1
|
Babutzka S, Gehrke M, Papadopoulou A, Diedrichs-Möhring M, Giannaki M, Hennis L, Föhr B, Kooyman C, Osterman A, Yannaki E, Wildner G, Ammer H, Michalakis S. A novel platform for engineered AAV-based vaccines. Mol Ther Methods Clin Dev 2025; 33:101418. [PMID: 40008090 PMCID: PMC11850754 DOI: 10.1016/j.omtm.2025.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Engineering of adeno-associated virus (AAV) capsids allowed for the development of gene therapy vectors with improved tropism and enhanced transduction efficiency. Capsid engineering can also be used to adapt the AAV technology for applications outside gene therapy. Here, we investigated modified AAV capsids as scaffolds for the presentation of large immunogenic antigens to elicit a strong and specific immune response against pathogens. Using SARS-CoV-2 as a model pathogen, we introduced ∼200 amino acids of the SARS-CoV-2 receptor-binding domain (RBD) into a surface-exposed variable loop region of AAV2 and AAV9, resulting in AAV2.RBD and AAV9.RBD capsids (AAV.RBDs). This engineering endowed AAV.RBDs with SARS-CoV-2-like properties, such as angiotensin-converting enzyme 2 receptor affinity. In line with this, AAV.RBDs were neutralized by sera from human donors vaccinated against SARS-CoV-2. When administered subcutaneously to rabbits, AAV.RBDs elicited a strong humoral response against SARS-CoV-2 RBD. Moreover, the AAV.RBDs were able to trigger RBD-specific cellular immune responses in peripheral human lymphocytes. In conclusion, this novel AAV-based next-generation vaccine platform allows for the presentation of large antigenic sequences to elicit strong and specific immune responses. This versatile vaccine technology could be explored in the context of diseases where conventional immunization approaches have been unsuccessful.
Collapse
Affiliation(s)
- Sabrina Babutzka
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Miranda Gehrke
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 570 10 Thessaloniki, Greece
| | | | - Maria Giannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 570 10 Thessaloniki, Greece
| | - Lena Hennis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Bastian Föhr
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Cale Kooyman
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, LMU Munich, 80336 Munich, Germany
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 570 10 Thessaloniki, Greece
- Department of Medicine, University of Washington, Seattle, WA 91895, USA
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Hermann Ammer
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
2
|
Brown GD, Ballou ER, Bates S, Bignell EM, Borman AM, Brand AC, Brown AJP, Coelho C, Cook PC, Farrer RA, Govender NP, Gow NAR, Hope W, Hoving JC, Dangarembizi R, Harrison TS, Johnson EM, Mukaremera L, Ramsdale M, Thornton CR, Usher J, Warris A, Wilson D. The pathobiology of human fungal infections. Nat Rev Microbiol 2024; 22:687-704. [PMID: 38918447 DOI: 10.1038/s41579-024-01062-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.
Collapse
Affiliation(s)
- Gordon D Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Elizabeth R Ballou
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elaine M Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Andrew M Borman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Carolina Coelho
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Nelesh P Govender
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - William Hope
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - J Claire Hoving
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rachael Dangarembizi
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Thomas S Harrison
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elizabeth M Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Liliane Mukaremera
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark Ramsdale
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Braidotti S, Granzotto M, Curci D, Faganel Kotnik B, Maximova N. Advancing Allogeneic Hematopoietic Stem Cell Transplantation Outcomes through Immunotherapy: A Comprehensive Review of Optimizing Non-CAR Donor T-Lymphocyte Infusion Strategies. Biomedicines 2024; 12:1853. [PMID: 39200317 PMCID: PMC11351482 DOI: 10.3390/biomedicines12081853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Optimized use of prophylactic or therapeutic donor lymphocyte infusions (DLI) is aimed at improving clinical outcomes in patients with malignant and non-malignant hematological diseases who have undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT). Memory T-lymphocytes (CD45RA-/CD45RO+) play a crucial role in immune reconstitution post-HSCT. The infusion of memory T cells is proven to be safe and effective in improving outcomes due to the enhanced reconstitution of immunity and increased protection against viremia, without exacerbating graft-versus-host disease (GVHD) risks. Studies indicate their persistence and efficacy in combating viral pathogens, suggesting a viable therapeutic avenue for patients. Conversely, using virus-specific T cells for viremia control presents challenges, such as regulatory hurdles, cost, and production time compared to CD45RA-memory T lymphocytes. Additionally, the modulation of regulatory T cells (Tregs) for therapeutic use has become an important area of investigation in GVHD, playing a pivotal role in immune tolerance modulation, potentially mitigating GVHD and reducing pharmacological immunosuppression requirements. Finally, donor T cell-mediated graft-versus-leukemia immune responses hold promise in curbing relapse rates post-HSCT, providing a multifaceted approach to therapeutic intervention in high-risk disease scenarios. This comprehensive review underscores the multifaceted roles of T lymphocytes in HSCT outcomes and identifies avenues for further research and clinical application.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Marilena Granzotto
- Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), 34125 Trieste, Italy;
| | - Debora Curci
- Advanced Translational Diagnostic Laboratory, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Barbara Faganel Kotnik
- Department of Hematology and Oncology, University Children’s Hospital, 1000 Ljubljana, Slovenia;
| | - Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| |
Collapse
|
4
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Nasiri-Jahrodi A, Barati M, Namdar Ahmadabad H, Badali H, Morovati H. A comprehensive review on the role of T cell subsets and CAR-T cell therapy in Aspergillus fumigatus infection. Hum Immunol 2024; 85:110763. [PMID: 38350795 DOI: 10.1016/j.humimm.2024.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Understanding the immune response to Aspergillus fumigatus, a common cause of invasive fungal infections (IFIs) in immunocompromised individuals, is critical for developing effective treatments. Tcells play a critical role in the immune response to A. fumigatus, with different subsets having distinct functions. Th1 cells are important for controlling fungal growth, while Th2 cells can exacerbate infection. Th17 cells promote the clearance of fungi indirectly by stimulating the production of various antimicrobial peptides from epithelial cells and directly by recruiting and activating neutrophils. Regulatory T cells have varied functions in A.fumigatus infection. They expand after exposure to A. fumigatus conidia and prevent organ injury and fungal sepsis by downregulating inflammation and inhibiting neutrophils or suppressing Th17 cells. Regulatory T cells also block Th2 cells to stop aspergillosis allergies. Immunotherapy with CAR T cells is a promising treatment for fungal infections, including A. fumigatus infections, especially in immunocompromised individuals. However, further research is needed to fully understand the mechanisms underlying the immune response to A. fumigatus and to develop effective immunotherapies with CAR-T cells for this infection. This literature review explores the role of Tcell subsets in A.fumigatus infection, and the effects of CAR-T cell therapy on this fungal infection.
Collapse
Affiliation(s)
- Abozar Nasiri-Jahrodi
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Barati
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hasan Namdar Ahmadabad
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Morovati
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Papadopoulou A, Karavalakis G, Papadopoulou E, Xochelli A, Bousiou Z, Vogiatzoglou A, Papayanni PG, Georgakopoulou A, Giannaki M, Stavridou F, Vallianou I, Kammenou M, Varsamoudi E, Papadimitriou V, Giannaki C, Sileli M, Stergiouda Z, Stefanou G, Kourlaba G, Gounelas G, Triantafyllidou M, Siotou E, Karaglani A, Zotou E, Chatzika G, Boukla A, Papalexandri A, Koutra MG, Apostolou D, Pitsiou G, Morfesis P, Doumas M, Karampatakis T, Kapravelos N, Bitzani M, Theodorakopoulou M, Serasli E, Georgolopoulos G, Sakellari I, Fylaktou A, Tryfon S, Anagnostopoulos A, Yannaki E. SARS-CoV-2-specific T cell therapy for severe COVID-19: a randomized phase 1/2 trial. Nat Med 2023; 29:2019-2029. [PMID: 37460756 DOI: 10.1038/s41591-023-02480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
Despite advances, few therapeutics have shown efficacy in severe coronavirus disease 2019 (COVID-19). In a different context, virus-specific T cells have proven safe and effective. We conducted a randomized (2:1), open-label, phase 1/2 trial to evaluate the safety and efficacy of off-the-shelf, partially human leukocyte antigen (HLA)-matched, convalescent donor-derived severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells (CoV-2-STs) in combination with standard of care (SoC) in patients with severe COVID-19 compared to SoC during Delta variant predominance. After a dose-escalated phase 1 safety study, 90 participants were randomized to receive CoV-2-ST+SoC (n = 60) or SoC only (n = 30). The co-primary objectives of the study were the composite of time to recovery and 30-d recovery rate and the in vivo expansion of CoV-2-STs in patients receiving CoV-2-ST+SoC over SoC. The key secondary objective was survival on day 60. CoV-2-ST+SoC treatment was safe and well tolerated. The study met the primary composite endpoint (CoV-2-ST+SoC versus SoC: recovery rate 65% versus 38%, P = 0.017; median recovery time 11 d versus not reached, P = 0.052, respectively; rate ratio for recovery 1.71 (95% confidence interval 1.03-2.83, P = 0.036)) and the co-primary objective of significant CoV-2-ST expansion compared to SοC (CoV-2-ST+SoC versus SoC, P = 0.047). Overall, in hospitalized patients with severe COVID-19, adoptive immunotherapy with CoV-2-STs was feasible and safe. Larger trials are needed to strengthen the preliminary evidence of clinical benefit in severe COVID-19. EudraCT identifier: 2021-001022-22 .
Collapse
Affiliation(s)
- Anastasia Papadopoulou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - George Karavalakis
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Efthymia Papadopoulou
- Department of Respiratory Medicine, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki, Greece
| | - Zoi Bousiou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - Penelope-Georgia Papayanni
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aphrodite Georgakopoulou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Giannaki
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Fani Stavridou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Ioanna Vallianou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Maria Kammenou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Evangelia Varsamoudi
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Vasiliki Papadimitriou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Chrysavgi Giannaki
- 'A' Intensive Care Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Maria Sileli
- 'B' Intensive Care Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Zoi Stergiouda
- Department of Anesthesiology, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, Tripolis, Greece
| | | | - Maria Triantafyllidou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Eleni Siotou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - Eleni Zotou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Chatzika
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki, Greece
| | - Anna Boukla
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki, Greece
| | - Apostolia Papalexandri
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Maria-Georgia Koutra
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Dimitra Apostolou
- Department of Respiratory Failure, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Pitsiou
- Department of Respiratory Failure, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petros Morfesis
- 1st Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michalis Doumas
- 2nd Propedeutic Department of Internal Medicine, Hippokrateio Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Militsa Bitzani
- 'A' Intensive Care Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Maria Theodorakopoulou
- National and Kapodistrian University of Athens, Evaggelismos General Hospital, Athens, Greece
| | - Eva Serasli
- Department of Respiratory Medicine, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Grigorios Georgolopoulos
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Ioanna Sakellari
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki, Greece
| | - Stavros Tryfon
- Department of Respiratory Medicine, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Qadri H, Shah AH, Alkhanani M, Almilaibary A, Mir MA. Immunotherapies against human bacterial and fungal infectious diseases: A review. Front Med (Lausanne) 2023; 10:1135541. [PMID: 37122338 PMCID: PMC10140573 DOI: 10.3389/fmed.2023.1135541] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Nations' ongoing struggles with a number of novel and reemerging infectious diseases, including the ongoing global health issue, the SARS-Co-V2 (severe acute respiratory syndrome coronavirus 2) outbreak, serve as proof that infectious diseases constitute a serious threat to the global public health. Moreover, the fatality rate in humans is rising as a result of the development of severe infectious diseases brought about by multiple drug-tolerant pathogenic microorganisms. The widespread use of traditional antimicrobial drugs, immunosuppressive medications, and other related factors led to the establishment of such drug resistant pathogenic microbial species. To overcome the difficulties commonly encountered by current infectious disease management and control processes, like inadequate effectiveness, toxicities, and the evolution of drug tolerance, new treatment solutions are required. Fortunately, immunotherapies already hold great potential for reducing these restrictions while simultaneously expanding the boundaries of healthcare and medicine, as shown by the latest discoveries and the success of drugs including monoclonal antibodies (MAbs), vaccinations, etc. Immunotherapies comprise methods for treating diseases that specifically target or affect the body's immune system and such immunological procedures/therapies strengthen the host's defenses to fight those infections. The immunotherapy-based treatments control the host's innate and adaptive immune responses, which are effective in treating different pathogenic microbial infections. As a result, diverse immunotherapeutic strategies are being researched more and more as alternative treatments for infectious diseases, leading to substantial improvements in our comprehension of the associations between pathogens and host immune system. In this review we will explore different immunotherapies and their usage for the assistance of a broad spectrum of infectious ailments caused by various human bacterial and fungal pathogenic microbes. We will discuss about the recent developments in the therapeutics against the growing human pathogenic microbial diseases and focus on the present and future of using immunotherapies to overcome these diseases. Graphical AbstractThe graphical abstract shows the therapeutic potential of different types of immunotherapies like vaccines, monoclonal antibodies-based therapies, etc., against different kinds of human Bacterial and Fungal microbial infections.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mustfa Alkhanani
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
8
|
Tischer-Zimmermann S, Salzer E, Bitencourt T, Frank N, Hoffmann-Freimüller C, Stemberger J, Maecker-Kolhoff B, Blasczyk R, Witt V, Fritsch G, Paster W, Lion T, Eiz-Vesper B, Geyeregger R. Rapid and sustained T cell-based immunotherapy against invasive fungal disease via a combined two step procedure. Front Immunol 2023; 14:988947. [PMID: 37090716 PMCID: PMC10114046 DOI: 10.3389/fimmu.2023.988947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Aspergillus fumigatus (Asp) infections constitute a major cause of morbidity and mortality in patients following allogeneic hematopoietic stem cell transplantation (HSCT). In the context of insufficient host immunity, antifungal drugs show only limited efficacy. Faster and increased T-cell reconstitution correlated with a favorable outcome and a cell-based therapy approach strongly indicated successful clearance of fungal infections. Nevertheless, complex and cost- or time-intensive protocols hampered their implementation into clinical application. Methods To facilitate the clinical-scale manufacturing process of Aspergillus fumigatus-specific T cells (ATCs) and to enable immediate (within 24 hours) and sustained (12 days later) treatment of patients with invasive aspergillosis (IA), we adapted and combined two complementary good manufacturing practice (GMP)-compliant approaches, i) the direct magnetic enrichment of Interferon-gamma (IFN-γ) secreting ATCs using the small-scale Cytokine Secretion Assay (CSA) and ii) a short-term in vitro T-cell culture expansion (STE), respectively. We further compared stimulation with two standardized and commercially available products: Asp-lysate and a pool of overlapping peptides derived from different Asp-proteins (PepMix). Results For the fast CSA-based approach we detected IFN-γ+ ATCs after Asp-lysate- as well as PepMix-stimulation but with a significantly higher enrichment efficiency for stimulation with the Asp-lysate when compared to the PepMix. In contrast, the STE approach resulted in comparably high ATC expansion rates by using Asp-lysate or PepMix. Independent of the stimulus, predominantly CD4+ helper T cells with a central-memory phenotype were expanded while CD8+ T cells mainly showed an effector-memory phenotype. ATCs were highly functional and cytotoxic as determined by secretion of granzyme-B and IFN-γ. Discussion For patients with IA, the immediate adoptive transfer of IFN-γ+ ATCs followed by the administration of short-term in vitro expanded ATCs from the same donor, might be a promising therapeutic option to improve the clinical outcome.
Collapse
Affiliation(s)
- Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Elisabeth Salzer
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nelli Frank
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Julia Stemberger
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Volker Witt
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gerhard Fritsch
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Wolfgang Paster
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Thomas Lion
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - René Geyeregger
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Seif M, Kakoschke TK, Ebel F, Bellet MM, Trinks N, Renga G, Pariano M, Romani L, Tappe B, Espie D, Donnadieu E, Hünniger K, Häder A, Sauer M, Damotte D, Alifano M, White PL, Backx M, Nerreter T, Machwirth M, Kurzai O, Prommersberger S, Einsele H, Hudecek M, Löffler J. CAR T cells targeting Aspergillus fumigatus are effective at treating invasive pulmonary aspergillosis in preclinical models. Sci Transl Med 2022; 14:eabh1209. [PMID: 36170447 DOI: 10.1126/scitranslmed.abh1209] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aspergillus fumigatus is a ubiquitous mold that can cause severe infections in immunocompromised patients, typically manifesting as invasive pulmonary aspergillosis (IPA). Adaptive and innate immune cells that respond to A. fumigatus are present in the endogenous repertoire of patients with IPA but are infrequent and cannot be consistently isolated and expanded for adoptive immunotherapy. Therefore, we gene-engineered A. fumigatus-specific chimeric antigen receptor (Af-CAR) T cells and demonstrate their ability to confer antifungal reactivity in preclinical models in vitro and in vivo. We generated a CAR targeting domain AB90-E8 that recognizes a conserved protein antigen in the cell wall of A. fumigatus hyphae. T cells expressing the Af-CAR recognized A. fumigatus strains and clinical isolates and exerted a direct antifungal effect against A. fumigatus hyphae. In particular, CD8+ Af-CAR T cells released perforin and granzyme B and damaged A. fumigatus hyphae. CD8+ and CD4+ Af-CAR T cells produced cytokines that activated macrophages to potentiate the antifungal effect. In an in vivo model of IPA in immunodeficient mice, CD8+ Af-CAR T cells localized to the site of infection, engaged innate immune cells, and reduced fungal burden in the lung. Adoptive transfer of CD8+ Af-CAR T cells conferred greater antifungal efficacy compared to CD4+ Af-CAR T cells and an improvement in overall survival. Together, our study illustrates the potential of gene-engineered T cells to treat aggressive infectious diseases that are difficult to control with conventional antimicrobial therapy and support the clinical development of Af-CAR T cell therapy to treat IPA.
Collapse
Affiliation(s)
- Michelle Seif
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Tamara Katharina Kakoschke
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Klinikum der Universität München, LMU, 80337 München, Germany.,Institut für Infektionsmedizin und Zoonosen, Medizinische Fakultät, LMU, 80539 München, Germany
| | - Frank Ebel
- Institut für Infektionsmedizin und Zoonosen, Medizinische Fakultät, LMU, 80539 München, Germany
| | - Marina Maria Bellet
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Nora Trinks
- Lehrstuhl für Biotechnologie und Biophysik, Biozentrum und RVZ - Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Giorgia Renga
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Marilena Pariano
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Luigina Romani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06132 Perugia, Italy
| | - Beeke Tappe
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - David Espie
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014 Paris, France.,CAR-T Cells Department, Invectys, 75013 Paris, France
| | - Emmanuel Donnadieu
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014 Paris, France.,Equipe labellisée Ligue Contre le Cancer, 75014 Paris, France
| | - Kerstin Hünniger
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany.,Fungal Septomics Research Group, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI), 07743 Jena, Germany
| | - Antje Häder
- Fungal Septomics Research Group, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI), 07743 Jena, Germany
| | - Markus Sauer
- Lehrstuhl für Biotechnologie und Biophysik, Biozentrum und RVZ - Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Diane Damotte
- Department of Pathology, Paris Centre University Hospitals, AP-HP, 75014 Paris, France.,INSERM U1138, Cordeliers Research Center, Team Cancer, Immune Control and Escape, Paris, France; University Pierre and Marie Curie, 75006 Paris, France
| | - Marco Alifano
- Department of Thoracic Surgery, Paris Centre University Hospitals, AP-HP, Paris, France; University Paris Descartes, 75014 Paris, France
| | - P Lewis White
- Public Health Wales, Microbiology Cardiff, UHW, CF14 4XW Cardiff, UK
| | - Matthijs Backx
- Public Health Wales, Microbiology Cardiff, UHW, CF14 4XW Cardiff, UK
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Markus Machwirth
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Oliver Kurzai
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany.,Fungal Septomics Research Group, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI), 07743 Jena, Germany
| | - Sabrina Prommersberger
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Jürgen Löffler
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Papadopoulou A, Stavridou F, Giannaki M, Paschoudi K, Chatzopoulou F, Gavriilaki E, Georgolopoulos G, Anagnostopoulos A, Yannaki E. Robust SARS-COV-2-specific T-cell immune memory persists long-term in immunocompetent individuals post BNT162b2 double shot. Heliyon 2022; 8:e09863. [PMID: 35815135 PMCID: PMC9250414 DOI: 10.1016/j.heliyon.2022.e09863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/23/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
Background A robust efficiency of mRNA vaccines against coronavirus disease-2019 has been demonstrated, however, the intended long-term protection against SARS-CoV-2 has been challenged by the waning humoral and cellular immunity over time, leading to a third vaccination dose recommendation for immunocompetent individuals, six months after completion of primary mRNA vaccination. Methods We here measured humoral responses via an immunoassay measuring SARS-CoV-2 neutralizing antibodies and T-cell responses using Elispot for interferon-γ 1- and 8- months post full BNT162b2 vaccination, in 10 health-care professionals. To explore whether the declining abundance of coronavirus-specific T-cells (CoV-2-STs) truly reflects decreased capacity for viral control, rather than the attenuating viral stimulus over time, we modeled ex vivo the T-cellular response upon viral challenge in fully vaccinated immunocompetent individuals, 1- and 8-months post BNT162b2. Findings. Notwithstanding the declining CoV-2-neutralizing antibodies and CoV-2-STs, re-challenged CoV-2-STs, 1- and 8-months post vaccination, presented similar functional characteristics including high cytotoxicity against both the unmutated virus and the delta variant. Interpretation. These findings suggest robust and sustained cellular immune response upon SARS-CοV-2 antigen exposure, 8 months post mRNA vaccination, despite declining CοV-2-STs over time in the presence of an attenuating viral stimulus.
Collapse
|
11
|
Karavalakis G, Yannaki E, Papadopoulou A. Reinforcing the Immunocompromised Host Defense against Fungi: Progress beyond the Current State of the Art. J Fungi (Basel) 2021; 7:jof7060451. [PMID: 34204025 PMCID: PMC8228486 DOI: 10.3390/jof7060451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the availability of a variety of antifungal drugs, opportunistic fungal infections still remain life-threatening for immunocompromised patients, such as those undergoing allogeneic hematopoietic cell transplantation or solid organ transplantation. Suboptimal efficacy, toxicity, development of resistant variants and recurrent episodes are limitations associated with current antifungal drug therapy. Adjunctive immunotherapies reinforcing the host defense against fungi and aiding in clearance of opportunistic pathogens are continuously gaining ground in this battle. Here, we review alternative approaches for the management of fungal infections going beyond the state of the art and placing an emphasis on fungus-specific T cell immunotherapy. Harnessing the power of T cells in the form of adoptive immunotherapy represents the strenuous protagonist of the current immunotherapeutic approaches towards combating invasive fungal infections. The progress that has been made over the last years in this field and remaining challenges as well, will be discussed.
Collapse
Affiliation(s)
- Georgios Karavalakis
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (G.K.); (E.Y.)
- Correspondence: ; Tel.: +30-2313-307-693; Fax: +30-2313-307-521
| |
Collapse
|
12
|
Koukoulias K, Papadopoulou A, Kouimtzidis A, Papayanni PG, Papaloizou A, Sotiropoulos D, Yiangou M, Costeas P, Anagnostopoulos A, Yannaki E, Kaloyannidis P. Non-transplantable cord blood units as a source for adoptive immunotherapy of leukaemia and a paradigm of circular economy in medicine. Br J Haematol 2021; 194:158-167. [PMID: 34036576 DOI: 10.1111/bjh.17464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Advances in immunotherapy with T cells armed with chimeric antigen receptors (CAR-Ts), opened up new horizons for the treatment of B-cell lymphoid malignancies. However, the lack of appropriate targetable antigens on the malignant myeloid cell deprives patients with refractory acute myeloid leukaemia of effective CAR-T therapies. Although non-engineered T cells targeting multiple leukaemia-associated antigens [i.e. leukaemia-specific T cells (Leuk-STs)] represent an alternative approach, the prerequisite challenge to obtain high numbers of dendritic cells (DCs) for large-scale Leuk-ST generation, limits their clinical implementation. We explored the feasibility of generating bivalent-Leuk-STs directed against Wilms tumour 1 (WT1) and preferentially expressed antigen in melanoma (PRAME) from umbilical cord blood units (UCBUs) disqualified for allogeneic haematopoietic stem cell transplantation. By repurposing non-transplantable UCBUs and optimising culture conditions, we consistently produced at clinical scale, both cluster of differentiation (CD)34+ cell-derived myeloid DCs and subsequently polyclonal bivalent-Leuk-STs. Those bivalent-Leuk-STs contained CD8+ and CD4+ T cell subsets predominantly of effector memory phenotype and presented high specificity and cytotoxicity against both WT1 and PRAME. In the present study, we provide a paradigm of circular economy by repurposing unusable UCBUs and a platform for future banking of Leuk-STs, as a 'third-party', 'off-the-shelf' T-cell product for the treatment of acute leukaemias.
Collapse
Affiliation(s)
- Kiriakos Koukoulias
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Anastasios Kouimtzidis
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Penelope-Georgia Papayanni
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Damianos Sotiropoulos
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-HCT Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Panayotis Kaloyannidis
- Adult Hematology and Stem cell Transplantation Department, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
13
|
Papayanni PG, Chasiotis D, Koukoulias K, Georgakopoulou A, Iatrou A, Gavriilaki E, Giannaki C, Bitzani M, Geka E, Tasioudis P, Chloros D, Fylaktou A, Kioumis I, Triantafyllidou M, Dimou-Besikli S, Karavalakis G, Boutou AK, Siotou E, Anagnostopoulos A, Papadopoulou A, Yannaki E. Vaccinated and convalescent donor-derived SARS-CoV-2-specific T cells as adoptive immunotherapy for high-risk COVID-19 patients. Clin Infect Dis 2021; 73:2073-2082. [PMID: 33905481 PMCID: PMC8135332 DOI: 10.1093/cid/ciab371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an urgent need for the development of effective therapies for coronavirus disease 2019 (COVID-19). Methods We first tested SARS-CoV-2–specific T-cell (CοV-2-ST) immunity and expansion in unexposed donors, COVID-19–infected individuals (convalescent), asymptomatic polymerase chain reaction (PCR)–positive subjects, vaccinated individuals, non–intensive care unit (ICU) hospitalized patients, and ICU patients who either recovered and were discharged (ICU recovered) or had a prolonged stay and/or died (ICU critical). CoV-2-STs were generated from all types of donors and underwent phenotypic and functional assessment. Results We demonstrate causal relationship between the expansion of endogenous CoV-2-STs and the disease outcome; insufficient expansion of circulating CoV-2-STs identified hospitalized patients at high risk for an adverse outcome. CoV-2-STs with a similarly functional and non-alloreactive, albeit highly cytotoxic, profile against SARS-CoV-2 could be expanded from both convalescent and vaccinated donors generating clinical-scale, SARS-CoV-2–specific T-cell products with functional activity against both the unmutated virus and its B.1.1.7 and B.1.351 variants. In contrast, critical COVID-19 patient-originating CoV-2-STs failed to expand, recapitulating the in vivo failure of CoV-2–specific T-cell immunity to control the infection. CoV-2-STs generated from asymptomatic PCR-positive individuals presented only weak responses, whereas their counterparts originating from exposed to other seasonal coronaviruses subjects failed to kill the virus, thus disempowering the hypothesis of protective cross-immunity. Conclusions Overall, we provide evidence on risk stratification of hospitalized COVID-19 patients and the feasibility of generating powerful CoV-2-ST products from both convalescent and vaccinated donors as an “off-the shelf” T-cell immunotherapy for high-risk patients.
Collapse
Affiliation(s)
- Penelope-Georgia Papayanni
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chasiotis
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kiriakos Koukoulias
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aphrodite Georgakopoulou
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Iatrou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Chrysavgi Giannaki
- A' Intensive Care Unit, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Militsa Bitzani
- A' Intensive Care Unit, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Eleni Geka
- AHEPA University Hospital, ICU, Thessaloniki, Greece
| | | | - Diamantis Chloros
- Department of Respiratory Medicine, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center - Immunology Department, Hippokration General Hospital, Thessaloniki, Greece
| | - Ioannis Kioumis
- Respiratory Failure Department, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Triantafyllidou
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Sotiria Dimou-Besikli
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Georgios Karavalakis
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Eleni Siotou
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Anastasia Papadopoulou
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Koukoulias K, Papayanni PG, Georgakopoulou A, Alvanou M, Laidou S, Kouimtzidis A, Pantazi C, Gkoliou G, Vyzantiadis TA, Spyridonidis A, Makris A, Chatzidimitriou A, Psatha N, Anagnostopoulos A, Yannaki E, Papadopoulou A. "Cerberus" T Cells: A Glucocorticoid-Resistant, Multi-Pathogen Specific T Cell Product to Fight Infections in Severely Immunocompromised Patients. Front Immunol 2021; 11:608701. [PMID: 33537032 PMCID: PMC7848034 DOI: 10.3389/fimmu.2020.608701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Adoptive immunotherapy (AI) with pathogen-specific T cells is a promising alternative to pharmacotherapy for the treatment of opportunistic infections after allogeneic hematopoietic cell transplantation or solid organ transplantation. However, clinical implementation of AI is limited to patients not receiving high-dose steroids, a prerequisite for optimal T-cell function, practically excluding the most susceptible to infections patients from the benefits of AI. To address this issue, we here rapidly generated, clinical doses of a steroid-resistant T-cell product, simultaneously targeting four viruses (adenovirus, cytomegalovirus, Epstein Barr virus, and BK virus) and the fungus Aspergillus fumigatus, by genetic disruption of the glucocorticoid receptor (GR) gene using CRISPR/CAS9 ribonucleoprotein delivery. The product, “Cerberus” T cells (Cb-STs), was called after the monstrous three-headed dog of Greek mythology, due to its triple potential; specificity against viruses, specificity against fungi and resistance to glucocorticoids. Following efficient on-target GR disruption and minimal off-target editing, the generated Cb-STs maintained the characteristics of pentavalent-STs, their unedited counterparts, including polyclonality, memory immunophenotype, specificity, and cytotoxicity while they presented functional resistance to dexamethasone. Cb-STs may become a powerful, one-time treatment for severely immunosuppressed patients under glucocorticoids who suffer from multiple, life-threatening infections post-transplant, and for whom therapeutic choices are limited.
Collapse
Affiliation(s)
- Kiriakos Koukoulias
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Penelope-Georgia Papayanni
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aphrodite Georgakopoulou
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Alvanou
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Internal Medicine, BMT Unit, University of Patras, Patras, Greece
| | - Stamatia Laidou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Anastasios Kouimtzidis
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysoula Pantazi
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Glykeria Gkoliou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | | | | | - Antonios Makris
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Anastasia Chatzidimitriou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Nikoletta Psatha
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| | - Achilles Anagnostopoulos
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Anastasia Papadopoulou
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, "George Papanikolaou" Hospital, Thessaloniki, Greece
| |
Collapse
|
15
|
Multipathogen-specific T cells against viral and fungal infections. Bone Marrow Transplant 2021; 56:1445-1448. [PMID: 33420391 DOI: 10.1038/s41409-020-01210-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
|
16
|
Williams TJ, Harvey S, Armstrong-James D. Immunotherapeutic approaches for fungal infections. Curr Opin Microbiol 2020; 58:130-137. [PMID: 33147544 DOI: 10.1016/j.mib.2020.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Despite the availability of antifungal treatments, fungal infections are still causing morbidity all around the globe with unacceptably high mortality rates. A major driver for the rising incidence of serious fungal infections is due to a substantial increase in immunocompromised individuals with autoimmune diseases, cancers and transplants. Because of growing resistance in fungus to frontline triazole antifungals and the association of fungal disease with the immunocompromised host, adjunctive host-directed therapy is seen as a promising choice to improve patient outcomes. Immunotherapeutic treatments being explored as adjunct therapies to existing antifungal treatments include cytokine therapy, monoclonal antibodies and cellular immunotherapy. In this review, we give a brief overview of potential immunotherapies and recent developments in the field, which are needed to tackle the growing problem of fungal diseases.
Collapse
Affiliation(s)
- Thomas J Williams
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, 14 Armstrong Rd, South Kensington, London SW7 2DD, United Kingdom
| | - Sunshine Harvey
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, 14 Armstrong Rd, South Kensington, London SW7 2DD, United Kingdom
| | - Darius Armstrong-James
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, 14 Armstrong Rd, South Kensington, London SW7 2DD, United Kingdom.
| |
Collapse
|
17
|
From bench to bedside - translational approaches in anti-fungal immunology. Curr Opin Microbiol 2020; 58:153-159. [PMID: 33190074 DOI: 10.1016/j.mib.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Abstract
Invasive fungal infections mainly occur in patients suffering from impaired immunity. Their associated mortality is high despite antifungal treatment. Thus, several efforts have been made to translate our knowledge on protective antifungal immunity into clinical application. Since the first attempts with transfusion of neutrophilic granulocytes, these approaches have become more refined and include administration of cytokines to booster antifungal immune responses or selective stimulation of pattern recognition receptors. Recently, novel tools that have proven effective in the treatment of cancer have offered new options for enhancing antifungal immunity. These approaches include checkpoint inhibitors as well as T-cell based therapies, including chimeric antigen receptor T-cells.
Collapse
|
18
|
Jiang W, Withers B, Sutrave G, Clancy LE, Yong MI, Blyth E. Pathogen-Specific T Cells Beyond CMV, EBV and Adenovirus. Curr Hematol Malig Rep 2020; 14:247-260. [PMID: 31228095 DOI: 10.1007/s11899-019-00521-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Infectious diseases contribute significantly to morbidity and mortality in recipients of allogeneic haematopoietic stem cell transplantation (aHSCT), particularly in the era of highly immunosuppressive transplant regimens and alternate donor transplants. Delayed cellular immune recovery is a major mechanism for the increased risk in these patients. Adoptive cell therapy with ex vivo manipulated pathogen-specific T cells (PSTs) is increasingly taking its place as a treatment strategy using donor-derived or third party-banked cells. RECENT FINDINGS The majority of clinical trial data in the form of early-phase studies has been in the prophylaxis or treatment of cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus (AdV). Advancements in methods to select and enrich PSTs offer the opportunity to target the less common viral pathogens as well as fungi with this technology. Early clinical studies of PSTs targeting polyomaviruses (BK virus and JC virus), human herpesvirus 6 (HHV6), varicella zoster virus (VZV) and Aspergillus spp. have shown promising results in small numbers of patients. Other potential targets include herpes simplex virus (HSV), respiratory viruses and other invasive fungal species. In this review, we describe the burden of disease of this wider spectrum of pathogens, the progress in the development of manufacturing capability, early clinical results and the opportunities and challenges for implementation in the clinic.
Collapse
Affiliation(s)
- Wei Jiang
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Barbara Withers
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,St Vincent's Hospital, Darlinghurst, Australia
| | - Gaurav Sutrave
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,BMT and Cell Therapies Program, Westmead Hospital, Sydney, Australia
| | - Leighton E Clancy
- Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,Sydney Cellular Therapies Laboratory, Westmead, Australia
| | - Michelle I Yong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Emily Blyth
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia. .,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia. .,St Vincent's Hospital, Darlinghurst, Australia. .,BMT and Cell Therapies Program, Westmead Hospital, Sydney, Australia.
| |
Collapse
|