observed the up-regulation in YAP1 and RPL13 activities, indicating potential abnormalities in the downstream response of Hippo signaling pathway. In summary, we found that inhibition of neddylation induced epigenetic changes in early embryos and led to abnormalities in related downstream signaling pathways. This study sheds light upon new forms of ubiquitination regulating mammalian embryonic development and may contribute to further investigation of female infertility pathology.
Collapse
Affiliation(s)
- Guangping Yang
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Yangzhou Maternal and Child Health Care Hospital Affiliated to Yangzhou University, China
| | - Yingnan Wang
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Saifei Hu
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianhua Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Liangliang Chen
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hui Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Na Li
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China
| | - Hui Luo
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yanni He
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun Qian
- Clinical Center of Reproductive Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, Shanxi 046000, China.
| | - Ruizhi Feng
- State Key Laboratory of Reproduction Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Clinical Center of Reproductive Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China; Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu 215005, China.
| |
Collapse
|
5
|
Qin X, Han X, Sun Y. Discovery of small molecule inhibitors of neddylation catalyzing enzymes for anticancer therapy. Biomed Pharmacother 2024; 179:117356. [PMID: 39214012 DOI: 10.1016/j.biopha.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Protein neddylation, a type of post-translational modifications, involves the transfer of the ubiquitin-like protein NEDD8 to the lysine residues of a target substrate, which is catalyzed by the NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). Cullin family proteins, core components of Cullin-RING E3 ubiquitin ligases (CRLs), are the most well-known physiological substrates of neddylation. CRLs, activated upon cullin neddylation, promote the ubiquitination of a variety of key signaling proteins for proteasome degradation, thereby regulating many critical biological functions. Abnormal activation of neddylation enzymes as well as CRLs has been frequently observed in various human cancers and is associated with poor prognosis for cancer patients. Consequently, targeting neddylation has emerged as a promising strategy for the development of novel anticancer therapeutics. This review first briefly introduces the properties of protein neddylation and its role in cancer, and then systematically summarizes all reported chemical inhibitors of the three neddylation enzymes, providing a focused, up to date, and comprehensive resource in the discovery and development of these small molecule inhibitors.
Collapse
Affiliation(s)
- Xiangshuo Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Foster JH, Reid JM, Minard C, Woodfield S, Denic KZ, Isikwei E, Voss SD, Nelson M, Liu X, Berg SL, Fox E, Weigel BJ. Phase 1 study of NEDD8 activating enzyme inhibitor pevonedistat in combination with chemotherapy in pediatric patients with recurrent or refractory solid tumors (ADVL1615). Eur J Cancer 2024; 209:114241. [PMID: 39096851 PMCID: PMC11392690 DOI: 10.1016/j.ejca.2024.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE The objective of this study was to determine the recommended Phase 2 dose (RP2D) of pevonedistat, a first in class inhibitor of NEDD8 activating enzyme, in combination with irinotecan (IRN) and temozolomide (TMZ) in children with cancer. METHODS This Phase 1 study used a rolling 6 design to evaluate escalating doses of pevonedistat in combination with standard doses of IRN and TMZ in pediatric patients with recurrent/refractory solid or CNS tumors. During cycle 1, pevonedistat was administered intravenously on days 1, 8, 10, and 12, with IRN (IV, 50 mg/m2) and TMZ (orally, 100 mg/m2), on days 8-12 of a 28-day cycle. In subsequent cycles, pevonedistat was administered on days 1, 3, and 5, with IRN/TMZ on days 1-5 of a 21-day cycle. RESULTS Thirty patients enrolled; all were eligible and evaluable for toxicity. Six patients each enrolled on pevonedistat dose levels (DL) 1 (15 mg/m2), 2 (20 mg/m2), 3 (25 mg/m2) and 4 (35 mg/m2) as well as an expanded pharmacokinetic (PK) cohort at DL4. The maximum tolerated dose (MTD) was not exceeded. 2/12 (17 %) patients treated at the RP2D (35 mg/m2) experienced a cycle 1 dose limiting toxicity (DLT). IRN is unlikely to affect the pharmacokinetics of pevonedistat. Two patients had a partial response and 6 patients had prolonged stable disease (> 6 cycles). CONCLUSIONS Pevonedistat in combination with IRN/TMZ is well tolerated in children with solid or CNS tumors. The RP2D of pevonedistat is 35 mg/m2 on days 1, 3, 5 in combination with IRN/TMZ.
Collapse
Affiliation(s)
- Jennifer H Foster
- Texas Children's Hospital, Baylor College of Medicine, Dan L Duncan Comprehensive Cancer Center, Houston, TX, USA.
| | | | - Charles Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Woodfield
- Texas Children's Hospital, Baylor College of Medicine, Dan L Duncan Comprehensive Cancer Center, Houston, TX, USA
| | | | | | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marvin Nelson
- Children's Hospital Los Angeles, Radiology, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Xiaowei Liu
- Children's Oncology Group, Monrovia, CA, USA
| | - Stacey L Berg
- Texas Children's Hospital, Baylor College of Medicine, Dan L Duncan Comprehensive Cancer Center, Houston, TX, USA
| | - Elizabeth Fox
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brenda J Weigel
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Papakyriacou I, Kutkaite G, Rúbies Bedós M, Nagarajan D, Alford LP, Menden MP, Mao Y. Loss of NEDD8 in cancer cells causes vulnerability to immune checkpoint blockade in triple-negative breast cancer. Nat Commun 2024; 15:3581. [PMID: 38678024 PMCID: PMC11055868 DOI: 10.1038/s41467-024-47987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Immune checkpoint blockade therapy aims to activate the immune system to eliminate cancer cells. However, clinical benefits are only recorded in a subset of patients. Here, we leverage genome-wide CRISPR/Cas9 screens in a Tumor-Immune co-Culture System focusing on triple-negative breast cancer (TNBC). We reveal that NEDD8 loss in cancer cells causes a vulnerability to nivolumab (anti-PD-1). Genetic deletion of NEDD8 only delays cell division initially but cell proliferation is unaffected after recovery. Since the NEDD8 gene is commonly essential, we validate this observation with additional CRISPR screens and uncover enhanced immunogenicity in NEDD8 deficient cells using proteomics. In female immunocompetent mice, PD-1 blockade lacks efficacy against established EO771 breast cancer tumors. In contrast, we observe tumor regression mediated by CD8+ T cells against Nedd8 deficient EO771 tumors after PD-1 blockade. In essence, we provide evidence that NEDD8 is conditionally essential in TNBC and presents as a synergistic drug target for PD-1/L1 blockade therapy.
Collapse
Affiliation(s)
- Irineos Papakyriacou
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ginte Kutkaite
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Marta Rúbies Bedós
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Divya Nagarajan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Liam P Alford
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael P Menden
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Yumeng Mao
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Chiba M, Shimono J, Suto K, Ishio T, Endo T, Goto H, Hasegawa H, Maeda M, Teshima T, Yang Y, Nakagawa M. Whole-genome CRISPR screening identifies molecular mechanisms of PD-L1 expression in adult T-cell leukemia/lymphoma. Blood 2024; 143:1379-1390. [PMID: 38142436 PMCID: PMC11033594 DOI: 10.1182/blood.2023021423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy with a poor prognosis and limited treatment options. Programmed cell death ligand 1(PD-L1) is recognized to be involved in the pathobiology of ATLL. However, what molecules control PD-L1 expression and whether genetic or pharmacological intervention might modify PD-L1 expression in ATLL cells are still unknown. To comprehend the regulatory mechanisms of PD-L1 expression in ATLL cells, we performed unbiased genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screening in this work. In ATLL cells, we discovered that the neddylation-associated genes NEDD8, NAE1, UBA3, and CUL3 negatively regulated PD-L1 expression, whereas STAT3 positively did so. We verified, in line with the genetic results, that treatment with the JAK1/2 inhibitor ruxolitinib or the neddylation pathway inhibitor pevonedistat resulted in a decrease in PD-L1 expression in ATLL cells or an increase in it, respectively. It is significant that these results held true regardless of whether ATLL cells had the PD-L1 3' structural variant, a known genetic anomaly that promotes PD-L1 overexpression in certain patients with primary ATLL. Pevonedistat alone showed cytotoxicity for ATLL cells, but compared with each single modality, pevonedistat improved the cytotoxic effects of the anti-PD-L1 monoclonal antibody avelumab and chimeric antigen receptor (CAR) T cells targeting PD-L1 in vitro. As a result, our work provided insight into a portion of the complex regulatory mechanisms governing PD-L1 expression in ATLL cells and demonstrated the in vitro preliminary preclinical efficacy of PD-L1-directed immunotherapies by using pevonedistat to upregulate PD-L1 in ATLL cells.
Collapse
Affiliation(s)
- Masahiro Chiba
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Joji Shimono
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Keito Suto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takashi Ishio
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Michiyuki Maeda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
9
|
Kong T, Gaudin N, Gordon K, Cox MJ, Zhou AW, Oh ST. A phase I trial of pevonedistat in combination with ruxolitinib for the treatment of myelofibrosis. Ther Adv Hematol 2024; 15:20406207241237607. [PMID: 38481947 PMCID: PMC10935761 DOI: 10.1177/20406207241237607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Janus kinase 2 (JAK2) inhibitors such as ruxolitinib have become standard-of-care therapy for patients with myeloproliferative neoplasms (MPNs); however, activation of alternate oncogenic pathways including nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) has limited durable response as single-agent therapy. With the rationale of targeting both pathways, we conducted a phase I dose escalation trial of pevonedistat in combination with ruxolitinib for the treatment of patients with myelofibrosis (NCT03386214). The primary objective was to assess the safety and tolerability of combination therapy with additional objectives of treatment efficacy and alterations of biomarkers. There were no dose-limiting toxicities observed with most adverse events being limited to grades 1/2. In secondary measures, anemia response was observed in two patients. Pro-inflammatory cytokines and iron parameters were longitudinally assessed, which revealed suppression of interleukin-6 and interferon-gamma in a dose-dependent manner across a subset of patients. These results suggest that combination therapy targeting both JAK2 and NFκB may hold clinical merit for MPN patients.
Collapse
Affiliation(s)
- Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Nicole Gaudin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Karyn Gordon
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Maggie J. Cox
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Amy W. Zhou
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8125, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
10
|
Fabbri N, Mussetti A, Sureda A. Second-line treatment of diffuse large B-cell lymphoma: Evolution of options. Semin Hematol 2023; 60:305-312. [PMID: 38342663 DOI: 10.1053/j.seminhematol.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 02/13/2024]
Abstract
In the era of immunochemotherapy, approximately 60%-70% of diffuse large B-cell lymphoma (DLBCL) patients achieve remission with first-line rituximab-based chemoimmunotherapy. However, 30%-40% relapse after initial response to first-line therapy and, out of them, 20%-50% are refractory or experience early relapse. The second-line therapy algorithm for DLBCL has recently evolved, thanks to the recent approval of new therapeutic agents or their combinations. The new guidelines suggest a stratification of relapsed/refractory (R/R) DLBCL based on the time to relapse. For transplant-eligible patients, autologous stem cell transplant remains the preferred option when the patient relapses after 12 months from diagnosis, while anti-CD19 CART-cell therapy is the current preferred choice for high-risk DLBCL, defined as primary refractory or relapse ≤12 months. For transplant-ineligible or CAR T-cell therapy-ineligible patients, the therapeutic arsenal historically lacked effective options. However, new therapeutic options, including polatuzumab vedotin combined with bendamustine-rituximab and tafasitamab with lenalidomide, have been recently approved, and novel agents such as loncastuximab tesirine, selinexor, anti-CD19 CAR T-cell therapy, and bispecific antibodies have shown promising efficacy and manageable safety in this setting offering new hope to patients in this challenging scenario.
Collapse
Affiliation(s)
- N Fabbri
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - A Mussetti
- Clinical Hematology Department, Institut Català d'Oncologia - L'Hospitalet de Llobregat, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - A Sureda
- Clinical Hematology Department, Institut Català d'Oncologia - L'Hospitalet de Llobregat, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Wang X, Chen C, Vuong D, Rodriguez-Rodriguez S, Lam V, Roleder C, Wang JH, Thiruvengadam SK, Berger A, Pennock N, Torka P, Hernandez-Ilizaliturri F, Siddiqi T, Wang L, Xia Z, Danilov AV. Pharmacologic targeting of Nedd8-activating enzyme reinvigorates T-cell responses in lymphoid neoplasia. Leukemia 2023; 37:1324-1335. [PMID: 37031300 PMCID: PMC10244170 DOI: 10.1038/s41375-023-01889-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Neddylation is a sequential enzyme-based process which regulates the function of E3 Cullin-RING ligase (CRL) and thus degradation of substrate proteins. Here we show that CD8+ T cells are a direct target for therapeutically relevant anti-lymphoma activity of pevonedistat, a Nedd8-activating enzyme (NAE) inhibitor. Pevonedistat-treated patient-derived CD8+ T cells upregulated TNFα and IFNγ and exhibited enhanced cytotoxicity. Pevonedistat induced CD8+ T-cell inflamed microenvironment and delayed tumor progression in A20 syngeneic lymphoma model. This anti-tumor effect lessened when CD8+ T cells lost the ability to engage tumors through MHC class I interactions, achieved either through CD8+ T-cell depletion or genetic knockout of B2M. Meanwhile, loss of UBE2M in tumor did not alter efficacy of pevonedistat. Concurrent blockade of NAE and PD-1 led to enhanced tumor immune infiltration, T-cell activation and chemokine expression and synergistically restricted tumor growth. shRNA-mediated knockdown of HIF-1α, a CRL substrate, abrogated the in vitro effects of pevonedistat, suggesting that NAE inhibition modulates T-cell function in HIF-1α-dependent manner. scRNA-Seq-based clinical analyses in lymphoma patients receiving pevonedistat therapy demonstrated upregulation of interferon response signatures in immune cells. Thus, targeting NAE enhances the inflammatory T-cell state, providing rationale for checkpoint blockade-based combination therapy.
Collapse
Affiliation(s)
| | - Canping Chen
- Computational Biology Program, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Dan Vuong
- City of Hope National Medical Center, Duarte, CA, USA
| | | | - Vi Lam
- City of Hope National Medical Center, Duarte, CA, USA
| | - Carly Roleder
- City of Hope National Medical Center, Duarte, CA, USA
| | - Jing H Wang
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Nathan Pennock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Pallawi Torka
- Division of Hematology & Medical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Tanya Siddiqi
- City of Hope National Medical Center, Duarte, CA, USA
| | - Lili Wang
- City of Hope National Medical Center, Duarte, CA, USA
| | - Zheng Xia
- Computational Biology Program, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|