1
|
Bolideei M, Barzigar R, Gahrouei RB, Mohebbi E, Haider KH, Paul S, Paul MK, Mehran MJ. Applications of Gene Editing and Nanotechnology in Stem Cell-Based Therapies for Human Diseases. Stem Cell Rev Rep 2025; 21:905-934. [PMID: 40014250 DOI: 10.1007/s12015-025-10857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Stem cell research is a dynamic and fast-advancing discipline with great promise for the treatment of diverse human disorders. The incorporation of gene editing technologies, including ZFNs, TALENs, and the CRISPR/Cas system, in conjunction with progress in nanotechnology, is fundamentally transforming stem cell therapy and research. These innovations not only provide a glimmer of optimism for patients and healthcare practitioners but also possess the capacity to radically reshape medical treatment paradigms. Gene editing and nanotechnology synergistically enhance stem cell-based therapies' precision, efficiency, and applicability, offering transformative potential for treating complex diseases and advancing regenerative medicine. Nevertheless, it is important to acknowledge that these technologies also give rise to ethical considerations and possible hazards, such as inadvertent genetic modifications and the development of genetically modified organisms, therefore creating a new age of designer infants. This review emphasizes the crucial significance of gene editing technologies and nanotechnology in the progress of stem cell treatments, particularly for degenerative pathologies and injuries. It emphasizes their capacity to restructure and comprehensively revolutionize medical treatment paradigms, providing fresh hope and optimism for patients and healthcare practitioners.
Collapse
Affiliation(s)
- Mansoor Bolideei
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Rambod Barzigar
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India
| | - Razieh Bahrami Gahrouei
- Department of Pharmacy PES College, Rajiv Gandhi University of Health Sciences, Bangalore, Karnataka, India
| | - Elham Mohebbi
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| | - Khawaja Husnain Haider
- Sulaiman AlRajhi Medical School, Al Bukayriyah, AlQaseem, 52726, Kingdom of Saudi Arabia
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Mohammad Javad Mehran
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India.
| |
Collapse
|
2
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
3
|
Zhang W, Zhao E, Li Z, Liu W, Wang J, Hou W, Zhang N, Yu Y, Li X, You B. Hexokinase HK3-mediated O-GlcNAcylation of EP300: a key regulator of PD-L1 expression and immune evasion in ccRCC. Cell Death Dis 2024; 15:613. [PMID: 39179546 PMCID: PMC11343739 DOI: 10.1038/s41419-024-06921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/26/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) demonstrates enhanced glycolysis, critically contributing to tumor development. Programmed death-ligand 1 (PD-L1) aids tumor cells in evading T-cell-mediated immune surveillance. Yet, the specific mechanism by which glycolysis influences PD-L1 expression in ccRCC is not fully understood. Our research identified that the glycolysis-related gene (GRG) HK3 has a unique correlation with PD-L1 expression. HK3 has been identified as a key regulator of O-GlcNAcylation in ccRCC. O-GlcNAcylation exists on the serine 900 (Ser900) site of EP300 and can enhance its stability and oncogenic activity by preventing ubiquitination. Stably expressed EP300 works together with TFAP2A as a co-transcription factor to promote PD-L1 transcription and as an acetyltransferase to stabilize PD-L1 protein. Furthermore, ccRCC exhibits interactive dynamics with tumor-associated macrophages (TAMs). The uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), which serves as a critical substrate for the O-GlcNAcylation process, facilitates TAMs polarization. In ccRCC cells, HK3 expression is influenced by IL-10 secreted by M2 TAMs. Our study elucidates that HK3-mediated O-GlcNAcylation of EP300 is involved in tumor immune evasion. This finding suggests potential strategies to enhance the efficacy of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuolun Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiyang Liu
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Hou
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yu
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bosen You
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
5
|
Poulet S, Dai M, Wang N, Yan G, Boudreault J, Daliah G, Guillevin A, Nguyen H, Galal S, Ali S, Lebrun JJ. Genome-wide in vivo CRISPR screen identifies TGFβ3 as actionable biomarker of palbociclib resistance in triple negative breast cancer. Mol Cancer 2024; 23:118. [PMID: 38831405 PMCID: PMC11145857 DOI: 10.1186/s12943-024-02029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Triple negative breast cancer (TNBC) remains exceptionally challenging to treat. While CDK4/6 inhibitors have revolutionized HR + breast cancer therapy, there is limited understanding of their efficacy in TNBC and meaningful predictors of response and resistance to these drugs remain scarce. We conducted an in vivo genome-wide CRISPR screen using palbociclib as a selection pressure in TNBC. Hits were prioritized using microarray data from a large panel of breast cancer cell lines to identify top palbociclib sensitizers. Our study defines TGFβ3 as an actionable determinant of palbociclib sensitivity that potentiates its anti-tumor effects. Mechanistically, we show that chronic palbociclib exposure depletes p21 levels, contributing to acquired resistance, and that TGFβ3 treatment can overcome this. This study defines TGFβ3 as an actionable biomarker that can be used to improve patient stratification for palbociclib treatment and exploits the synergistic interaction between CDK4/6 and TGFβ3 to propose a new combinatorial treatment for TNBC.
Collapse
Affiliation(s)
- Sophie Poulet
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Meiou Dai
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Ni Wang
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Gang Yan
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Julien Boudreault
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Girija Daliah
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Alan Guillevin
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Huong Nguyen
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Soaad Galal
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
6
|
Zaccagnino A, Vynnytska‐Myronovska B, Stöckle M, Junker K. Molecular and functional characterization of reversible-sunitinib-tolerance state in human renal cell carcinoma. J Cell Mol Med 2024; 28:e18329. [PMID: 38693863 PMCID: PMC11063727 DOI: 10.1111/jcmm.18329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.
Collapse
Affiliation(s)
- Angela Zaccagnino
- Department of Urology and Pediatric UrologySaarland UniversityHomburgGermany
| | | | - Michael Stöckle
- Department of Urology and Pediatric UrologySaarland UniversityHomburgGermany
| | - Kerstin Junker
- Department of Urology and Pediatric UrologySaarland UniversityHomburgGermany
| |
Collapse
|
7
|
Fazliyeva R, Makhov P, Uzzo RG, Kolenko VM. Targeting NPC1 in Renal Cell Carcinoma. Cancers (Basel) 2024; 16:517. [PMID: 38339268 PMCID: PMC10854724 DOI: 10.3390/cancers16030517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Rapidly proliferating cancer cells have a greater requirement for cholesterol than normal cells. Tumor cells are largely dependent on exogenous lipids given that their growth requirements are not fully met by endogenous pathways. Our current study shows that ccRCC cells have redundant mechanisms of cholesterol acquisition. We demonstrate that all major lipoproteins (i.e., LDL, HDL, and VLDL) have a comparable ability to support the growth of ccRCC cells and are equally effective in counteracting the antitumor activities of TKIs. The intracellular trafficking of exogenous lipoprotein-derived cholesterol appears to be distinct from the movement of endogenously synthesized cholesterol. De novo synthetized cholesterol is transported from the endoplasmic reticulum directly to the plasma membrane and to the acyl-CoA: cholesterol acyltransferase, whereas lipoprotein-derived cholesterol is distributed through the NPC1-dependent endosomal trafficking system. Expression of NPC1 is increased in ccRCC at mRNA and protein levels, and high expression of NPC1 is associated with poor prognosis. Our current findings show that ccRCC cells are particularly sensitive to the inhibition of endolysosomal cholesterol export and underline the therapeutic potential of targeting NPC1 in ccRCC.
Collapse
Affiliation(s)
- Rushaniya Fazliyeva
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Peter Makhov
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Robert G. Uzzo
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Vladimir M. Kolenko
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| |
Collapse
|
8
|
Wu J, Wang S, Liu Y, Zhang T, Wang X, Miao C. Integrated single-cell and bulk characterization of cuproptosis key regulator PDHB and association with tumor microenvironment infiltration in clear cell renal cell carcinoma. Front Immunol 2023; 14:1132661. [PMID: 37350959 PMCID: PMC10282190 DOI: 10.3389/fimmu.2023.1132661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Background Renal clear cell carcinoma (ccRCC) is one of the most prevalent cancers worldwide. Accumulating evidence revealed that copper-induced cell death played a vital role in various tumors. However, the underlying mechanism of cuproptosis with molecular heterogeneity and tumor microenvironment (TME) in ccRCC remains to be elucidated. The present study aimed to discover the biological function of cuproptosis regulators with the potential to guide clinical therapy. Methods Using Single-cell RNA-seq, bulk transcriptome and other multi-omics datasets, we identify essential cuproptosis-related hub gene PDHB for further study. The dysregulation of PDHB in ccRCC was characterized, together with survival outcomes, pathway enrichment and immune infiltration among tumor microenvironments. The functional significance and clinical association of PDHB was validated with loss of function experiments and surgical removal specimens. Results PDHB mRNA and protein expression level was significantly downregulated in ccRCC tissues compared with normal and paired normal tissues. Clinicopathological parameters and tissue microarray (TMA) indicated that PDHB was identified as a prognostic factor for survival outcomes among ccRCC patients. Additionally, low PDHB was negatively correlated with Treg cells, indicating an immunosuppressive microenvironment. Mechanistically, knockdown PDHB appeared to promote the RCC cells proliferation, migration, and invasion potentials. Subsequent studies showed that copper-induced cell death activation could overcome sunitinib resistance in RCC cells. Conclusion This research illustrated a cuproptosis-related hub gene PDHB which could serve as a potential prognostic marker and provide therapeutic benefits for clinical treatment of ccRCC patients.
Collapse
Affiliation(s)
- Jiajin Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songbo Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiyang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongtong Zhang
- Department of Urology surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyi Wang
- Core Facility Center, the First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Wu J, Miao C, Wang Y, Wang S, Wang Z, Liu Y, Wang X, Wang Z. SPTBN1 abrogates renal clear cell carcinoma progression via glycolysis reprogramming in a GPT2-dependent manner. J Transl Med 2022; 20:603. [PMID: 36527113 PMCID: PMC9756479 DOI: 10.1186/s12967-022-03805-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal clear cell carcinoma (ccRCC) is the most prevalent tumors worldwide. Discovering effective biomarkers is essential to monitor the prognosis and provide alternative clinical options. SPTBN1 is implicated in various cancerous processes. However, its role in ccRCC remains unelucidated. This study intends to explore the biological function and mechanism of SPTBN1 in ccRCC. METHODS Single-cell and bulk RNA-seq, tissue microarray, real-time quantitative PCR, and western blotting were applied to verify the expression and predictive value of SPTBN1 in ccRCC. Gain or loss of functional ccRCC cell line models were constructed, and in vitro and in vivo assays were performed to elucidate its tumorigenic phenotypes. Actinomycin D experiment, RNA immunoprecipitation (RIP), specific inhibitors, and rescue experiments were carried out to define the molecular mechanisms. RESULTS SPTBN1 was down-regulated in ccRCC and knockdown of SPTBN1 displayed a remarkably oncogenic role both in vitro and in vivo; while overexpressing SPTBN1 reversed this effect. SPTBN1 mediated ccRCC progression via the pathway of glutamate pyruvate transaminase 2 (GPT2)-dependent glycolysis. The expression of GPT2 was significantly negatively correlated with that of SPTBN1. As an RNA binding protein SPTBN1, regulated the mRNA stability of GPT2. CONCLUSION Our research demonstrated that SPTBN1 is significantly down-regulated in ccRCC. SPTBN1 knockdown promotes ccRCC progression via activating GPT2-dependent glycolysis. SPTBN1 may serve as a therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Jiajin Wu
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Chenkui Miao
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Yuhao Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Songbo Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Zhongyuan Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Yiyang Liu
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Xiaoyi Wang
- grid.412676.00000 0004 1799 0784Core Facility Center, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Zengjun Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| |
Collapse
|
10
|
Makhov P, Fazliyeva R, Tufano A, Uzzo RG, Cai KQ, Serebriiskii I, Snyder NW, Andrews AJ, Kolenko VM. Acetyl-CoA Counteracts the Inhibitory Effect of Antiandrogens on Androgen Receptor Signaling in Prostate Cancer Cells. Cancers (Basel) 2022; 14:5900. [PMID: 36497382 PMCID: PMC9738902 DOI: 10.3390/cancers14235900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
The commonly used therapeutic management of PC involves androgen deprivation therapy (ADT) followed by treatment with AR signaling inhibitors (ARSI). However, nearly all patients develop drug-resistant disease, with a median progression-free survival of less than 2 years in chemotherapy-naïve men. Acetyl-coenzyme A (acetyl-CoA) is a central metabolic signaling molecule with key roles in biosynthetic processes and cancer signaling. In signaling, acetyl-CoA serves as the acetyl donor for acetylation, a critical post-translational modification. Acetylation affects the androgen receptor (AR) both directly and indirectly increasing expression of AR dependent genes. Our studies reveal that PC cells respond to the treatment with ARSI by increasing expression of ATP-citrate lyase (ACLY), a major enzyme responsible for cytosolic acetyl-CoA synthesis, and up-regulation of acetyl-CoA intracellular levels. Inhibition of ACLY results in a significant suppression of ligand-dependent and -independent routes of AR activation. Accordingly, the addition of exogenous acetyl-CoA, or its precursor acetate, augments AR transcriptional activity and diminishes the anti-AR activity of ARSI. Taken together, our findings suggest that PC cells respond to antiandrogens by increasing activity of the acetyl-coA pathway in order to reinstate AR signaling.
Collapse
Affiliation(s)
- Peter Makhov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rushaniya Fazliyeva
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Antonio Tufano
- Urology Unit, Department of Maternal-Child and Urological Sciences, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Robert G. Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ilya Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Kazan Federal University, 420000 Kazan, Russia
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research and the Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andrew J. Andrews
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vladimir M. Kolenko
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
11
|
Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, Asemi Z, Yousefi B. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 2022; 27:49. [PMID: 35715750 PMCID: PMC9204876 DOI: 10.1186/s11658-022-00348-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system is an RNA-based adaptive immune system in bacteria and archaea. Various studies have shown that it is possible to target a wide range of human genes and treat some human diseases, including cancers, by the CRISPR/Cas9 system. In fact, CRISPR/Cas9 gene editing is one of the most efficient genome manipulation techniques. Studies have shown that CRISPR/Cas9 technology, in addition to having the potential to be used as a new therapeutic approach in the treatment of cancers, can also be used to enhance the effectiveness of existing treatments. Undoubtedly, the issue of drug resistance is one of the main obstacles in the treatment of cancers. Cancer cells resist anticancer drugs by a variety of mechanisms, such as enhancing anticancer drugs efflux, enhancing DNA repair, enhancing stemness, and attenuating apoptosis. Mutations in some proteins of different cellular signaling pathways are associated with these events and drug resistance. Recent studies have shown that the CRISPR/Cas9 technique can be used to target important genes involved in these mechanisms, thereby increasing the effectiveness of anticancer drugs. In this review article, studies related to the applications of this technique in overcoming drug resistance in cancer cells will be reviewed. In addition, we will give a brief overview of the limitations of the CRISP/Cas9 gene-editing technique.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Xiang Y, Zheng G, Zhong J, Sheng J, Qin H. Advances in Renal Cell Carcinoma Drug Resistance Models. Front Oncol 2022; 12:870396. [PMID: 35619895 PMCID: PMC9128023 DOI: 10.3389/fonc.2022.870396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Systemic therapy is the preferred method to eliminate residual cancer cells after surgery and prolong the survival of patients with inoperable RCC. A variety of molecular targeted and immunological therapies have been developed to improve the survival rate and prognosis of RCC patients based on their chemotherapy-resistant properties. However, owing to tumor heterogeneity and drug resistance, targeted and immunological therapies lack complete and durable anti-tumor responses; therefore, understanding the mechanisms of systemic therapy resistance and improving clinical curative effects in the treatment of RCC remain challenging. In vitro models with traditional RCC cell lines or primary cell culture, as well as in vivo models with cell or patient-derived xenografts, are used to explore the drug resistance mechanisms of RCC and screen new targeted therapeutic drugs. Here, we review the established methods and applications of in vivo and in vitro RCC drug resistance models, with the aim of improving our understanding of its resistance mechanisms, increasing the efficacy of combination medications, and providing a theoretical foundation for the development and application of new drugs, drug screening, and treatment guidelines for RCC patients.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Jianfeng Zhong
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Kessler L, Malik S, Leoni M, Burrows F. Potential of Farnesyl Transferase Inhibitors in Combination Regimens in Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215310. [PMID: 34771475 PMCID: PMC8582567 DOI: 10.3390/cancers13215310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Current therapies for recurrent and metastatic SCC are associated with poor outcomes, and options for later lines of treatment are limited. Insights into potential therapeutic targets, as well as mechanisms of resistance to available therapies, have begun to be elucidated, creating the basis for exploration of combination approaches to drive better patient outcomes. Tipifarnib, a farnesyl transferase inhibitor (FTI), is a small molecule drug that has demonstrated encouraging clinical activity in a genetically-defined subset of head and neck squamous cell carcinoma (HNSCC)-specifically, tumors that express a mutation in the HRAS protooncogene. More recently, bioinformatic analyses and results from patient-derived xenograft modeling indicate that HRAS pathway dependency may extend to a broader subpopulation of SCCs beyond HRAS mutants in the context of combination with agents such as cisplatin, cetuximab, or alpelisib. In addition, tipifarnib can also inactivate additional farnesylated proteins implicated in resistance to approved therapies, including immunotherapies, through a variety of distinct mechanisms, suggesting that tipifarnib could serve as an anchor for combination regimens in SCCs and other tumor types.
Collapse
|
14
|
Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021; 10:1492. [PMID: 34198536 PMCID: PMC8231983 DOI: 10.3390/cells10061492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
15
|
Banerjee A, Malonia SK, Dutta S. Frontiers of CRISPR-Cas9 for Cancer Research and Therapy. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2020.00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Castells-Roca L, Tejero E, Rodríguez-Santiago B, Surrallés J. CRISPR Screens in Synthetic Lethality and Combinatorial Therapies for Cancer. Cancers (Basel) 2021; 13:1591. [PMID: 33808217 PMCID: PMC8037779 DOI: 10.3390/cancers13071591] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is a complex disease resulting from the accumulation of genetic dysfunctions. Tumor heterogeneity causes the molecular variety that divergently controls responses to chemotherapy, leading to the recurrent problem of cancer reappearance. For many decades, efforts have focused on identifying essential tumoral genes and cancer driver mutations. More recently, prompted by the clinical success of the synthetic lethality (SL)-based therapy of the PARP inhibitors in homologous recombinant deficient tumors, scientists have centered their novel research on SL interactions (SLI). The state of the art to find new genetic interactions are currently large-scale forward genetic CRISPR screens. CRISPR technology has rapidly evolved to be a common tool in the vast majority of laboratories, as tools to implement CRISPR screen protocols are available to all researchers. Taking advantage of SLI, combinatorial therapies have become the ultimate model to treat cancer with lower toxicity, and therefore better efficiency. This review explores the CRISPR screen methodology, integrates the up-to-date published findings on CRISPR screens in the cancer field and proposes future directions to uncover cancer regulation and individual responses to chemotherapy.
Collapse
Affiliation(s)
- Laia Castells-Roca
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eudald Tejero
- Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain;
| | - Benjamín Rodríguez-Santiago
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|