1
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
dos Santos NCC, Cotrim KC, Achôa GL, Kalil EC, Kantarci A, Bueno DF. The Use of Mesenchymal Stromal/Stem Cells (MSC) for Periodontal and Peri-implant Regeneration: Scoping Review. Braz Dent J 2024; 35:e246134. [PMID: 39476117 PMCID: PMC11506238 DOI: 10.1590/0103-6440202406134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 11/03/2024] Open
Abstract
The necessity for regenerating peri-implant and periodontal tissues is increasingly apparent. Periodontal diseases can result in a significant loss of clinical attachment level, and tissue regeneration stands as the ultimate goal of periodontal therapy. With the rise of osseointegration, the prosthetic rehabilitation of missing teeth using dental implants has surged, leading to a frequent need for alveolar bone regeneration around implants. This review assessed studies reporting various sources of mesenchymal stromal/stem cells (MSC) and their potential in regenerating periodontal and peri-implant bone tissue. A search was conducted across seven databases spanning the past decade. Three authors independently screened all identified titles and abstracts for eligibility, generating tables to summarize included studies in animals and humans separately. A total of 55 articles were chosen for final evaluation, showcasing five origins of MSC used in humans and animals for regenerating periodontal tissues and peri-implant bone, using different types of scaffolds. Overall, research from the past decades supports the effectiveness of MSC in promoting periodontal and peri-implant regeneration. However, the impact of MSC on regenerative therapies in humans is still in its initial stages. Future research should optimize MSC application protocols by combining techniques, such as the use of nanomedicine and 3D printing for tissue engineering. Clinical studies should also understand the long-term effects and compare MSC therapies with current treatment modalities. By addressing these areas, the scientific community can ensure that MSC therapies are both safe and effective, ultimately enhancing therapeutic strategies and treatment outcomes in Periodontology and Implantology.
Collapse
Affiliation(s)
- Nidia C Castro dos Santos
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- School of Dental Medicine, Albert Einstein Israelite Hospital, São Paulo, SP, Brazil
- The ADA Forsyth Institute, Cambridge, MA, United States
| | - Khalila C Cotrim
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Gustavo L Achôa
- Núcleo de Pesquisa e Reabilitação de Lesões Lábio Palatais Prefeito Luiz Gomes, Oral and Maxillofacial Surgery Department, Joinville, SC, Brazil
| | - Eduardo C Kalil
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Alpdogan Kantarci
- The ADA Forsyth Institute, Cambridge, MA, United States
- School of Dental Medicine, Harvard University, Boston, MA, United States
| | - Daniela F Bueno
- School of Dental Medicine, Albert Einstein Israelite Hospital, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Yang Y, Sun L, Liu X, Liu W, Zhang Z, Zhou X, Zhao X, Zheng R, Zhang Y, Guo W, Wang X, Li X, Pang J, Li F, Tao Y, Shi D, Shen W, Wang L, Zang J, Li S. Neurotransmitters: Impressive regulators of tumor progression. Biomed Pharmacother 2024; 176:116844. [PMID: 38823279 DOI: 10.1016/j.biopha.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
In contemporary times, tumors have emerged as the primary cause of mortality in the global population. Ongoing research has shed light on the significance of neurotransmitters in the regulation of tumors. It has been established that neurotransmitters play a pivotal role in tumor cell angiogenesis by triggering the transformation of stromal cells into tumor cells, modulating receptors on tumor stem cells, and even inducing immunosuppression. These actions ultimately foster the proliferation and metastasis of tumor cells. Several major neurotransmitters have been found to exert modulatory effects on tumor cells, including the ability to restrict emergency hematopoiesis and bind to receptors on the postsynaptic membrane, thereby inhibiting malignant progression. The abnormal secretion of neurotransmitters is closely associated with tumor progression, suggesting that focusing on neurotransmitters may yield unexpected breakthroughs in tumor therapy. This article presents an analysis and outlook on the potential of targeting neurotransmitters in tumor therapy.
Collapse
Affiliation(s)
- Yumei Yang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Lei Sun
- Department of Critical Care Medicine, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Xuerou Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Wei Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Zhen Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xingqi Zhou
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinli Zhao
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Ruijie Zheng
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yongjun Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Wanqing Guo
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xiaoli Wang
- College of Pharmacy, Anhui University of Traditional Chinese Medicine, China
| | - Xian Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Jinlong Pang
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Feng Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yu Tao
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Dongmin Shi
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Wenyi Shen
- Department of Respiratory and Critical Care Medicine, Lianshui County People's Hospital, Jiangsu, China
| | - Liping Wang
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Jialan Zang
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China.
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
4
|
Vanneste M, Venzke A, Guin S, Fuller AJ, Jezewski AJ, Beattie SR, Krysan DJ, Meyers MJ, Henry MD. The anti-cancer efficacy of a novel phenothiazine derivative is independent of dopamine and serotonin receptor inhibition. Front Oncol 2023; 13:1295185. [PMID: 37909019 PMCID: PMC10613967 DOI: 10.3389/fonc.2023.1295185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction An attractive, yet unrealized, goal in cancer therapy is repurposing psychiatric drugs that can readily penetrate the blood-brain barrier for the treatment of primary brain tumors and brain metastases. Phenothiazines (PTZs) have demonstrated anti-cancer properties through a variety of mechanisms. However, it remains unclear whether these effects are entirely separate from their activity as dopamine and serotonin receptor (DR/5-HTR) antagonists. Methods In this study, we evaluated the anti-cancer efficacy of a novel PTZ analog, CWHM-974, that was shown to be 100-1000-fold less potent against DR/5-HTR than its analog fluphenazine (FLU). Results CWHM-974 was more potent than FLU against a panel of cancer cell lines, thus clearly demonstrating that its anti-cancer effects were independent of DR/5-HTR signaling. Our results further suggested that calmodulin (CaM) binding may be necessary, but not sufficient, to explain the anti-cancer effects of CWHM-974. While both FLU and CWHM-974 induced apoptosis, they induced distinct effects on the cell cycle (G0/G1 and mitotic arrest respectively) suggesting that they may have differential effects on CaM-binding proteins involved in cell cycle regulation. Discussion Altogether, our findings indicated that the anti-cancer efficacy of the CWHM-974 is separable from DR/5-HTR antagonism. Thus, reducing the toxicity associated with phenothiazines related to DR/5-HTR antagonism may improve the potential to repurpose this class of drugs to treat brain tumors and/or brain metastasis.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Anita Venzke
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Soumitra Guin
- Department of Chemistry, Saint Louis University, Saint Louis, MO, United States
| | - Andrew J. Fuller
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Andrew J. Jezewski
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Damian J. Krysan
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marvin J. Meyers
- Department of Chemistry, Saint Louis University, Saint Louis, MO, United States
| | - Michael D. Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
6
|
Wang Z, Wen P, Hu B, Cao S, Shi X, Guo W, Zhang S. Dopamine and dopamine receptor D1 as a novel favourable biomarker for hepatocellular carcinoma. Cancer Cell Int 2021; 21:586. [PMID: 34717619 PMCID: PMC8557590 DOI: 10.1186/s12935-021-02298-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most common malignant tumours worldwide. Therefore, the identification and development of sensitivity- genes as novel diagnostic markers and effective therapeutic targets is urgently needed. Dopamine and dopamine receptor D1 (DRD1) are reported to be involved in the progression of various cancers. However, the crucial role of DRD1 in HCC malignant activities remains unclear. Methods We enrolled 371 patients with liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas (TCGA) to detect the expression and functions of DRD1. The Tumour Immune Estimation Resource (TIMER), UALCAN database, Kaplan–Meier plotter, cBioPortal database, and LinkedOmics database were utilized for the systematic investigation of DRD1 expression and related clinical features, coexpressed genes, functional pathways, mutations, and immune infiltrates in HCC. Results In this study, we determined that DRD1 expression was decreased in HCC tumour tissues versus normal tissues and that low DRD1 expression indicated a poor prognosis. The significance of DRD1 expression varied among different tumour samples. The somatic mutation frequency of DRD1 in the LIHC cohort was 0.3%. The biological functions of DRD1 were detected and validated, and DRD1 was shown to be involved in various functional activities, including metabolism, oxidation, mitochondrial matrix-related processes and other related signaling pathways. In addition, out study indicated that DRD1 had significant correlations with the infiltration of macrophages, B cells and CD+ T cells in HCC. Conclusions These findings demonstrated the rationality of the potential application of DRD1 function as a novel biomarker for HCC diagnosis and a therapeutic target for HCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02298-9.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|