1
|
Tarapara B, Shah F. Role of MRE11 in DNA damage repair pathway dynamics and its diagnostic and prognostic significance in hereditary breast and ovarian cancer. BMC Cancer 2025; 25:650. [PMID: 40205351 PMCID: PMC11984277 DOI: 10.1186/s12885-025-14082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND DNA damage repair pathway genes are key components for maintaining genomic stability and are mainly associated with hereditary breast and ovarian cancer. METHODS The present study aimed to investigate the gene expression profile of DNA damage repair pathway genes, including BRCA1, BRCA2, ATM, TP53, CHEK2, MRE11, RAD50, BARD1, PALB2, and NBN, in hereditary breast and ovarian cancer patients using quantitative real-time PCR. RESULTS The study showed significant upregulation of most DNA damage repair genes in HBOC patients compared to controls, except MRE11, which was downregulated. Receiver operating characteristic (ROC) curve analysis revealed that MRE11 (p < 0.001), BRCA1 (p < 0.001), BRCA2 (p < 0.001), and PALB2 (p < 0.001) can be used as potential diagnostic biomarkers for hereditary breast and ovarian cancer. Spearman correlation analysis showed that RAD50 was significantly associated with the BRCA1/2 mutation status (p = 0.05). Furthermore, bivariate analysis revealed a strong positive correlation between BARD1 gene expression and the expression of BRCA1, PALB2, and NBN genes. Kaplan-Meier survival analysis showed that reduces expression of the MRE11 gene was associated with better overall survival. CONCLUSIONS The study findings may lead to a better understanding of the molecular mechanisms underlying hereditary breast and ovarian cancer, suggesting its role as a potential diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Life-Science, Gujarat University and Young Scientist (DHR-ICMR), Molecular Diagnostic & Research Lab-3, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky Shah
- Department of Cancer Biology, Molecular Diagnostic & Research Lab- 3, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
2
|
Fiegl H, Schnaiter S, Reimer DU, Leitner K, Nardelli P, Tsibulak I, Wieser V, Wimmer K, Schamschula E, Marth C, Zeimet AG. BRCA loss of function including BRCA1 DNA-methylation, but not BRCA-unrelated homologous recombination deficiency, is associated with platinum hypersensitivity in high-grade ovarian cancer. Clin Epigenetics 2024; 16:171. [PMID: 39605059 PMCID: PMC11603837 DOI: 10.1186/s13148-024-01781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND In high-grade ovarian cancer (HGOC), determination of homologous recombination deficiency (HRD) status is commonly used in routine practice to predict response to platinum-based therapy or poly (ADP-ribose) polymerase inhibitors (PARPi). Here we tested the hypothesis that BRCA loss of function (LOF) due to epigenetic or genetic aberrations is a better predictor for the clinical outcome than HRD. One hundred thirty-one HGOC tissues were tested for BRCA DNA-methylation, BRCA mutations, HRD and BRCA1 mRNA expression, followed by a comprehensive survival analysis. RESULTS BRCA1-methylation was detected in 11% of the tumors, exclusively in BRCA1-wild-type (wt) HGOCs. BRCA1-methylated tumors (BRCA1-meth) had HRD-scores similar to those of BRCA-mutated (mut) tumors, and higher compared to unmethylated-BRCA-wt tumors (BRCA-wt-unmeth; P < 0.001). Platinum-refractory or -resistant HGOCs at first recurrence were all BRCA-unmeth cancers. Only one of the BRCA-mut cancers had a platinum-resistant recurrence. Thus, 99% of relapses in cancers with epigenetic or genetic BRCA-alterations were platinum-sensitive. Multivariate analysis confirmed BRCA-LOF as an independent predictor of progression-free survival (PFS) and overall survival (OS), whereas HRD-status had no predictive value for PFS and OS. Patients with BRCA-wt-unmeth cancers had the worst outcome compared to patients with cancers harboring epigenetic or genetic BRCA-alterations (PFS: P = 0.007; OS: P = 0.022). Most importantly, the BRCA-wt-unmeth subfraction of HRD-positive HGOCs exhibited the same poor survival as the entire HRD-negative cohort. CONCLUSION In HGOC BRCA mutational status together with BRCA1-methylation exhibit the best predictive power for favorable clinical outcome and thus high sensitivity to platinum-based therapy, whereas BRCA-unrelated HRD positivity was not associated with improved platinum sensitivity.
Collapse
Affiliation(s)
- Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Simon Schnaiter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel U Reimer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Leitner
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Nardelli
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Esther Schamschula
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Grelloni C, Garraffo R, Setti A, Rossi F, Peruzzi G, Cinquanta M, Di Rosa MC, Pierotti MA, Beltran M, Bozzoni I. BRCA1 levels and DNA-damage response are controlled by the competitive binding of circHIPK3 or FMRP to the BRCA1 mRNA. Mol Cell 2024; 84:4079-4094.e10. [PMID: 39389065 DOI: 10.1016/j.molcel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules widely expressed in eukaryotes and deregulated in several pathologies, including cancer. Many studies point to their activity as microRNAs (miRNAs) and protein sponges; however, we propose a function based on circRNA-mRNA interaction to regulate mRNA fate. We show that the widely tumor-associated circHIPK3 directly interacts in vivo with the BRCA1 mRNA through the back-splicing region in human cancer cells. This interaction increases BRCA1 translation by competing for the binding of the fragile-X mental retardation 1 protein (FMRP) protein, which we identified as a BRCA1 translational repressor. CircHIPK3 depletion or disruption of the circRNA-mRNA interaction decreases BRCA1 protein levels and increases DNA damage, sensitizing several cancer cells to DNA-damage-inducing agents and rendering them susceptible to synthetic lethality. Additionally, blocking FMRP interaction with BRCA1 mRNA with locked nucleic acid (LNA) restores physiological protein levels in BRCA1 hemizygous breast cancer cells, underscoring the importance of this circRNA-mRNA interaction in regulating DNA-damage response.
Collapse
Affiliation(s)
- Chiara Grelloni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Raffaele Garraffo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Mario Cinquanta
- Cogentech ltd Benefit C. Registered Office, 20133 Milan, Italy
| | | | | | - Manuel Beltran
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy.
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy.
| |
Collapse
|
4
|
Taylor SJ, Hollis RL, Gourley C, Herrington CS, Langdon SP, Arends MJ. RFWD3 modulates response to platinum chemotherapy and promotes cancer associated phenotypes in high grade serous ovarian cancer. Front Oncol 2024; 14:1389472. [PMID: 38711848 PMCID: PMC11071161 DOI: 10.3389/fonc.2024.1389472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND DNA damage repair is frequently dysregulated in high grade serous ovarian cancer (HGSOC), which can lead to changes in chemosensitivity and other phenotypic differences in tumours. RFWD3, a key component of multiple DNA repair and maintenance pathways, was investigated to characterise its impact in HGSOC. METHODS RFWD3 expression and association with clinical features was assessed using in silico analysis in the TCGA HGSOC dataset, and in a further cohort of HGSOC tumours stained for RFWD3 using immunohistochemistry. RFWD3 expression was modulated in cell lines using siRNA and CRISPR/cas9 gene editing, and cells were characterised using cytotoxicity and proliferation assays, flow cytometry, and live cell microscopy. RESULTS Expression of RFWD3 RNA and protein varied in HGSOCs. In cell lines, reduction of RFWD3 expression led to increased sensitivity to interstrand crosslinking (ICL) inducing agents mitomycin C and carboplatin. RFWD3 also demonstrated further functionality outside its role in DNA damage repair, with RFWD3 deficient cells displaying cell cycle dysregulation, reduced cellular proliferation and reduced migration. In tumours, low RFWD3 expression was associated with increased tumour mutational burden, and complete response to platinum chemotherapy. CONCLUSION RFWD3 expression varies in HGSOCs, which can lead to functional effects at both the cellular and tumour levels.
Collapse
Affiliation(s)
- Sarah J. Taylor
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert L. Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - C. Simon Herrington
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P. Langdon
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Dutta P, Pal D, Sultana F, Mandal RK, Roy A, Panda CK. Down-regulation of FA-BRCA Pathway in Cervical Carcinoma Gradually Reversed During the Development of Chemo-tolerance: Clinical Implications. Reprod Sci 2024; 31:1122-1138. [PMID: 38012520 DOI: 10.1007/s43032-023-01378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 11/29/2023]
Abstract
Cervical cancer is one of the leading causes of cancer death among females, worldwide. The contributory role of different cellular pathways in the process of carcinogenesis is still poorly understood. Our study was focused here to understand the functional evaluation of key regulatory genes of FA-BRCA pathway in the development of CACX and their role in chemo-tolerance of the disease by analyzing the molecular profile of the genes both in normal and tumour tissue of our sample pool, also validated in in silico datasets. Later on, prognostic importance of the genes was further evaluated in plasma DNA and cisplatin-treated in vitro system. We found that expression profile of FA-BRCA pathway genes was gradually reduced from undifferentiated basal-parabasal layers of normal tissue towards the progression of the disease. Further analysis revealed that frequent promoter methylation [32-55%] and deletion [34-52%] events were the plausible reasons for their reduced expression in CACX. Noticeably, invasion of promoter methylation of the genes [11-17%] in plasma CTCs of CACX patients was positively correlated [p < 0.001] with poor prognosis among patients. On the other hand, functional upregulation of these genes at higher concentrations [IC50-70] of cisplatin was a predictor for the development of drug tolerance, as evaluated in our in vitro study. This finding was supported further by low prevalence of γ-H2X foci formation and reduced expression of DNMT1 at higher concentrations of cisplatin. In totality, we discovered that the FA-BRCA pathway must be inactivated for cancer formation. In contrast, elevated gene expression played a substantial role in building of chemo-tolerance and might be associated with developing increased risk of disease recurrence among patients.
Collapse
Affiliation(s)
- Priyanka Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Debolina Pal
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Farhin Sultana
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Ranajit Kumar Mandal
- Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, 700014, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, West Bengal, India.
| |
Collapse
|
6
|
Li L, Li S, Zhang X, Mei L, Fu X, Dai M, Wei N. Establishing the role of BRCA1 in the diagnosis, prognosis and immune infiltrates of breast invasive cancer by bioinformatics analysis and experimental validation. Aging (Albany NY) 2024; 16:1077-1095. [PMID: 38224491 PMCID: PMC10866431 DOI: 10.18632/aging.205366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Breast cancer susceptibility gene 1 (BRCA1) is a well-known gene that acts a vital role in suppressing the growth of tumors. Previous studies have primarily focused on the genetic mutations of BRCA1 and its association with hereditary breast invasive carcinoma (BRCA). However, little research has been done to investigate the relationship between BRCA1 and immune infiltrates and prognosis in BRCA. METHODS We obtained the expression profiles and clinical information of patients with BRCA from the Cancer Genome Atlas (TCGA) database. The levels of the BRCA1 gene between BRCA tissues and normal breast tissues were compared through the Wilcoxon rank-sum test. Additionally, we performed WB and RT-qPCR techniques to detect the expression of BRCA1. We conducted functional enrichment analyses. Furthermore, we assessed immune cell infiltration using a single-sample gene set enrichment analysis. The methylation status of the BRCA1 gene was analyzed using the UALCAN and MethSurv databases. The Cox regression analysis and (KM) Kaplan-Meier method were employed to determine the prognostic value of BRCA1. In order to provide a practical tool for predicting the overall survival rates at different time points, we also constructed a nomogram. RESULTS Our analysis revealed that the expression of BRCA1 was significantly higher in BRCA tissues compared to normal tissues. Furthermore, this increased level of BRCA1 was found to be associated with specific BRCA subtypes, including T2, stage II, ER positive, ect. Importantly, the overexpression of BRCA1 was shown to be a negative prognostic marker for the overall survival rates of BRCA patients. Moreover, low methylation status of the BRCA1 gene was related to a poorer prognosis. Furthermore, our results indicated that high levels of BRCA1 are related to a decrease in level of killer immune cells, such as natural killer (NK) cells, macrophages, CD8+ T cells, and plasma-like dendritic cells (pDCs) within the tumor microenvironment. CONCLUSIONS Our study is the first to provide evidence indicating that the presence of BRCA1 can serve as a reliable marker for both diagnosing and determining the prognosis of BRCA. Moreover, BRCA1 acts as a crucial indicator of the cancer's potential to infiltrate and invade the immune system, which has important implications for developing targeted therapies in BRCA.
Collapse
Affiliation(s)
- Leilei Li
- Department of Pathology, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shuangyan Li
- Department of Oncology, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xuyang Zhang
- Department of Hepatobiliary, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Liying Mei
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Xueqin Fu
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Min Dai
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Na Wei
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| |
Collapse
|
7
|
Patil A, Patil S, Anupama CE, Rajarajan S, Nimbalkar VP, Amirtham U, Champaka G, Suma MN, Patil GV, Nargund A, Pallavi VR, Jacob L, Premalatha CS, Prabhu JS. BRCA1 expression, its correlation with clinicopathological features, and response to neoadjuvant chemotherapy in high-grade serous ovarian cancer. J Obstet Gynaecol Res 2023; 49:2875-2882. [PMID: 37737055 DOI: 10.1111/jog.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
AIM In high-grade serous ovarian cancers (HG-SOC), BRCA1 mutation is one of the predominant mutations reported by various studies. However, the non-mutational mechanisms of BRCA pathway inactivation in HG-SOC are unclear. We evaluated BRCA1 inactivation by estimating its expression with its repressor, ID4, in primary and neoadjuvant chemotherapy (NACT)-treated HG-SOC tumors with known therapeutic responses. METHODS We evaluated the expression pattern of BRCA1 protein by immunohistochemistry in 119 cases of HG-SOC from a hospital cohort consisting of primary (N = 69) and NACT-treated (N = 50) tumors. Histological patterns (SET), stromal infiltration by lymphocytes (sTILs), and chemotherapy response score (CRS) were estimated by microscopic examination. Gene expression levels of BRCA1, and its repressor ID4, were estimated by qPCR. The association of BRCA1 protein and mRNA with clinicopathological features was studied. The relevance of the BRCA1/ID4 ratio was evaluated in tumors with different CRS. RESULTS BRCA1 protein expression was observed in 12% of primary and 19% of NACT-treated HG-SOC tumors. We observed moderate concordance between BRCA1 protein and mRNA expression (AUC = 0.677). High BRCA1 mRNA expression was significantly associated with a more frequent SET pattern (p = 0.024), higher sTILs density (p = 0.042), and increased mitosis (p = 0.028). BRCA1-negative tumors showed higher expression of ID4 though not statistically significant. A higher BRCA1/ID4 ratio was associated with high sTILs density in primary (p = 0.042) and NACT-treated tumors (p = 0.040). CONCLUSION Our findings show the utility of the BRCA1/ID4 ratio in predicting neoadjuvant therapy response, which needs further evaluation in larger cohorts with long-term outcomes.
Collapse
Affiliation(s)
- Akkamahadevi Patil
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Sharada Patil
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - C E Anupama
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - Savitha Rajarajan
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - Vidya P Nimbalkar
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| | - Usha Amirtham
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - G Champaka
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - M N Suma
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Geetha V Patil
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Ashwini Nargund
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - V R Pallavi
- Department of Gynecological Oncology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Linu Jacob
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - C S Premalatha
- Department of Histopathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, Bangalore, India
| |
Collapse
|
8
|
Zhang Y, Ali A, Xie J. Detection of clinically important BRCA gene mutations in ovarian cancer patients using next generation sequencing analysis. Am J Cancer Res 2023; 13:5005-5020. [PMID: 37970354 PMCID: PMC10636669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
Ovarian cancer, a complex and aggressive malignancy, remains a significant challenge in clinical oncology due to its heterogeneous nature and limited therapeutic options. In this study, across Pakistani ovarian cancer patients, we conducted a comprehensive analysis of mutations within the BRCA1 and BRCA2 genes to elucidate their potential implications in ovarian cancer susceptibility and progression. Employing Next-Generation Sequencing (NGS), we conducted a comprehensive mutational analysis of BRCA1/2 genes. Kaplan Meier analysis was used to analyze the effect of pathogenic mutations on the survival outcomes of ovarian cancer patients. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Immunohistochemistry (IHC) analyses were conducted to analyze the downstream effect of the pathogenic mutations. Targeted bisulfite sequencing (bisulfite-seq) analysis facilitated the investigation of epigenetic contributions to gene expression regulation. Enrichment analysis was conducted to uncover significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with BRCA1/2. Exploring DrugBank, we identified potential drugs capable of modulating BRCA1/2 expression regulation. NGS analysis identified three clinically significant pathogenic mutations within the BRCA1 gene and two within the BRCA2 gene, shedding light on their potential involvement in ovarian cancer susceptibility and progression. Kaplan Meier analysis unveiled poor overall survival (OS) associated with the identified pathogenic mutations, accentuating their prognostic value. Expression analysis using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and IHC demonstrated a significant up-regulation of BRCA1 and BRCA2 genes in ovarian cancer samples harboring pathogenic mutations. Bisulfite-seq revealed a significant hypomethylation within promoter regions of mutated BRCA1 and BRCA2 genes in ovarian cancer samples, compared to non-mutated cases with pathogenic mutations, indicating the role of epigenetics in expression dysregulation as well. By uncovering clinically significant pathogenic mutations in BRCA1/2 genes and establishing their link with up-regulated gene expression, this study significantly advances our understanding of ovarian cancer's underlying causes in the Pakistani population.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan UniversityShanghai 200438, China
| | - Akbar Ali
- Nishtar Medial CollegeMultan 60800, Punjab, Pakistan
| | - Jun Xie
- School of Life Sciences, Fudan UniversityShanghai 200438, China
| |
Collapse
|
9
|
Nie C, Zhou XA, Zhou J, Liu Z, Gu Y, Liu W, Zhan J, Li S, Xiong Y, Zhou M, Shen Q, Wang W, Yang E, Wang J. A transcription-independent mechanism determines rapid periodic fluctuations of BRCA1 expression. EMBO J 2023; 42:e111951. [PMID: 37334492 PMCID: PMC10390875 DOI: 10.15252/embj.2022111951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
BRCA1 expression is highly regulated to prevent genomic instability and tumorigenesis. Dysregulation of BRCA1 expression correlates closely with sporadic basal-like breast cancer and ovarian cancer. The most significant characteristic of BRCA1 regulation is periodic expression fluctuation throughout the cell cycle, which is important for the orderly progression of different DNA repair pathways throughout the various cell cycle phases and for further genomic stability. However, the underlying mechanism driving this phenomenon is poorly understood. Here, we demonstrate that RBM10-mediated RNA alternative splicing coupled to nonsense-mediated mRNA decay (AS-NMD), rather than transcription, determines the periodic fluctuations in G1/S-phase BRCA1 expression. Furthermore, AS-NMD broadly regulates the expression of period genes, such as DNA replication-related genes, in an uneconomical but more rapid manner. In summary, we identified an unexpected posttranscriptional mechanism distinct from canonical processes that mediates the rapid regulation of BRCA1 as well as other period gene expression during the G1/S-phase transition and provided insights into potential targets for cancer therapy.
Collapse
Affiliation(s)
- Chen Nie
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Xiao Albert Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Jiadong Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Zelin Liu
- Department of Medical Bioinformatics, Institute of Systems Biomedicine, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Yangyang Gu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Wanchang Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Shiwei Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Yundong Xiong
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Mei Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Qinjian Shen
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Ence Yang
- Department of Medical Bioinformatics, Institute of Systems Biomedicine, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| |
Collapse
|
10
|
Flasarova D, Urban K, Strouhal O, Klos D, Lemstrova R, Dvorak P, Soucek P, Mohelnikova-Duchonova B. DNA Repair Pathway in Ovarian Cancer Patients Treated with HIPEC. Int J Mol Sci 2023; 24:ijms24108868. [PMID: 37240218 DOI: 10.3390/ijms24108868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
DNA repair pathways are essential for maintaining genome stability, and understanding the regulation of these mechanisms may help in the design of new strategies for treatments, the prevention of platinum-based chemoresistance, and the prolongation of overall patient survival not only with respect to ovarian cancer. The role of hyperthermic intraperitoneal chemotherapy (HIPEC) together with cytoreductive surgery (CRS) and adjuvant systemic chemotherapy is receiving more interest in ovarian cancer (OC) treatment because of the typical peritoneal spread of the disease. The aim of our study was to compare the expression level of 84 genes involved in the DNA repair pathway in tumors and the paired peritoneal metastasis tissue of patients treated with CRS/platinum-based HIPEC with respect to overall patient survival, presence of peritoneal carcinomatosis, treatment response, and alterations in the BRCA1 and BRCA2 genes. Tumors and metastatic tissue from 28 ovarian cancer patients collected during cytoreductive surgery before HIPEC with cisplatin were used for RNA isolation and subsequent cDNA synthesis. Quantitative real-time PCR followed. The most interesting findings of our study are undoubtedly the gene interactions among the genes CCNH, XPA, SLK, RAD51C, XPA, NEIL1, and ATR for primary tumor tissue and ATM, ATR, BRCA2, CDK7, MSH2, MUTYH, POLB, and XRCC4 for metastases. Another interesting finding is the correlation between gene expression and overall survival (OS), where a low expression correlates with a worse OS.
Collapse
Affiliation(s)
- Dominika Flasarova
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Katerina Urban
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Ondrej Strouhal
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Dusan Klos
- Department of Surgery I, Faculty of Medicine and Dentistry, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Radmila Lemstrova
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Dvorak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Pavel Soucek
- Department of Toxicogenomics, National Institute of Public Health, 100 00 Prague, Czech Republic
| | | |
Collapse
|
11
|
Elevated Levels of Lamin A Promote HR and NHEJ-Mediated Repair Mechanisms in High-Grade Ovarian Serous Carcinoma Cell Line. Cells 2023; 12:cells12050757. [PMID: 36899893 PMCID: PMC10001195 DOI: 10.3390/cells12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Extensive research for the last two decades has significantly contributed to understanding the roles of lamins in the maintenance of nuclear architecture and genome organization which is drastically modified in neoplasia. It must be emphasized that alteration in lamin A/C expression and distribution is a consistent event during tumorigenesis of almost all tissues of human bodies. One of the important signatures of a cancer cell is its inability to repair DNA damage which befalls several genomic events that transform the cells to be sensitive to chemotherapeutic agents. This genomic and chromosomal instability is the most common feature found in cases of high-grade ovarian serous carcinoma. Here, we report elevated levels of lamins in OVCAR3 cells (high-grade ovarian serous carcinoma cell line) in comparison to IOSE (immortalised ovarian surface epithelial cells) and, consequently, altered damage repair machinery in OVCAR3. We have analysed the changes in global gene expression as a sequel to DNA damage induced by etoposide in ovarian carcinoma where lamin A is particularly elevated in expression and reported some differentially expressed genes associated with pathways conferring cellular proliferation and chemoresistance. We hereby establish the role of elevated lamin A in neoplastic transformation in the context of high-grade ovarian serous cancer through a combination of HR and NHEJ mechanisms.
Collapse
|
12
|
Chu DT, Vu Ngoc Suong M, Vu Thi H, Vu TD, Nguyen MH, Singh V. The expression and mutation of BRCA1/2 genes in ovarian cancer: a global systematic study. Expert Rev Mol Diagn 2023; 23:53-61. [PMID: 36634123 DOI: 10.1080/14737159.2023.2168190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION This systematic review was designed to summarize the findings on expression and mutation of BRCA1/2 genes in ovarian cancer (OC) patients, focusing on mutation detection technology and taking clinical decisions for better treatment. AREAS COVERED We conducted a systematic review by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses document selection guidelines for the document selection process and the PICOT standard for developing the keywords to search for. A total of 5729 publications were included, and 50 articles were put into the final screening. The results showed that Next-Generation Sequencing was a breakthrough technology in detecting Breast Cancer 1/2 (BRCA1/2) gene mutations because of its efficacy and affordability. Other technologies are also being applied now for mutation detection. The most prominent associations of BRCA1/2 gene mutations were age, heredity, and family history. Furthermore, mutations of BRCA1/2 could improve survival rate and overall survival. There is no sufficient study available to conclude a systematic analysis for the expression of BRCA1/2 gene in OC. EXPERT OPINION Research will continue to develop more diagnostic techniques based on the expression and mutation of BCRA1/2 genes for OC in the near future.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam.,Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Mai Vu Ngoc Suong
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam.,Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Manh-Hung Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Mehsana, India
| |
Collapse
|
13
|
Saha C, Bojdo J, Dunne NJ, Duary RK, Buckley N, McCarthy HO. Nucleic acid vaccination strategies for ovarian cancer. Front Bioeng Biotechnol 2022; 10:953887. [PMID: 36420446 PMCID: PMC9677957 DOI: 10.3389/fbioe.2022.953887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
High grade serous carcinoma (HGSC) is one of the most lethal ovarian cancers that is characterised by asymptomatic tumour growth, insufficient knowledge of malignant cell origin and sub-optimal detection. HGSC has been recently shown to originate in the fallopian tube and not in the ovaries. Conventional treatments such as chemotherapy and surgery depend upon the stage of the disease and have resulted in higher rates of relapse. Hence, there is a need for alternative treatments. Differential antigen expression levels have been utilised for early detection of the cancer and could be employed in vaccination strategies using nucleic acids. In this review the different vaccination strategies in Ovarian cancer are discussed and reviewed. Nucleic acid vaccination strategies have been proven to produce a higher CD8+ CTL response alongside CD4+ T-cell response when compared to other vaccination strategies and thus provide a good arena for antitumour immune therapy. DNA and mRNA need to be delivered into the intracellular matrix. To overcome ineffective naked delivery of the nucleic acid cargo, a suitable delivery system is required. This review also considers the suitability of cell penetrating peptides as a tool for nucleic acid vaccine delivery in ovarian cancer.
Collapse
Affiliation(s)
- Chayanika Saha
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - James Bojdo
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Tezpur, India
| | - Niamh Buckley
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
14
|
Du J, Zhu L, Sha H, Zou Z, Shen J, Kong W, Zhao L, Gu Q, Yu L, Qiu Y, Liu B. Therapeutic effect and safety of individualized chemotherapy combined with sequential immunotherapy based on BRCA1 mRNA expression level in unresectable pancreatic cancer. Front Oncol 2022; 12:1015232. [PMID: 36387089 PMCID: PMC9663848 DOI: 10.3389/fonc.2022.1015232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
AIM We aimed to evaluate the efficacy and safety of individualized chemotherapy combined with sequential immunotherapy based on BRCA1 mRNA expression in unresectable pancreatic cancer. METHODS The expression of BRCA1 mRNA in tumor tissues of 25 patients with pancreatic cancer was detected in this retrospective study. Patients in the medium and high expression groups were treated with paclitaxel-based chemotherapy: albumin paclitaxel 125mg/m2, gemcitabine 1g/m2, day 1. Patients in the low expression group were treated with oxaliplatin-based chemotherapy: oxaliplatin 85mg/m2, gemcitabine 1g/m2, day 1. Sequential GM-CSF and IL-2 immunotherapy were applied. Patient condition, treatment efficacy and safety were assessed every 4 cycles. RESULTS A total of 25 patients were enrolled in the study. All of them were observed for toxic side effects and 24 of them were evaluated for efficacy. The median overall survival and median progression-free survival were 11.9 months and 6.3 months. The disease control rate was 91.7%, of which 37.5% (9/24) patients achieved partial remission (PR), 54.2% (13/24) patients achieved stable disease (SD) and 8.3% (2/24) patients were assessed as progressive disease(PD). Of the 15 patients with medium or high expression in BRCA1 mRNA, 7 achieved PR and 8 achieved SD. Of the 9 patients with low BRCA1 mRNA expression, 2 achieved PR, 5 achieved SD and 2 had PD. The proportion of eosinophils in the blood of some patients with good therapeutic effects was significantly higher than that before treatment. Hematological and non-hematological toxicity during the treatment were mostly grade 1~2. The two most common grade 3 to 4 adverse events were fever and thrombocytopenia. CONCLUSION Our results suggest that individualized selection of chemotherapy combined with sequential immunotherapy according to BRCA1 mRNA expression level in unresectable pancreatic cancer could control the disease and have controllable adverse reactions.
Collapse
Affiliation(s)
- Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Linxi Zhu
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huizi Sha
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Shen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Kong
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lianjun Zhao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Gu
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Baorui Liu, ; Yudong Qiu,
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Baorui Liu, ; Yudong Qiu,
| |
Collapse
|
15
|
Identification of New Molecular Biomarkers in Ovarian Cancer Using the Gene Expression Profile. J Clin Med 2022; 11:jcm11133888. [PMID: 35807169 PMCID: PMC9267752 DOI: 10.3390/jcm11133888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a common cause of death among women worldwide. The current diagnostic and prognostic procedures available for the treatment of ovarian cancer are either not specific or are very expensive. Gene expression profiling has proved to be a very effective tool in the exploration of new molecular markers in patients with ovarian cancer, although the link between such markers and patient survival and clinical outcomes is still elusive. We are looking for genes that may function in the development and progression of ovarian cancer. The aim of our study was to evaluate the expression of selected suppressor genes (ATM, BRCA1, BRCA2), proto-oncogenes (KRAS, c-JUN, c-FOS), pro-apoptotic genes (NOXA, PUMA), genes related to chromatin remodeling (MEN1), and genes related to carcinogenesis (NOD2, CHEK2, EGFR). Tissue samples from 30 normal ovaries and 60 ovarian carcinoma tumors were provided for analysis of the gene and protein expression. Gene expression analysis was performed using the real-time PCR method. The protein concentrations from tissue homogenates were determined using the ELISA technique according to the manufacturers’ protocols. An increase in the expression level of mRNA and protein in women with ovarian cancer was observed for KRAS, c-FOS, PUMA, and EGFR. No significant changes in the transcriptional levels we observed for BRCA1, BRCA2, NOD2, or CHEK2. In conclusion, we suggest that KRAS, NOXA, PUMA, c-FOS, and c-JUN may be associated with poor prognosis in ovarian cancer.
Collapse
|
16
|
Shakfa N, Li D, Nersesian S, Wilson-Sanchez J, Koti M. The STING pathway: Therapeutic vulnerabilities in ovarian cancer. Br J Cancer 2022; 127:603-611. [PMID: 35383278 PMCID: PMC9381712 DOI: 10.1038/s41416-022-01797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer is the leading cause of mortality due to gynecologic malignancy. The majority of women diagnosed with the most common subtype, high-grade serous ovarian carcinoma (HGSC), develop resistance to conventional therapies despite initial response to treatment. HGSC tumors displaying DNA damage repair (DDR) gene deficiency and high chromosomal instability mainly associate with higher cytotoxic immune cell infiltration and expression of genes associated with these immune pathways. Despite the high level of immune infiltration observed, the majority of patients with HGSC have not benefited from immunomodulatory treatments as the mechanistic basis of this infiltration is unclear. This lack of response can be primarily attributed to heterogeneity at the levels of both cancer cell genetic alterations and the tumour immune microenvironment. Strategies to enhance anti-tumour immunity have been investigated in ovarian cancer, of which interferon activating therapies present as an attractive option. Of the several type I interferon (IFN-1) stimulating therapies, exogenously activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is emerging as a promising avenue. Herein, we highlight our current understanding of how constitutive and induced cGAS-STING pathway activation influences the ovarian tumour microenvironment. We further elaborate on the links between the genomic alterations prevalent in ovarian tumours and how the resultant immune phenotypes can make them more susceptible to exogenous STING pathway activation and potentiate immune-mediated killing of cancer cells. The therapeutic potential of cGAS-STING pathway activation in ovarian cancer and factors implicating treatment outcomes are discussed, providing a rationale for future combinatorial treatment approaches on the backbone of chemotherapy.
Collapse
Affiliation(s)
- Noor Shakfa
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Deyang Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Juliette Wilson-Sanchez
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
17
|
Custódio N, Savisaar R, Carvalho C, Bak-Gordon P, Ribeiro MI, Tavares J, Nunes PB, Peixoto A, Pinto C, Escudeiro C, Teixeira MR, Carmo-Fonseca M. Expression Profiling in Ovarian Cancer Reveals Coordinated Regulation of BRCA1/2 and Homologous Recombination Genes. Biomedicines 2022; 10:biomedicines10020199. [PMID: 35203410 PMCID: PMC8868827 DOI: 10.3390/biomedicines10020199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Predictive biomarkers are crucial in clarifying the best strategy to use poly(ADP-ribose) polymerase inhibitors (PARPi) for the greatest benefit to ovarian cancer patients. PARPi are specifically lethal to cancer cells that cannot repair DNA damage by homologous recombination (HR), and HR deficiency is frequently associated with BRCA1/2 mutations. Genetic tests for BRCA1/2 mutations are currently used in the clinic, but results can be inconclusive due to the high prevalence of rare DNA sequence variants of unknown significance. Most tests also fail to detect epigenetic modifications and mutations located deep within introns that may alter the mRNA. The aim of this study was to investigate whether quantitation of BRCA1/2 mRNAs in ovarian cancer can provide information beyond the DNA tests. Using the nCounter assay from NanoString Technologies, we analyzed RNA isolated from 38 ovarian cancer specimens and 11 normal fallopian tube samples. We found that BRCA1/2 expression was highly variable among tumors. We further observed that tumors with lower levels of BRCA1/2 mRNA showed downregulated expression of 12 additional HR genes. Analysis of 299 ovarian cancer samples from The Cancer Genome Atlas (TCGA) confirmed the coordinated expression of BRCA1/2 and HR genes. To facilitate the routine analysis of BRCA1/2 mRNA in the clinical setting, we developed a targeted droplet digital PCR approach that can be used with FFPE samples. In conclusion, this study underscores the potential clinical benefit of measuring mRNA levels in tumors when BRCA1/2 DNA tests are negative or inconclusive.
Collapse
Affiliation(s)
- Noélia Custódio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (R.S.); (C.C.); (P.B.-G.); (M.I.R.); (M.C.-F.)
- Correspondence: ; Tel.: +35-121-799-9411
| | - Rosina Savisaar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (R.S.); (C.C.); (P.B.-G.); (M.I.R.); (M.C.-F.)
| | - Célia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (R.S.); (C.C.); (P.B.-G.); (M.I.R.); (M.C.-F.)
| | - Pedro Bak-Gordon
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (R.S.); (C.C.); (P.B.-G.); (M.I.R.); (M.C.-F.)
| | - Maria I. Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (R.S.); (C.C.); (P.B.-G.); (M.I.R.); (M.C.-F.)
| | - Joana Tavares
- Serviço de Anatomia Patológica, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal;
| | - Paula B. Nunes
- Hospital CUF Descobertas, 1998-018 Lisboa, Portugal;
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Peixoto
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, 4200-072 Porto, Portugal; (A.P.); (C.P.); (C.E.); (M.R.T.)
| | - Carla Pinto
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, 4200-072 Porto, Portugal; (A.P.); (C.P.); (C.E.); (M.R.T.)
| | - Carla Escudeiro
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, 4200-072 Porto, Portugal; (A.P.); (C.P.); (C.E.); (M.R.T.)
| | - Manuel R. Teixeira
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, 4200-072 Porto, Portugal; (A.P.); (C.P.); (C.E.); (M.R.T.)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (R.S.); (C.C.); (P.B.-G.); (M.I.R.); (M.C.-F.)
| |
Collapse
|
18
|
Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Manag Res 2021; 13:3081-3100. [PMID: 33854378 PMCID: PMC8041604 DOI: 10.2147/cmar.s292992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a common and complex malignancy with poor prognostic outcome. Most women with ovarian cancer are diagnosed with advanced stage disease due to a lack of effective detection strategies in the early stage. Traditional treatment with cytoreductive surgery and platinum-based combination chemotherapy has not significantly improved prognosis and 5-year survival rates are still extremely poor. Therefore, novel treatment strategies are needed to improve the treatment of ovarian cancer patients. Recent advances of next generation sequencing technologies have both confirmed previous known mutated genes and discovered novel candidate genes in ovarian cancer. In this review, we illustrate recent advances in identifying ovarian cancer gene mutations, including those of TP53, BRCA1/2, PIK3CA, and KRAS genes. In addition, we discuss advances in targeting therapies for ovarian cancer based on these mutated genes in ovarian cancer. Further, we associate between detection of mutation genes by liquid biopsy and the potential early diagnostic value in ovarian cancer.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Dong
- Department of Gynecology, Cheng Du Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shanli Xie
- First People's Hospital of Guangyuan, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lin Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
19
|
Tsibulak I, Wieser V, Welponer H, Leitner K, Hackl H, Marth C, Fiegl H, Zeimet AG. Clinical impact of BRCA2 mRNA expression in high-grade serous ovarian cancer: validation using the TCGA cohort. Acta Oncol 2021; 60:187-190. [PMID: 33147104 DOI: 10.1080/0284186x.2020.1841288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannah Welponer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Leitner
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alain G. Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Leitner K, Tsibulak I, Wieser V, Knoll K, Reimer D, Marth C, Fiegl H, Zeimet AG. Clinical impact of EZH2 and its antagonist SMARCA4 in ovarian cancer. Sci Rep 2020; 10:20412. [PMID: 33230143 PMCID: PMC7684284 DOI: 10.1038/s41598-020-77532-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
SMARCA4 and EZH2 are two functional key players of their respective antagonizing chromatin remodeling complexes SWI/SNF and PRC2. EZH2 inhibitory drugs may abrogate pro-oncogenic features of PRC2 and turn the balance to cell differentiation via SWI/SNF activity in cancers. SMARCA4 and EZH2 expression was assessed by RT-PCR in 238 epithelial ovarian cancers (OCs) and put in relation to clinico-pathological parameters and patients' outcome. Optimal thresholds for high and low expression of both variables were calculated by the Youden's index based on receiver operating characteristic (ROC) curves. High SMARCA4 mRNA expression was independently associated with favorable progression-free survival (PFS) (P = 0.03) and overall survival (OS) (P = 0.018). As Youden's threshold determination for EZH2 yielded a S-shaped ROC-curve, two cut-off points (29th and 94th percentile) predicting opposite features were defined. Whereas EZH2 mRNA levels beyond the 29th percentile independently predicted poor PFS (P = 0.034), Cox-regression in EZH2 transcripts above the 94th percentile revealed a conversion from unfavorable to favorable PFS and OS (P = 0.009 and P = 0.032, respectively). High SMARCA4 expression associates with improved survival, whereas moderate/high EZH2 expression predicts poor outcome, which converts to favorable survival in ultra-high expressing OCs. This small OC subgroup could be characterized by REV7-abrogated platinum hypersensitivity but concomitant PARP-inhibitor resistance.
Collapse
Affiliation(s)
- Katharina Leitner
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria
| | - Irina Tsibulak
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria
| | - Verena Wieser
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria
| | - Katharina Knoll
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria
| | - Daniel Reimer
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria
| | - Heidi Fiegl
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstraße 35, 6020, Innsbruck, Austria.
| |
Collapse
|
21
|
Mei J, Wang R, Xia D, Yang X, Zhou W, Wang H, Liu C. BRCA1 Is a Novel Prognostic Indicator and Associates with Immune Cell Infiltration in Hepatocellular Carcinoma. DNA Cell Biol 2020; 39:1838-1849. [PMID: 32876480 DOI: 10.1089/dna.2020.5644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The breast cancer gene 1 (BRCA1) is a tumor suppressor, and mutations or epigenetic inactivation will increase the risk of breast cancer oncogenesis. The current research aimed to explore the relationship between BRCA1 expression, prognosis, and tumor immunity in hepatocellular carcinoma (HCC). In this study, BRCA1 expression was analyzed via multiple online databases and its association with clinical characteristics, prognosis and genetic alterations was identified using the original The Cancer Genome Atlas-liver hepatocellular carcinoma cohorts. DNA methylation sites and their prognostic values were analyzed using MethSurv. The correlations between BRCA1 and immune infiltration were investigated via Tumor Immune Estimation Resource. As results, BRCA1 was significantly upregulated in tumor tissues in multiple HCC cohorts. Besides, high BRCA1 expression was correlated with race, advanced T stage, clinical stage, poor tumor grade, MSI status, and worse prognosis. Notably, BRCA1 expression was positively correlated with infiltration levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. The current findings imply that BRCA1 is associated with prognosis and immune infiltration, laying foundations for in-depth research on the role of BRCA1 in HCC.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Runjie Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Dandan Xia
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xuejing Yang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Weijian Zhou
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
22
|
Sevic I, Spinelli FM, Vitale DL, Icardi A, Romano L, Brandone A, Giannoni P, Cristina C, Bolontrade MF, Alaniz L. Hyaluronan Metabolism is Associated with DNA Repair Genes in Breast and Colorectal Cancer. Screening of Potential Progression Markers Using qPCR. Biomedicines 2020; 8:E183. [PMID: 32610620 PMCID: PMC7400093 DOI: 10.3390/biomedicines8070183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
In this work, we compared mRNA levels of Hyaluronan (HA) metabolism members and BRCA genes, known to be involved in the tumoral process, between tumor and non-tumor adjacent tissue and its correlation with previously proposed biomarkers (ER, PR, HER2 and KI67) in order to assess their value as a progression biomarkers. We show alteration in HA metabolism in colorectal but not breast cancer. However, we found a decrease in Hyaluronidase 1 HYAL1 levels in the breast but not colorectal cancer. We also show lower HA levels in tumor compared with normal tissue that could indicate a possible influence of tumor on its surrounding "normal" tissue. In both breast and colorectal cancer, CD44 and BRCA2 showed a strong positive correlation. Besides, our results show first indicators that qPCR of the analyzed genes could be used as an easy and low cost procedure for the evaluation of molecular markers we propose here.
Collapse
Affiliation(s)
- Ina Sevic
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| | - Fiorella Mercedes Spinelli
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| | - Daiana Lujan Vitale
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| | - Lucia Romano
- Laboratorio de Fisiopatología de la Hipófisis; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (L.R.); (C.C.)
| | - Alejandra Brandone
- Hospital Interzonal General de Agudos Dr. Abraham F. Piñeyro, Junín B6000, Argentina;
| | | | - Carolina Cristina
- Laboratorio de Fisiopatología de la Hipófisis; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (L.R.); (C.C.)
| | - Marcela Fabiana Bolontrade
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Instituto Universitario del Hospital Italiano-Hospital Italiano Buenos Aires (HIBA), Buenos Aires C1199ACL, Argentina;
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral; Centro de Investigaciones Básicas y Aplicadas (CIBA), CIT NOBA, Universidad Nacional del Noroeste de la Pcia. de Bs. As. Consejo Nacional de Investigaciones Científicas y Técnicas (UNNOBA-CONICET), Junín B6000, Argentina; (I.S.); (F.M.S.); (D.L.V.); (A.I.)
| |
Collapse
|
23
|
Kim O, Park EY, Klinkebiel DL, Pack SD, Shin YH, Abdullaev Z, Emerson RE, Coffey DM, Kwon SY, Creighton CJ, Kwon S, Chang EC, Chiang T, Yatsenko AN, Chien J, Cheon DJ, Yang-Hartwich Y, Nakshatri H, Nephew KP, Behringer RR, Fernández FM, Cho CH, Vanderhyden B, Drapkin R, Bast RC, Miller KD, Karpf AR, Kim J. In vivo modeling of metastatic human high-grade serous ovarian cancer in mice. PLoS Genet 2020; 16:e1008808. [PMID: 32497036 PMCID: PMC7297383 DOI: 10.1371/journal.pgen.1008808] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/16/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Metastasis is responsible for 90% of human cancer mortality, yet it remains a challenge to model human cancer metastasis in vivo. Here we describe mouse models of high-grade serous ovarian cancer, also known as high-grade serous carcinoma (HGSC), the most common and deadliest human ovarian cancer type. Mice genetically engineered to harbor Dicer1 and Pten inactivation and mutant p53 robustly replicate the peritoneal metastases of human HGSC with complete penetrance. Arising from the fallopian tube, tumors spread to the ovary and metastasize throughout the pelvic and peritoneal cavities, invariably inducing hemorrhagic ascites. Widespread and abundant peritoneal metastases ultimately cause mouse deaths (100%). Besides the phenotypic and histopathological similarities, mouse HGSCs also display marked chromosomal instability, impaired DNA repair, and chemosensitivity. Faithfully recapitulating the clinical metastases as well as molecular and genomic features of human HGSC, this murine model will be valuable for elucidating the mechanisms underlying the development and progression of metastatic ovarian cancer and also for evaluating potential therapies. Rarely does an experimental model fully replicate the clinical metastases of a human malignancy. Faithfully representing the clinical metastases of human high-grade serous ovarian cancer with complete penetrance, coupled with histopathological, molecular, and genomic similarities, these mouse models, particularly one harboring mutant p53, will be vital to elucidating the underlying pathogenesis of human ovarian cancer. In-depth understanding of the development and progression of ovarian cancer is crucial to medical advances in the early detection, effective treatment, and prevention of ovarian cancer. Also, these robust mouse models, as well as cell lines established from the mouse primary and metastatic tumors, will serve as useful preclinical tools to evaluate therapeutic target genes and new therapies in ovarian cancer.
Collapse
Affiliation(s)
- Olga Kim
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Eun Young Park
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - David L. Klinkebiel
- Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Svetlana D. Pack
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yong-Hyun Shin
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert E. Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Donna M. Coffey
- Department of Pathology and Genomic Medicine, Houston Methodist and Weill Cornell Medical College, Houston, Texas, United States of America
| | - Sun Young Kwon
- Department of Pathology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sanghoon Kwon
- Research and Development Center, Bioway Inc, Seoul, Republic of Korea
| | - Edmund C. Chang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Theodore Chiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander N. Yatsenko
- Department of Obstetrics, Gynecology & Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States of America
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Richard R. Behringer
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Chi-Heum Cho
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, and Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert C. Bast
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Kathy D. Miller
- Department of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine Indianapolis, Indiana, United States of America
| | - Adam R. Karpf
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
24
|
Liao Y, Tu C, Song X, Cai L. Case report: Analysis of BRCA1 and BRCA2 gene mutations in a hereditary ovarian cancer family. J Assist Reprod Genet 2020; 37:1489-1495. [PMID: 32356124 PMCID: PMC7311593 DOI: 10.1007/s10815-020-01783-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Breast cancer susceptibility gene 1/2 (BRCA1/2) is the most important susceptibility gene associated with hereditary ovarian cancer (HOC). We aimed to screen BRAC1 and BRAC2 gene mutations in a member of a hereditary ovarian cancer family in China, and to analyze the structure and function of the mutant protein. METHODS A typical HOC family was selected. Blood samples and pathological tissue samples were taken from the female members of the family. Blood samples from two patients with sporadic ovaries of the same pathological type were taken as a control group. After RNA extraction, PCR amplification was applied and the PCR products were directly sequenced and aligned, prediction and analysis of protein structure and molecular conformation that may be caused by BRCA1/2 mutation. RESULTS The whole gene analysis of BRCA1 and BRCA2 in ovarian cancer patients in the family showed that there were 8 mutations in BRCA1 whole gene sequencing, including 3 nonsense mutations (2314C>T, 2543T>C, 4540T>C); two mutations have been recorded, which are associated with cervical cancer (2844C>T) and endometriosis (3345A>G); three newly discovered mutations (3780A>G, 5069A>G, 3326A>T). Among them, 3780A>G and 5069A>G caused amino acid changes, while 3326A>T mutation caused Arg mutation to stop codon. A total of 7 mutations were detected in BRCA2 whole-genome sequencing, including 5 non-significant mutations (3623A>G, 4034T>C, 4790A>G, 6740G>C, 7469A>G); one no-record mutation (1716T>A), and 1 recorded mutation (1342A>C), which was associated with breast cancer and ovarian cancer. BRCA1 (3326A>T) and BRCA2 (1342A>C) mutations were co-existing in patients (II1, II3, and II5) identified as serous adenocarcinoma grade II. Two cases of ovarian serous cystadenocarcinoma with no history of family tumors were normalized for BRCA1/2 gene sequencing. In the gene detection of III generation female, four females with BRCA2 (1342A>C) mutation were found, and one of them also carried the BRCA1 (3326A>T) mutation, who can be considered a high-risk group of HOC in this family. Online protein structure predictions revealed that BRCA1 (3326A>T) mutations mutated AGA at this site to TGA resulting in a translated Arg (arginine) mutation as a stop codon, while BRCA2 (1342A>C) mutated AAT at this site to CAT resulting in a translated Asn mutation to His. CONCLUSION The BRCA1 (3326A>T) and BRCA2 (1342A>C) were detected in the HOC family, which may be the susceptibility gene of the family's HOC. The BRCA1/2 gene screening may be possible to obtain high-risk populations in this family.
Collapse
Affiliation(s)
- Ying Liao
- Department of Gynecology, Xinyu People's Hospital, Xinyu, 338000, Jiangxi, China
| | - Chunhua Tu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Nanchang, 330000, Jiangxi, China
| | - Xiaoxia Song
- Department of Gynecology, Xinyu People's Hospital, Xinyu, 338000, Jiangxi, China
| | - Liping Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwai Zhengjie, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
25
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
26
|
Enomoto T, Aoki D, Hattori K, Jinushi M, Kigawa J, Takeshima N, Tsuda H, Watanabe Y, Yoshihara K, Sugiyama T. The first Japanese nationwide multicenter study of BRCA mutation testing in ovarian cancer: CHARacterizing the cross-sectionaL approach to Ovarian cancer geneTic TEsting of BRCA (CHARLOTTE). Int J Gynecol Cancer 2019; 29:1043-1049. [PMID: 31263023 DOI: 10.1136/ijgc-2019-000384] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION BRCA gene mutations are associated with hereditary ovarian cancer. BRCA plays a key role in genome integrity, and mutations result in an increased risk for ovarian cancer. Although various guidelines recommend BRCA testing in patients with ovarian cancer, data on germline BRCA (gBRCA) mutation frequency in ovarian cancer in Japan are scarce. OBJECTIVE This study aimed to determine gBRCA1/2 mutations in Japanese patients with ovarian cancer, stratified by clinicopathological characteristics, and to assess patients' satisfaction with pre-test genetic counseling. METHODS The CHARLOTTE study (CHARacterizing the cross-sectionaL approach to Ovarian cancer: geneTic TEsting of BRCA; UMIN000025597) is the first large multicenter epidemiological survey of Japanese women, aged ≥20, with newly diagnosed ovarian cancer (epithelial, primary peritoneal, or fallopian tube cancer), with histologically confirmed specimens. Patients were enrolled sequentially and underwent pre-test genetic counseling for BRCA testing. Blood samples were centrally tested for the presence or absence of known gBRCA mutations. A questionnaire was used to assess patient satisfaction with pre-test genetic counseling. RESULTS A total of 634 patients with a mean age of 56.9 years were included. Most patients (84.2%) had epithelial ovarian cancer, and 51.1% had FIGO stage III-IV cancer. Nearly all patients (99.5%) received genetic counseling before the BRCA testing, either by an obstetrician-gynecologist (42.0%) or a clinical geneticist (42.0%). The overall prevalence of gBRCA1/2 mutations was 14.7% (93/634), with gBRCA1 mutations (9.9%) more common than gBRCA2 mutations (4.7%). High-grade serous carcinoma showed a prevalence of gBRCA mutations of 28.5%. Most patients were satisfied with pre-test counseling, irrespective of the service provider's professional position. DISCUSSION Patients with high-grade serous carcinoma and family history of ovarian cancer had a slightly higher prevalence of gBRCA mutations, but none of the subgroups had considerably high gBRCA mutation prevalence. These data suggest that gBRCA testing should be carried out in all patients with ovarian cancer.
Collapse
Affiliation(s)
- Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kana Hattori
- Medical Department, AstraZeneca K.K, Osaka, Japan
| | | | - Junzo Kigawa
- Department of Obstetrics and Gynecology, Matsue City Hospital, Matsue, Japan
| | | | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Yoh Watanabe
- Department of Obstetrics and Gynecology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toru Sugiyama
- Women's Cancer Center, Takagi Hospital, Okawa, Japan
| |
Collapse
|
27
|
Clinical Impact of RANK Signalling in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11060791. [PMID: 31181781 PMCID: PMC6627676 DOI: 10.3390/cancers11060791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/14/2023] Open
Abstract
Ovarian cancer (OC) is a gynaecological malignancy with poor clinical outcome and limited treatment options. The receptor activator of nuclear factor-κB (RANK) pathway, activated by RANK ligand (RANKL), critically controls bone metabolism, tumourigenesis and tumour immune responses. Denosumab, a monocloncal RANKL antibody, exerts tumour-suppressive effects in mice and humans. Here, we investigated the relevance of RANK signalling in OC. RANK, RANKL and OPG expression in 192 epithelial OC tissues was compared to expression in 35 non-malignant control tissues and related to clinico-pathological characteristics. Findings were validated in a cohort of 563 OC patients from The Cancer Genome Atlas (TCGA). The expression of RANK, RANKL and OPG was studied in four OC cell lines and the impact of RANK ligation or blockade on OC cell proliferation was determined. RANK, RANKL and OPG were expressed in epithelial and stromal cells in OC. RANKL expression was elevated in OC tissue, particularly in BRCA1/2 mutated tumours. High RANKL expression independently predicted reduced progression-free (PFS, p = 0.017) and overall survival (OS, p = 0.007), which could be validated in the TCGA cohort (PFS, p = 0.022; OS, p = 0.046, respectively). Expression of RANK and OPG in OC cells was induced by inflammatory cytokines IL-1β and TNFα. Neither recombinant RANK ligation nor denosumab treatment affected OC cell proliferation. Our study independently links RANKL expression with poor clinical outcome in two unrelated OC cohorts. These findings implicate RANK signalling in the immunopathogenesis of OC and warrant clinical trials with denosumab in OC.
Collapse
|
28
|
Kim HS, Hwang IG, Min HY, Bang YJ, Kim WH. Clinical significance of BRCA1 and BRCA2 mRNA and protein expression in patients with sporadic gastric cancer. Oncol Lett 2019; 17:4383-4392. [PMID: 30988810 PMCID: PMC6447901 DOI: 10.3892/ol.2019.10132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
The purpose of the present study was to investigate the clinical significance of BRCA1/BRCA2 DNA repair associated (BRCA1/BRCA2) gene expression in patients with sporadic gastric cancer (GC) who had received postoperative adjuvant chemotherapy. Breast cancer type 1 and 2 susceptibility protein (BRCA1 and BRCA2) expression and BRCA1/BRCA2 mRNA expression were evaluated using immunohistochemistry (IHC) and in-situ hybridization (ISH) on tissue GC microarray tissues, in addition to reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results were analyzed for clinicopathological associations. A total of 367 cases of sporadic GC (stages II and III) were subjected to BRCA1 and BRCA2 expression analysis, and for BRCA1 and BRCA2 IHC, 360 cases were informative. A total of 61 cases (16.9%) displayed a loss of BRCA1 and 63 (17.5%) displayed a loss of BRCA2. BRCA1 and BRCA2 ISH results were obtained in 364 cases, of which 98 (26.9%) presented with low expression of BRCA1 mRNA and 148 (40.7%) with low expression of BRCA2 mRNA. In 72 of the 367 cases, BRCA1 and BRCA2 mRNA expression levels were assessed using RT-qPCR, of which 50 (69.4%) and 56 (77.8%) displayed low expression of BRCA1 and BRCA2, respectively. Positive IHC expression of BRCA2 was associated with advanced tumor stage; however, BRCA1 expression was not associated with any clinicopathological parameters. Associations between the RT-qPCR and ISH methods were not significant for either BRCA1 or BRCA2. The results of Kaplan-Meier survival analysis with stage subgrouping revealed no significant differences with regard to survival rate. Of the multivariate analyses, neither BRCA1 nor BRCA2 IHC results were independent prognostic factors. In summary, the present study indicated that BRCA1 and BRCA2, as assessed by IHC, may be used as clinicopathological biomarkers to evaluate the prognosis of sporadic GC.
Collapse
Affiliation(s)
- Hee Sung Kim
- Department of Pathology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - In Gyu Hwang
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Hye Young Min
- Department of Pharmacy, Chung-Ang University College of Pharmacy, Seoul 06974, Republic of Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| |
Collapse
|
29
|
Li M, Li A, Zhou S, Lv H, Yang W. SPAG5 upregulation contributes to enhanced c-MYC transcriptional activity via interaction with c-MYC binding protein in triple-negative breast cancer. J Hematol Oncol 2019; 12:14. [PMID: 30736840 PMCID: PMC6367803 DOI: 10.1186/s13045-019-0700-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks effective therapeutic targets. Sperm-associated antigen 5 (SPAG5) is a mitotic spindle-associated protein that is involved in various biological processes in cervical cancer and bladder urothelial carcinoma. However, the role of SPAG5 in TNBC remains undefined. METHODS The expression of SPAG5 was examined in TNBC patients via quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry (IHC). The biological functions of SPAG5 in TNBC and the underlying mechanisms were investigated in vitro and in vivo. RESULTS SPAG5 expression was significantly upregulated in TNBC tissues compared with that in paired adjacent noncancerous tissues (ANTs). High SPAG5 expression was associated with increased lymph node metastasis and high risk of local recurrence. SPAG5 protein expression was significantly associated with poor disease-free survival in TNBC. Gene set enrichment analysis of TNBC data from The Cancer Genome Atlas (TCGA) indicated that high SPAG5 expression was significantly associated with cell cycle and the ATR-BRCA pathway. Functional assays demonstrated that SPAG5 expression promoted tumor growth in vitro and in vivo. In addition, SPAG5-silenced cells were more sensitive to the PARP inhibitor (PARPi) olaparib. Mechanistically, SPAG5 interacted with c-MYC binding protein (MYCBP), thereby increasing MYCBP protein levels and leading to increased c-MYC transcriptional activity, which promoted the expression of the c-MYC target genes: CDC20, CDC25C, BRCA1, BRCA2, and RAD51.Knockdown of MYCBP or c-MYC abolished the SPAG5-induced cell-cycle progression and cell proliferation of TNBC. CONCLUSIONS Collectively, our results indict that SPAG5 is an efficient prognostic factor in TNBC, and that SPAG5 knockdown increases the sensitivity of TNBC to the PARPi olaparib. SPAG5 promotes tumor growth and DNA repair by increasing c-MYC transcriptional activity via interaction with MYCBP. The SPAG5/MYCBP/c-MYC axis may represent a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Anqi Li
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Shuling Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China. .,Institute of Pathology, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Choi YS, Park JH, Lee JH, Yoon JK, Yun BH, Park JH, Seo SK, Sung HJ, Kim HS, Cho S, Lee BS. Association Between Impairment of DNA Double Strand Break Repair and Decreased Ovarian Reserve in Patients With Endometriosis. Front Endocrinol (Lausanne) 2018; 9:772. [PMID: 30622513 PMCID: PMC6308303 DOI: 10.3389/fendo.2018.00772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Repair of DNA double strand break (DSB) is an important mechanism for maintaining genetic stability during a DNA damage event. Although, a growing body of recent evidence suggests that DNA DSBs and related repair mechanisms may be important in ovarian aging and in various cancers, there are few reports in endometriosis. We, therefore, examined expression levels of genes pertaining to DNA DSB repair in patients with endometriosis to assess the potential effects on ovarian reserves. Materials and methods: A total of 69 women undergoing laparoscopic surgery for endometriosis and other benign conditions was included; endometriosis group (n = 38) vs. controls (n = 31). DNA DSBs in endometrial and ovarian tissues of both groups were compared via immunohistochemistry, aimed at γ-H2AX expression. To gauge genotoxin-induced DNA DSBs in endometrial stromal cells, γ-H2AX expression was determined by western blot after H2O2 treatment of cultured endometrial stromal cells (endometriosis group and controls) and Ishikawa cell-line cultures. Endometrial and ovarian tissue levels of BRCA1, BRCA2, Rad51, and ATM (ataxia-telangiectasia mutated) mRNA expression were also compared. Correlations between expression levels of genes of interest and serum anti-müllerian hormone (AMH) levels were assessed as well. Results: Expression of γ-H2AX in immunostained endometrial and ovarian tissue preparations was greater in the endometriosis group, compared with controls. After H2O2 treatment, γ-H2AX expression levels were also significantly greater in cultured stromal cells of the endometriosis group and in the Ishikawa cell line than in controls. Endometrial expression of BRCA1 and Rad51 mRNA proved significantly lower in the endometriosis group (vs. controls), as did ovarian expression of BRCA1 and BRCA2 mRNA. Serum AMH concentration showed a significant correlation with ovarian BRCA1 mRNA expression in women with endometriosis (p = 0.03). Conclusions: In women with endometriosis, expression levels of various genes implicated in DSB repair are decreased and ovarian BRCA1 expression correlates with.
Collapse
Affiliation(s)
- Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong-Kee Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Hyun-Soo Kim
| | - SiHyun Cho
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- SiHyun Cho
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|