1
|
De Domenico S, La Banca V, D'Amico S, Nicolai S, Peschiaroli A. Defining the transcriptional routes controlling lncRNA NEAT1 expression: implications in cellular stress response, inflammation, and differentiation. Discov Oncol 2025; 16:768. [PMID: 40369379 PMCID: PMC12078918 DOI: 10.1007/s12672-025-02510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
NEAT1 (Nuclear Enriched Abundant Transcript 1) is a long non-coding RNA playing a critical role in both physiological and pathological settings by directly modulating a variety of biological events, including transcriptional regulation, RNA processing, and chromatin remodeling. Multiple evidence demonstrated that different transcription factors and signaling pathways modulate biological processes by tightly regulating NEAT1 expression. These regulatory mechanisms act at different levels, allowing cells to rapidly modulate NEAT1 expression and dynamically respond to sudden changes in cellular conditions. In this review, we summarize and discuss the transcriptional routes controlling NEAT1 expression, emphasizing recent evidence showing the pivotal role of NEAT1 in regulating important biological processes, such as cellular stress response, inflammation, and cell differentiation.
Collapse
Affiliation(s)
- Sara De Domenico
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Veronica La Banca
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Silvia D'Amico
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Sara Nicolai
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
2
|
Xu M, Qiu C, Zhang D, Tang X, Zhang J, Wang Y, Zhu Y, Wang Y, Li X. Gynoid lean muscle mass as mediator between menarche age, hand grip and bone mineral density in postmenopausal women. Sci Rep 2025; 15:15574. [PMID: 40320406 PMCID: PMC12050271 DOI: 10.1038/s41598-025-00251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
Numerous clinical studies indicate that reproductive factors and physical performance levels are significant predictors of bone mineral density (BMD) in postmenopausal women. However, research on the relationship between these factors and body composition remains limited, and the mediating role of body composition in the impact of these factors on BMD remains unclear. This cross-sectional study aims to explore the correlation between reproductive factors, physical performance levels, BMD, and body composition in postmenopausal women, and to further investigate the mediating role of body composition in these relationships. This study enrolled 102 postmenopausal women meeting predetermined criteria from the osteoporosis outpatient clinic of Huzhou Central Hospital, China. Data were collected through surveys, assessments of physical performance function, and dual-energy X-ray absorptiometry (DXA) measurements. Correlation analysis and multiple linear regression analysis were used to determine the relationships among factors. Mediation analysis was conducted to explore the mediating role of body composition, followed by logistic regression analysis to investigate risk factors for osteoporosis. Gynoid Lean Muscle Mass (GLM) emerged as an independent predictive factor for BMD of spine, hip, and total body, and a protective factor against osteoporosis. Hand grip and 6-meter gait speed were positively correlated with BMD at these skeletal sites and GLM, also serving as protective factors against osteoporosis. Conversely, menarche age and Time taken for 5 sit-ups exhibited negative correlations with BMD and GLM, concurrently representing risk factors for osteoporosis. GLM mediated the relationship between menarche age, hand grip, and hip BMD. Prolonged reproductive periods and enhanced physical performance appear beneficial in mitigating Lean Mass loss, particularly GLM, in postmenopausal women, thereby protecting BMD and effectively preventing osteoporosis.
Collapse
Affiliation(s)
- Miyang Xu
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Chenhao Qiu
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Dongxue Zhang
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Xuehua Tang
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Jiangfeng Zhang
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Yipeng Wang
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Yichen Zhu
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Yongli Wang
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.
| | - Xiongfeng Li
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.
| |
Collapse
|
3
|
Wang D, Gao Y, Tan Y, Li N, Li X, Li J, Pan Y, Zhao X, Yan M, Wang Y. lncRNA Ubr5 promotes BMSCs apoptosis and inhibits their proliferation and osteogenic differentiation in weightless bone loss. Front Cell Dev Biol 2025; 13:1543929. [PMID: 40241795 PMCID: PMC11999945 DOI: 10.3389/fcell.2025.1543929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Background Weightless bone loss is a common pathological phenomenon in weightless environments, yet its specific molecular mechanism remain incompletely elucidated. The aim of this study was to systematically investigate the differential expression profiles of mRNAs and long noncoding RNAs (lncRNAs) to explore the molecular pathogenesis underlying weightless bone loss. Methods Transcriptome sequencing was performed on bone marrow mesenchymal stem cell (BMSCs) samples from the Ground control group and simulated microgravity (SMG) group using Illumina technology. Using the DESeq2 algorithm, we accurately identify and analyzed the differentially expressed genes (DEGs). Subsequently, the molecular functions and signaling pathways enriched by DEG were comprehensively analyzed by GO and KEGG. In addition, by constructing lncRNA-mRNA coexpression network, this study screened and verified key lncRNAs as potential genes to further explore their role in the occurrence and development of weightless bone loss. Results A total of 215 differentially expressed lncRNAs (DElncRNAs) and 381 differentially expressed mRNAs (DEmRNAs) were identified, in the SMG group. DEmRNAs were primarily involved in the cell response to mechanical stimulation, microtubule motility and TNF signaling pathway. Meanwhile, DElncRNAs are significantly enriched in cell differentiation, fatty acid metabolic process and biosynthesis of amino acids. In addition, the expression levels of related lncRNAs and mRNAs in weightless bone loss were verified via qRT-PCR. lncRNA-mRNA coexpression network found that lncRNA Ubr5 closely related to osteoblast proliferation and differentiation. Further experimental results revealed that knocking down lncRNA Ubr5 can promote the apoptosis of BMSCs and inhibit their proliferation and osteogenic differentiation. Conclusion This study revealed the molecular pathogenesis of weightless bone loss, identified lncRNA Ubr5 as a potential intervention target, and provided an important scientific basis and strategic guidance for the prevention and treatment of weightless bone loss.
Collapse
Affiliation(s)
- Dong Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Yuan Gao
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Na Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Xi Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Jiaxiang Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Yikai Pan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Xingcheng Zhao
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Sanfeliu-Cerdán N, Krieg M. The mechanobiology of biomolecular condensates. BIOPHYSICS REVIEWS 2025; 6:011310. [PMID: 40160200 PMCID: PMC11952833 DOI: 10.1063/5.0236610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
The central goal of mechanobiology is to understand how the mechanical forces and material properties of organelles, cells, and tissues influence biological processes and functions. Since the first description of biomolecular condensates, it was hypothesized that they obtain material properties that are tuned to their functions inside cells. Thus, they represent an intriguing playground for mechanobiology. The idea that biomolecular condensates exhibit diverse and adaptive material properties highlights the need to understand how different material states respond to external forces and whether these responses are linked to their physiological roles within the cell. For example, liquids buffer and dissipate, while solids store and transmit mechanical stress, and the relaxation time of a viscoelastic material can act as a mechanical frequency filter. Hence, a liquid-solid transition of a condensate in the force transmission pathway can determine how mechanical signals are transduced within and in-between cells, affecting differentiation, neuronal network dynamics, and behavior to external stimuli. Here, we first review our current understanding of the molecular drivers and how rigidity phase transitions are set forth in the complex cellular environment. We will then summarize the technical advancements that were necessary to obtain insights into the rich and fascinating mechanobiology of condensates, and finally, we will highlight recent examples of physiological liquid-solid transitions and their connection to specific cellular functions. Our goal is to provide a comprehensive summary of the field on how cells harness and regulate condensate mechanics to achieve specific functions.
Collapse
Affiliation(s)
- Neus Sanfeliu-Cerdán
- ICFO - Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael Krieg
- ICFO - Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
5
|
Moura SR, Sousa AB, Olesen JB, Barbosa MA, Søe K, Almeida MI. Stage-specific modulation of multinucleation, fusion, and resorption by the long non-coding RNA DLEU1 and miR-16 in human primary osteoclasts. Cell Death Dis 2024; 15:741. [PMID: 39389940 PMCID: PMC11467329 DOI: 10.1038/s41419-024-06983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Osteoclasts are the only cells able to resorb all the constituents of the bone matrix. While the modulation of osteoclast activity is well established for preventing bone-related diseases, there is an increasing demand for novel classes of anti-resorption agents. Herein, we investigated non-coding RNA molecules and proposed DLEU1 and miR-16 as potential candidates for modulating osteoclast functions. DLEU1 and miR-16 target cell fusion at both the early and late stages of osteoclastogenesis but operate through independent pathways. DLEU1 silencing hinders the fusion process, leading to abrogation of the phagocytic cup fusion modality and a reduction in the fusion events between mononucleated precursors and multinucleated osteoclasts, while miR-16 influences monocyte-to-osteoclast differentiation, impairing osteoclasts formation but not the number of nuclei at early stages. On the other hand, using these non-coding RNAs to engineer mature osteoclasts has implications for bone resorption. Both DLEU1 and miR-16 influence the speed of resorption in pit-forming osteoclasts, without affecting the resorbed area. However, the impact of increasing miR-16 levels extends more broadly, affecting trench-forming osteoclasts as well, leading to a reduction in their percentage, speed, and resorbed area. These findings offer potential new therapeutic targets to ameliorate bone destruction in skeletal diseases.
Collapse
Affiliation(s)
- Sara Reis Moura
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Beatriz Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jacob Bastholm Olesen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mário Adolfo Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Kent Søe
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Inês Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
6
|
Ingram HB, Fox AH. Unveiling the intricacies of paraspeckle formation and function. Curr Opin Cell Biol 2024; 90:102399. [PMID: 39033706 DOI: 10.1016/j.ceb.2024.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Paraspeckle nuclear bodies form when the NEAT1 long noncoding RNA is transcribed and bound by multiple RNA-binding proteins. First described 20 years ago, in recent years a growing appreciation of paraspeckle dynamics has led to new understandings, in both structure and function. Structurally, paraspeckles form via distinct physico-chemical domains arising from the composition of key proteins, recruited to different parts of NEAT1. These domains interact, creating a core-shell structured paraspeckle via microphase separation. Functionally, many environmental, chemical, and mechanical triggers can alter paraspeckle abundance, with important consequences depending on the cell type, developmental stage, and trigger identity. Underpinning these insights are new tools for paraspeckle research, including screening assays, proximity-based identification tools, and RNA processing modulators. A picture is emerging of paraspeckles as gene regulatory condensates in many healthy and disease settings. Critically, however, paraspeckle functional importance is generally most apparent when cells and organisms face external stressors.
Collapse
Affiliation(s)
- Hayley B Ingram
- School of Human Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Archa H Fox
- School of Human Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
7
|
Jiang C, Wang P, Tan Z, Zhang Y. Long non-coding RNAs in bone formation: Key regulators and therapeutic prospects. Open Life Sci 2024; 19:20220908. [PMID: 39156986 PMCID: PMC11330173 DOI: 10.1515/biol-2022-0908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 08/20/2024] Open
Abstract
Recent scientific investigations have revealed the intricate mechanisms underlying bone formation, emphasizing the essential role of long non-coding RNAs (lncRNAs) as critical regulators. This process, essential for skeletal strength and functionality, involves the transformation of mesenchymal stem cells into osteoblasts and subsequent deposition of bone matrix. lncRNAs, including HOX transcript antisense RNA (HOTAIR), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), differentiation antagonizing non-coding RNA (DANCR), and maternally expressed gene 3 (MEG3), have emerged as prominent players in this regulatory network. HOTAIR modulates osteoblast differentiation by interacting with chromatin-modifying enzymes, while MALAT1 regulates osteogenic differentiation through microRNA interactions. DANCR collaborates with Runx2 to fine-tune osteoblast differentiation, and MEG3 orchestrates multiple signaling pathways crucial for bone formation. Moreover, other lncRNAs such as H19, lncRNA for enhancing osteogenesis 3, rhabdomyosarcoma 2-associated transcript, urothelial cancer associated 1, taurine up-regulated gene 1, and nuclear enriched abundant transcript 1 contribute to the complex regulatory network governing osteoblast activities. Understanding the precise roles of these lncRNAs offers promising avenues for developing innovative therapeutic strategies targeting bone-related disorders like osteoporosis. Overall, this review summarizes the pivotal role of lncRNAs in bone formation, highlighting their potential as targets for future research endeavors aimed at advancing therapeutic interventions in bone diseases.
Collapse
Affiliation(s)
- Chun Jiang
- Department of Orthopedics, The People’s Hospital of SND, Suzhou, Jiangsu, 215129, China
| | - Peng Wang
- Department of Spine Surgery, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - ZhenWei Tan
- Department of Orthopedics, Sichuan Fifth People’s Hospital, Chengdu, Sichuan, 610015, China
| | - Yin Zhang
- Department of Orthopedics, The People’s Hospital of SND, Suzhou, Jiangsu, 215129, China
| |
Collapse
|
8
|
Zhang HR, Wang YH, Xiao ZP, Yang G, Xu YR, Huang ZT, Wang WZ, He F. E3 ubiquitin ligases: key regulators of osteogenesis and potential therapeutic targets for bone disorders. Front Cell Dev Biol 2024; 12:1447093. [PMID: 39211390 PMCID: PMC11358089 DOI: 10.3389/fcell.2024.1447093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins. These activities affect the proliferation, differentiation, survival, and bone formation of osteoblasts (OBs). In recent years, advances in genomics, transcriptomics, and proteomics have led to a deeper understanding of the classification, function, and mechanisms of action of E3 ubiquitin ligases. This understanding provides new insights and approaches for revealing the molecular regulatory mechanisms of bone formation and identifying therapeutic targets for bone metabolic diseases. This review discusses the research progress and significance of the positive and negative regulatory roles and mechanisms of E3 ubiquitin ligases in the process of osteogenic differentiation. Additionally, the review highlights the role of E3 ubiquitin ligases in bone-related diseases. A thorough understanding of the role and mechanisms of E3 ubiquitin ligases in osteogenic differentiation could provide promising therapeutic targets for bone tissue engineering based on stem cells.
Collapse
Affiliation(s)
- Heng-Rui Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yang-Hao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhen-Ping Xiao
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
- Department of Pain and Rehabilitation, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Guang Yang
- Department of Trauma Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun-Rong Xu
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Zai-Tian Huang
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| |
Collapse
|
9
|
Lim JJ, Vining KH, Mooney DJ, Blencowe BJ. Matrix stiffness-dependent regulation of immunomodulatory genes in human MSCs is associated with the lncRNA CYTOR. Proc Natl Acad Sci U S A 2024; 121:e2404146121. [PMID: 39074278 PMCID: PMC11317610 DOI: 10.1073/pnas.2404146121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.
Collapse
Affiliation(s)
- Justin J. Lim
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| | - Kyle H. Vining
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA19104
| | - David J. Mooney
- Department of Bioengineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Benjamin J. Blencowe
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| |
Collapse
|
10
|
Chen H, Weng Z, Kalinowska M, Xiong L, Wang L, Song H, Xiao J, Wang F, Shen X. Anti-osteoporosis effect of bioactives in edible medicinal plants: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39093554 DOI: 10.1080/10408398.2024.2386449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Current treatments for osteoporosis include a calcium-rich diet, adequate exercise, and medication. Many synthetic drugs, although fast-acting, can cause a range of side effects for patients when taken over a long period, such as irritation of the digestive tract and a burden on the kidneys. As the world's population ages, the prevalence of osteoporosis is increasing, and the development of safe and effective treatments is urgently needed. Active compounds in edible and medicinal homologous plants have been used for centuries to improve bone quality. It is possible to employ them as dietary supplements to prevent osteoporosis. In this review, we analyze the influencing factors of osteoporosis and systematically summarize the research progress on the anti-osteoporosis effects of active compounds in edible and medicinal homologous plants. The literature suggests that some naturally occurring active compounds in edible and medicinal homologous plants can inhibit bone loss, prevent the degeneration of bone cell microstructure, and reduce bone fragility through alleviating oxidative stress, regulating autophagy, anti-inflammation, improving gut flora, and regulating estrogen level with little side effects. Our review provides useful guidance for the use of edible and medicinal homologous plants and the development of safer novel anti-osteoporosis dietary supplements.
Collapse
Affiliation(s)
- Huiling Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Zebin Weng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jianbo Xiao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
11
|
Fan X, Zhang R, Xu G, Fan P, Luo W, Cai C, Ge RL. Role of ubiquitination in the occurrence and development of osteoporosis (Review). Int J Mol Med 2024; 54:68. [PMID: 38940355 PMCID: PMC11232666 DOI: 10.3892/ijmm.2024.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The ubiquitin (Ub)‑proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Rong Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Guocai Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Peiyun Fan
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Wei Luo
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Chunmei Cai
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
12
|
Zhong Y, Zhou X, Pan Z, Zhang J, Pan J. Role of epigenetic regulatory mechanisms in age-related bone homeostasis imbalance. FASEB J 2024; 38:e23642. [PMID: 38690719 DOI: 10.1096/fj.202302665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.
Collapse
Affiliation(s)
- Yunyu Zhong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zijian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiankang Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Gargalionis AN, Adamopoulos C, Vottis CT, Papavassiliou AG, Basdra EK. Runx2 and Polycystins in Bone Mechanotransduction: Challenges for Therapeutic Opportunities. Int J Mol Sci 2024; 25:5291. [PMID: 38791330 PMCID: PMC11121608 DOI: 10.3390/ijms25105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christos T. Vottis
- First Department of Orthopedics, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
14
|
Kim HY, Charton C, Shim JH, Lim SY, Kim J, Lee S, Ohn JH, Kim BK, Heo CY. Patient-Derived Organoids Recapitulate Pathological Intrinsic and Phenotypic Features of Fibrous Dysplasia. Cells 2024; 13:729. [PMID: 38727265 PMCID: PMC11083396 DOI: 10.3390/cells13090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fibrous dysplasia (FD) is a rare bone disorder characterized by the replacement of normal bone with benign fibro-osseous tissue. Developments in our understanding of the pathophysiology and treatment options are impeded by the lack of suitable research models. In this study, we developed an in vitro organotypic model capable of recapitulating key intrinsic and phenotypic properties of FD. Initially, transcriptomic profiling of individual cells isolated from patient lesional tissues unveiled intralesional molecular and cellular heterogeneity. Leveraging these insights, we established patient-derived organoids (PDOs) using primary cells obtained from patient FD lesions. Evaluation of PDOs demonstrated preservation of fibrosis-associated constituent cell types and transcriptional signatures observed in FD lesions. Additionally, PDOs retained distinct constellations of genomic and metabolic alterations characteristic of FD. Histological evaluation further corroborated the fidelity of PDOs in recapitulating important phenotypic features of FD that underscore their pathophysiological relevance. Our findings represent meaningful progress in the field, as they open up the possibility for in vitro modeling of rare bone lesions in a three-dimensional context and may signify the first step towards creating a personalized platform for research and therapeutic studies.
Collapse
Affiliation(s)
- Ha-Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Clémentine Charton
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13605, Republic of Korea; (C.C.); (J.K.); (S.L.)
| | - Jung Hee Shim
- Department of Research Administration Team, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - So Young Lim
- Department of Plastic and Reconstructive Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Jinho Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13605, Republic of Korea; (C.C.); (J.K.); (S.L.)
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13605, Republic of Korea; (C.C.); (J.K.); (S.L.)
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Jung Hun Ohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Baek Kyu Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Chan Yeong Heo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| |
Collapse
|
15
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Lin S, He X, Wang Y, Chen Y, Lin A. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a review. J Zhejiang Univ Sci B 2024; 25:280-292. [PMID: 38584091 PMCID: PMC11009445 DOI: 10.1631/jzus.b2300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/11/2023] [Indexed: 04/09/2024]
Abstract
Cells within tissues are subject to various mechanical forces, including hydrostatic pressure, shear stress, compression, and tension. These mechanical stimuli can be converted into biochemical signals through mechanoreceptors or cytoskeleton-dependent response processes, shaping the microenvironment and maintaining cellular physiological balance. Several studies have demonstrated the roles of Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) as mechanotransducers, exerting dynamic influence on cellular phenotypes including differentiation and disease pathogenesis. This regulatory function entails the involvement of the cytoskeleton, nucleoskeleton, integrin, focal adhesions (FAs), and the integration of multiple signaling pathways, including extracellular signal-regulated kinase (ERK), wingless/integrated (WNT), and Hippo signaling. Furthermore, emerging evidence substantiates the implication of long non-coding RNAs (lncRNAs) as mechanosensitive molecules in cellular mechanotransduction. In this review, we discuss the mechanisms through which YAP/TAZ and lncRNAs serve as effectors in responding to mechanical stimuli. Additionally, we summarize and elaborate on the crucial signal molecules involved in mechanotransduction.
Collapse
Affiliation(s)
- Siyi Lin
- College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyu He
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Yu Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
- International School of Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310058, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
17
|
Zhang Z, Jing Y, Zhang A, Liu J, Yang H, Lou X, Xu L, Liu M, Zhang Y, Gu J. Long non-coding RNA-NONMMMUT004552.2 regulates the unloading-induced bone loss through the miRNA-15b-5p/Syne1 in mice. NPJ Microgravity 2024; 10:37. [PMID: 38521778 PMCID: PMC10960867 DOI: 10.1038/s41526-024-00382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Exercise-induced mechanical loading can increase bone strength whilst mechanical unloading enhances bone-loss. Here, we investigated the role of lncRNA NONMMUT004552.2 in unloading-induced bone-loss. Knockout of lncRNA NONMMUT004552.2 in hindlimb-unloaded mice caused an increase in the bone formation and osteoblast activity. The silencing of lncRNA NONMMUT004552.2 also decreased the osteoblast apoptosis and expression of Bax and cleaved caspase-3, increased Bcl-2 protein expression in MC3T3-E1 cells. Mechanistic investigations demonstrated that NONMMUT004552.2 functions as a competing endogenous RNA (ceRNA) to facilitate the protein expression of spectrin repeat containing, nuclear envelope 1 (Syne1) by competitively binding miR-15b-5p and subsequently inhibits the osteoblast differentiation and bone formation in the microgravity unloading environment. These data highlight the importance of the lncRNA NONMMUT004552.2/miR-15b-5p/Syne1 axis for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Medical Engineering, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Yu Jing
- Department of Haematology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, 100071, China
| | - Ang Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - JiShan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Heming Yang
- Department of General Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Xiaotong Lou
- Department of Research, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Liyan Xu
- Department of Blood Transfusion, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Min Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yikun Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China.
| | - Jianwen Gu
- Department of Neurosurgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China.
| |
Collapse
|
18
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
19
|
Hussain MS, Afzal O, Gupta G, Goyal A, Almalki WH, Kazmi I, Alzarea SI, Alfawaz Altamimi AS, Kukreti N, Chakraborty A, Singh SK, Dua K. Unraveling NEAT1's complex role in lung cancer biology: a comprehensive review. EXCLI JOURNAL 2024; 23:34-52. [PMID: 38343745 PMCID: PMC10853633 DOI: 10.17179/excli2023-6553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 09/05/2024]
Abstract
This review delves into the pivotal role of the long non-coding RNA NEAT1 in cancer biology, particularly in lung cancer (LC). It emphasizes NEAT1's unique subcellular localization and active involvement in gene regulation and chromatin remodeling. The review highlights NEAT1's impact on LC development and progression, including cell processes such as proliferation, migration, invasion, and resistance to therapy, positioning it as a potential diagnostic marker and therapeutic target. The complex web of NEAT1's regulatory interactions with proteins and microRNAs is explored, alongside challenges in targeting it therapeutically. The review concludes optimistically, suggesting future avenues for research and personalized LC therapies, shedding light on NEAT1's crucial role in LC. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelam Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
20
|
Li Y, Zhao Y, Zhong G, Xu Q, Tan Y, Xing W, Cao D, Wang Y, Liu C, Li J, Du R, Sun W, Yuan X, Li Y, Liu Z, Jin X, Zhao D, Song J, Wang Y, Kan G, Han X, Liu S, Yuan M, Gao F, Shu J, Li Y, Ling S. Vascular smooth muscle cell-specific miRNA-214 deficiency alleviates simulated microgravity-induced vascular remodeling. FASEB J 2024; 38:e23369. [PMID: 38100642 DOI: 10.1096/fj.202300727r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.
Collapse
Affiliation(s)
- Youyou Li
- Department of Physical Education, China Agricultural University, Beijing, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yunzhang Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Qing Xu
- Core Facilities Center, Capital Medical University, Beijing, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Xing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Dengchao Cao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinbo Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yeheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yanqing Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xuan Han
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shujuan Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Min Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Gao
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jingdan Shu
- Department of Physical Education, China Agricultural University, Beijing, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| |
Collapse
|
21
|
Wang H, Wang J, Lyu L, Wei S, Zhang C. Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields. Comput Methods Biomech Biomed Engin 2024; 27:478-488. [PMID: 36912751 DOI: 10.1080/10255842.2023.2187738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
The bone lacunar-canalicular system (LCS) is a unique complex 3D microscopic tubular network structure within the osteon that contains interstitial fluid flow to ensure the efficient transport of signaling molecules, nutrients, and wastes to guarantee the normal physiological activities of bone tissue. The mass transfer laws in the LCS under microgravity and hypergravity are still unclear. In this paper, a multi-scale 3D osteon model was established to mimic the cortical osteon, and a finite element method was used to numerically analyze the mass transfer in the LCS under hypergravity, normal gravity and microgravity and combined with high-intensity exercise conditions. It was shown that hypergravity promoted mass transfer in the LCS to the deep lacunae, and the number of particles in lacunae increased more significantly from normal gravity to hypergravity the further away from the Haversian canal. The microgravity environment inhibited particles transport in the LCS to deep lacunae. Under normal gravity and microgravity, the number of particles in lacunae increased greatly when doing high-intensity exercise compared to stationary standing. This paper presents the first simulation of mass transfer within the LCS with different gravity fields combined with high-intensity exercise using the finite element method. The research suggested that hypergravity can greatly promote mass transfer in the LCS to deep lacunae, and microgravity strongly inhibited this mass transfer; high-intensity exercise increased the mass transfer rate in the LCS. This study provided a new strategy to combat and treat microgravity-induced osteoporosis.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Jiaming Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Linwei Lyu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Shuping Wei
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| |
Collapse
|
22
|
Zhao F, Zhang Y, Pei S, Wang S, Hu L, Wang L, Qian A, Yang TL, Guo Y. Mechanobiological crosstalk among bone cells and between bone and other organs. BONE CELL BIOMECHANICS, MECHANOBIOLOGY AND BONE DISEASES 2024:215-247. [DOI: 10.1016/b978-0-323-96123-3.00015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Zhao D, He J, Zhao X, Sheng X, Feng Z, Wang X, Zhang C, Wang S, Geng B, Xia Y. A novel lncRNA GM15416 regulates osteoblast apoptosis and differentiation through the c-Fos/Fas axis and mitigates osteoporosis. Int J Biol Macromol 2024; 254:127824. [PMID: 37924900 DOI: 10.1016/j.ijbiomac.2023.127824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Osteoporosis (OP) is a common systemic bone disorder, and the programmed cell death of osteoblasts is closely linked to the development of osteoporosis. Previous studies have shown that c-fos can cause osteoblast apoptosis. Furthermore, it has been demonstrated that long non-coding RNA (lncRNA) plays a pervasive role in regulating the biology of osteoblasts. Nevertheless, the precise role and mechanism of long non-coding RNA (lncRNA) in relation to c-Fos at the transcriptional level in osteoblast cell death remain uncertain. Compared with normal osteoblasts, serum deprivation resulted in significant upregulation of the transcription factor c-Fos and apoptosis-related Fas proteins in osteoblasts. In addition, the expression of lncRNA GM15416 related to c-Fos was significantly increased. The results showed that overexpression of c-Fos leads to an increase in downstream Fas protein, which subsequently leads to osteoblast apoptosis and hinders osteogenesis. On the contrary, a decrease in lncRNA GM15416 expression leads to a decrease in c-Fos/Fas expression, which hinders osteoblast apoptosis and promotes osteogenesis. Our results suggest that lncRNA GM15416 exerts inhibitory effects on osteoblast apoptosis and acts as a preventive factor against osteoporosis. As a result, GM15416 emerges as an important lncRNA associated with osteoporosis and holds potential as a future therapeutic target.
Collapse
Affiliation(s)
- Dacheng Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Pain Department of the Second Hospital of Lanzhou University, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, Pr China
| | - Jinwen He
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Xiaobing Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Xiaoyun Sheng
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Zhiwei Feng
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Xingwen Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Chengjun Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Shenghong Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China.
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China.
| |
Collapse
|
24
|
Li Y, Sun W, Li J, Du R, Xing W, Yuan X, Zhong G, Zhao D, Liu Z, Jin X, Pan J, Li Y, Li Q, Kan G, Han X, Ling S, Sun X, Li Y. HuR-mediated nucleocytoplasmic translocation of HOTAIR relieves its inhibition of osteogenic differentiation and promotes bone formation. Bone Res 2023; 11:53. [PMID: 37872163 PMCID: PMC10593784 DOI: 10.1038/s41413-023-00289-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/25/2023] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear. Here, by constructing transgenic mice with BMSC (Prx1-HOTAIR)- and osteoblast (Bglap-HOTAIR)-specific overexpression of HOTAIR, we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo. Specifically, Prx1-HOTAIR mice showed delayed bone formation, while Bglap-HOTAIR mice showed increased bone formation. HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro. Furthermore, we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts. HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation. We first identified that the RNA-binding protein human antigen R (HuR) is responsible for HOTAIR nucleocytoplasmic translocation. HOTAIR is essential for osteoblast function, and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function. Bglap-HOTAIR mice, but not Prx1-HOTAIR mice, showed alleviation of bone loss induced by unloading. This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation, which provides new insights into precise regulation as a target for bone loss.
Collapse
Affiliation(s)
- Yuheng Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- The Center of Space Bio-Medicine, Beijing Institute of Technology, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Xing
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Junjie Pan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Youyou Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xuan Han
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Xiqing Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
25
|
Li W, Yu Y, Zhou G, Hu G, Li B, Ma H, Yan W, Pei H. Large-scale ORF screening based on LC-MS to discover novel lncRNA-encoded peptides responding to ionizing radiation and microgravity. Comput Struct Biotechnol J 2023; 21:5201-5211. [PMID: 37928948 PMCID: PMC10624585 DOI: 10.1016/j.csbj.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
In the human genome, 98% of genes can be transcribed into non-coding RNAs (ncRNAs), among which lncRNAs and their encoded peptides play important roles in regulating various aspects of cellular processes and may serve as crucial factors in modulating the biological effects induced by ionizing radiation and microgravity. Unfortunately, there are few reports in space radiation biology on lncRNA-encoded peptides below 10kD due to limitations in detection techniques. To fill this gap, we integrated a variety of methods based on genomics and peptidomics, and discovered 22 lncRNA-encoded small peptides that are sensitive to space radiation and microgravity, which have never been reported before. We concurrently validated the transmembrane helix, subcellular localization, and biological function of these small peptides using bioinformatics and molecular biology techniques. More importantly, we found that these small peptides function independently of the lncRNAs that encode them. Our findings have uncovered a previously unknown human proteome encoded by 'non-coding' genes in response to space conditions and elucidated their involvement in biological processes, providing valuable strategies for individual protection mechanisms for astronauts who carry out deep space exploration missions in space radiation environments.
Collapse
Affiliation(s)
- Wanshi Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yongduo Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guang Hu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Center for Systems Biology, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hong Ma
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Center for Systems Biology, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
27
|
Zhang W, Liu Y, Luo Y, Shu X, Pu C, Zhang B, Feng P, Xiong A, Kong Q. New insights into the role of long non-coding RNAs in osteoporosis. Eur J Pharmacol 2023; 950:175753. [PMID: 37119958 DOI: 10.1016/j.ejphar.2023.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuheng Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang Shu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Congmin Pu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pin Feng
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Sun W, Li Y, Li J, Tan Y, Yuan X, Meng H, Ye J, Zhong G, Jin X, Liu Z, Du R, Xing W, Zhao D, Song J, Li Y, Pan J, Zhao Y, Li Q, Wang A, Ling S, Dai R, Li Y. Mechanical stimulation controls osteoclast function through the regulation of Ca 2+-activated Cl - channel Anoctamin 1. Commun Biol 2023; 6:407. [PMID: 37055517 PMCID: PMC10102170 DOI: 10.1038/s42003-023-04806-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Mechanical force loading is essential for maintaining bone homeostasis, and unloading exposure can lead to bone loss. Osteoclasts are the only bone resorbing cells and play a crucial role in bone remodeling. The molecular mechanisms underlying mechanical stimulation-induced changes in osteoclast function remain to be fully elucidated. Our previous research found Ca2+-activated Cl- channel Anoctamin 1 (Ano1) was an essential regulator for osteoclast function. Here, we report that Ano1 mediates osteoclast responses to mechanical stimulation. In vitro, osteoclast activities are obviously affected by mechanical stress, which is accompanied by the changes of Ano1 levels, intracellular Cl- concentration and Ca2+ downstream signaling. Ano1 knockout or calcium binding mutants blunts the response of osteoclast to mechanical stimulation. In vivo, Ano1 knockout in osteoclast blunts loading induced osteoclast inhibition and unloading induced bone loss and. These results demonstrate that Ano1 plays an important role in mechanical stimulation induced osteoclast activity changes.
Collapse
Affiliation(s)
- Weijia Sun
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Haoye Meng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Jianting Ye
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - XiaoYan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Xing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Youyou Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Junjie Pan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yunzhang Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Shukuan Ling
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
29
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
30
|
Huang L, Xiong S, Liu H, Li M, Zhang R, Liu Y, Hu X. Bioinformatics Analysis of the Inflammation-Associated lncRNA-mRNA Coexpression Network in Type 2 Diabetes. J Renin Angiotensin Aldosterone Syst 2023; 2023:6072438. [PMID: 36874406 PMCID: PMC9977555 DOI: 10.1155/2023/6072438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Diabetes is a chronic inflammatory state, and a key role of lncRNAs in diabetes complications is a new area of research. Methods In this study, key lncRNAs related to diabetes inflammation were identified by RNA-chip mining and lncRNA-mRNA coexpression network construction and finally verified by RT-qPCR. Results We ultimately obtained 12 genes, including A1BG-AS1, AC084125.4, RAMP2-AS1, FTX, DBH-AS1, LOXL1-AS1, LINC00893, LINC00894, PVT1, RUSC1-AS1, HCG25, and ATP1B3-AS1. RT-qPCR assays verified that LOXL1-AS1, A1BG-AS1, FTX, PVT1, and HCG25 were upregulated in the HG+LPS-induced THP-1 cells, and LINC00893, LINC00894, RUSC1-AS1, DBH-AS1, and RAMP2-AS1 were downregulated in the HG+LPS-induced THP-1 cells. Conclusions lncRNAs and mRNAs are extensively linked and form a coexpression network, and lncRNAs may influence the development of type 2 diabetes by regulating the corresponding mRNAs. The ten key genes obtained may become biomarkers of inflammation in type 2 diabetes in the future.
Collapse
Affiliation(s)
- Linjuan Huang
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Shengxi Xiong
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Hanshuang Liu
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Min Li
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Ranran Zhang
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Yan Liu
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Xiaolei Hu
- The Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
31
|
Confined environments induce polarized paraspeckle condensates. Commun Biol 2023; 6:145. [PMID: 36737664 PMCID: PMC9898560 DOI: 10.1038/s42003-023-04528-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer cells experience confinement as they navigate the tumour microenvironment during metastasis. Recent studies have revealed that the nucleus can function as a 'ruler' for measuring physical confinement via membrane tension, allowing for compression-sensitive changes in migration. Cell nuclei contain many nuclear bodies that form when their components phase separate and condense within permissive local regions within the nucleus. However, how sub-nuclear organisation and phase separation changes with cell confinement and compression is largely unknown. Here we focus on paraspeckles, stress-responsive subnuclear bodies that form by phase separation around the long non-coding RNA NEAT1. As cells entered moderate confinement, a significant increase in paraspeckle number and size was observed compared to unconfined cells. Paraspeckle polarization bias towards the leading edge was also observed in confinement, correlating with regions of euchromatin. Increasing paraspeckle abundance resulted in increases in confined migration likelihood, speed, and directionality, as well as an enhancement of paraspeckle polarization towards the leading edge. This polarization of paraspeckle condensates may play a key role in regulating confined migration and invasion in cancer cells, and illustrates the utility of microchannel-based assays for identifying phenomena not observed on 2D or 3D bulk substrates.
Collapse
|
32
|
Wang H, Wang J, Li K, Gao L, Wang A, Wei S, Lyu L, Zhang C. The effect of different gravity fields on mass transfer in the rat bone lacunar-canalicular system. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
33
|
Huai Y, Mao W, Wang X, Lin X, Li Y, Chen Z, Qian A. How do RNA binding proteins trigger liquid-liquid phase separation in human health and diseases? Biosci Trends 2022; 16:389-404. [PMID: 36464283 DOI: 10.5582/bst.2022.01449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RNA-binding proteins (RBPs) lie at the center of post-transcriptional regulation and protein synthesis, adding complexity to RNA life cycle. RBPs also participate in the formation of membrane-less organelles (MLOs) via undergoing liquid-liquid phase separation (LLPS), which underlies the formation of MLOs in eukaryotic cells. RBPs-triggered LLPS mainly relies on the interaction between their RNA recognition motifs (RRMs) and capped mRNA transcripts and the heterotypic multivalent interactions between their intrinsically disordered regions (IDRs) or prion-like domains (PLDs). In turn, the aggregations of RBPs are also dependent on the process of LLPS. RBPs-driven LLPS is involved in many intracellular processes (regulation of translation, mRNA storage and stabilization and cell signaling) and serves as the heart of cellular physiology and pathology. Thus, it is essential to comprehend the potential roles and investigate the internal mechanism of RPBs-triggered LLPS. In this review, we primarily expound on our current understanding of RBPs and they-triggered LLPS and summarize their physiological and pathological functions. Furthermore, we also summarize the potential roles of RBPs-triggered LLPS as novel therapeutic mechanism for human diseases. This review will help understand the mechanisms underlying LLPS and downstream regulation of RBPs and provide insights into the pathogenesis and therapy of complex diseases.
Collapse
Affiliation(s)
- Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wenjing Mao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xuehao Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiao Lin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yu Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Wang H, Gao L, Chen X, Zhang C. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields. J Bone Miner Metab 2022; 40:940-950. [PMID: 36350408 DOI: 10.1007/s00774-022-01373-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The bone lacunar-canalicular system (LCS) is an important microstructural basis for signaling and material transport in bone tissue, guaranteeing normal physiological processes in tissues. Spaceflight astronauts and elderly osteoporosis are related to its function, so it is necessary to reveal the mass transfer laws in bone microstructure under different gravity fields to provide insight for effective clinical treatment. MATERIALS AND METHODS Using the natural LCS structure of bovine tibial cortical bone as the object, the mass transfer experiments on cortical bone were conducted by using sodium fluorescein tracer through different frequency pulsating pressure provided by dynamic perfusion loading device and different high G environments provided by high-speed centrifuge to analyze the mass transfer laws under different gravity fields and different pulsating pressures. RESULTS The fluorescence intensity of lacunae within the osteon was lower the farther away from the Haversian canal. As the gravity field magnitude increased, the fluorescence intensity within each lacuna enhanced, and the more distant the lacunae from the Haversian canal, the greater the fluorescence intensity enhancement. High-frequency pulsating pressure simulated high-intensity exercise in humans can improve mass transfer efficiency in the LCS. CONCLUSION High-intensity exercise may greatly increase solute molecules, nutrients, and signaling molecules in osteocytes and improve the activity of osteocytes. Hypergravity can enhance the transport of solute molecules, nutrients, and signaling molecules in the LCS, especially promoting mass transfer to deep layer lacunae. Conversely, mass transfer to deep layer lacunae may be inhibited under microgravity, causing bone loss and ultimately leading to osteoporosis.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Institute of Brain Trauma and Neurological Diseases of the Armed Police Force, Tianjin, People's Republic of China.
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
35
|
Liquid–Liquid Phase Separation of Biomacromolecules and Its Roles in Metabolic Diseases. Cells 2022; 11:cells11193023. [PMID: 36230986 PMCID: PMC9562192 DOI: 10.3390/cells11193023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) compartmentalizes and concentrates biomacromolecules into liquid-like condensates, which underlies membraneless organelles (MLOs) formation in eukaryotic cells. With increasing evidence of the LLPS concept and methods, this phenomenon as a novel principle accounts for explaining the precise spatial and temporal regulation of cellular functions. Moreover, the phenomenon that LLPS tends to concentrate proteins is often accompanied by several abnormal signals for human diseases. It is reported that multiple metabolic diseases are strongly associated with the deposition of insoluble proteinaceous aggregating termed amyloids. At present, recent studies have observed the roles of LLPS in several metabolic diseases, including type 2 diabetes mellitus (T2DM), Alzheimer’s disease (AD), and metabolic bone diseases (MBDs). This review aims to expound on the current concept and methods of LLPS and summarize its vital roles in T2DM, AD, and MBDs, uncover novel mechanisms of these metabolic diseases, and thus provide powerful potential therapeutic strategies and targets for ameliorating these metabolic diseases.
Collapse
|
36
|
Zhang L, Zheng YL, Wang R, Wang XQ, Zhang H. Exercise for osteoporosis: A literature review of pathology and mechanism. Front Immunol 2022; 13:1005665. [PMID: 36164342 PMCID: PMC9509020 DOI: 10.3389/fimmu.2022.1005665] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a disease that weakens bones and has a high morbidity rate worldwide, which is prevalent among the elderly, particularly, women of postmenopausal age. The dynamic balance between bone formation and resorption is necessary for normal bone metabolism. Many factors, including aging, estrogen deficiency, and prolonged immobilization, disrupt normal apoptosis, autophagy, and inflammation, leading to abnormal activation of osteoclasts, which gradually overwhelm bone formation by bone resorption. Moderate exercise as an effective non-drug treatment helps increase bone formation and helps relieve OP. The possible mechanisms are that exercise affects apoptosis and autophagy through the release of exercise-stimulated myohormone and the secretion of anti-inflammatory cytokines via mechanical force. In addition, exercise may also have an impact on the epigenetic processes involved in bone metabolism. Mechanical stimulation promotes bone marrow mesenchymal stem cells (BMSCs) to osteogenic differentiation by altering the expression of non-coding RNAs. Besides, by reducing DNA methylation, the mechanical stimulus can also alter the epigenetic status of osteogenic genes and show associated increased expression. In this review, we reviewed the possible pathological mechanisms of OP and summarized the effects of exercise on bone metabolism, and the mechanisms by which exercise alleviates the progression of OP, to provide a reference for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| |
Collapse
|
37
|
Xu K, Chu Y, Liu Q, Fan W, He H, Huang F. NEDD4 E3 Ligases: Functions and Mechanisms in Bone and Tooth. Int J Mol Sci 2022; 23:ijms23179937. [PMID: 36077334 PMCID: PMC9455957 DOI: 10.3390/ijms23179937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Protein ubiquitination is a precisely controlled enzymatic cascade reaction belonging to the post-translational modification of proteins. In this process, E3 ligases catalyze the binding of ubiquitin (Ub) to protein substrates and define specificity. The neuronally expressed developmentally down-regulated 4 (NEDD4) subfamily, belonging to the homology to E6APC terminus (HECT) class of E3 ligases, has recently emerged as an essential determinant of multiple cellular processes in different tissues, including bone and tooth. Here, we place special emphasis on the regulatory role of the NEDD4 subfamily in the molecular and cell biology of osteogenesis. We elucidate in detail the specific roles, downstream substrates, and upstream regulatory mechanisms of the NEDD4 subfamily. Further, we provide an overview of the involvement of E3 ligases and deubiquitinases in the development, repair, and regeneration of another mineralized tissue—tooth.
Collapse
Affiliation(s)
- Ke Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Qin Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| |
Collapse
|