1
|
Maino A, Bourova-Flin E, Decaens T, Khochbin S, Macek Jilkova Z, Rousseaux S, Plumas J, Saas P, Chaperot L, Manches O. Identification of immunogenic HLA-A*02:01 epitopes associated with HCC for immunotherapy development. Hepatol Commun 2025; 9:e0659. [PMID: 40008881 PMCID: PMC11868434 DOI: 10.1097/hc9.0000000000000659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND HCC is the most common form of primary liver cancer, and despite recent advances in cancer treatment, it remains associated with poor prognosis and a lack of response to conventional therapies. Immunotherapies have emerged as a promising approach for cancer treatment, especially through the identification of tumor-specific immunogenic epitopes that can trigger a targeted immune response. This study aimed to identify immunogenic epitopes associated with HCC for the development of specific immunotherapies. METHODS We used high-throughput data screening and bioinformatics tools for antigens and epitope selection. The immunogenicity of the selected epitopes was studied after coculture of peripheral blood mononuclear cells obtained from healthy donors or HCC patients with a plasmacytoid dendritic cell line loaded with the selected peptides. Specific CD8+ T cell amplification and functionality were determined by labeling with tetramers and by IFN-γ and CD107a expression (flow cytometry and ELISpot). RESULTS We analyzed the transcriptional gene expression landscape of HCC to screen for a set of 16 ectopically expressed genes in a majority of HCC samples. Epitopes predicted to bind to HLA-A*02:01 with high affinity were further validated for their immunogenicity using the previously described plasmacytoid dendritic cell line in ex vivo CD8+ activation assays using patient immune cells. Three out of the 30 tested epitopes, namely FLWGPRALV (MAGE-A3), FMNKFIYEI (AFP), and KMFHTLDEL (LRRC46), elicited a strong T-cell response, in activation assays, degranulation assays, and IFN-γ secretion assays. CONCLUSIONS These results highlight the potential of these peptides to be considered as targets for immunotherapies. The discovery of such immunogenic epitopes should improve immune-based treatments for liver cancer in combination with the current treatment approach.
Collapse
Affiliation(s)
- Anthony Maino
- EFS, R&D Department, Grenoble, France
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Ekaterina Bourova-Flin
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Decaens
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| | - Saadi Khochbin
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Rousseaux
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Joel Plumas
- PDC*line Pharma SAS, R&D Department, Grenoble, France
| | - Philippe Saas
- EFS, R&D Department, Grenoble, France
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence Chaperot
- EFS, R&D Department, Grenoble, France
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Manches
- EFS, R&D Department, Grenoble, France
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
2
|
Dong Z, Yang Z, Ren J, Li F, Wang G, Wang Y. Envafolimab Inhibits the Growth of Gastric Cancer Cells with Low PD-L1 Expression through the DDX20/NF-κB/TNF-α Signaling Pathway. Curr Cancer Drug Targets 2025; 25:648-664. [PMID: 39021191 DOI: 10.2174/0115680096314855240619181909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The mechanism of action of envafolimab (also known as KN035), a programmed death ligand 1 (PD-L1) inhibitor, in gastric adenocarcinoma patients with low PD-L1 expression is not well understood. OBJECTIVES The objective of this study was to explore the underlying mechanism of envafolimab in gastric cancer with low PD-L1 expression. METHODS Cytotoxicity and proliferation were evaluated by a CCK8 assay. Transwell assays were used to detect the migration and invasion ability of gastric cancer cells. The effect of envafolimab on the apoptosis of gastric cancer cells was detected by flow cytometry. The effect of envafolimab on gastric cancer cells with low PD-L1 expression was investigated via proteomics and bioinformatics analysis. RESULTS A total of 19 patients with advanced gastric adenocarcinoma who received envafolimab monotherapy or combination therapy were reviewed. Among them, 4 patients had low PD-L1 expression, the objective response rate (ORR) was 75% (3/4), and the disease control rate (DCR) was 100% (4/4). In vitro experiments showed that envafolimab inhibited the proliferation, invasion, and migration of gastric cancer cells with low expression of PD-L1 and induced cell apoptosis. DDX20 may be the target of envafolimab in gastric cancer cells, and it is related to the NF-κB signaling pathway. Western blot results showed that the protein expressions of DDX20, NF-κB p65, and TNF-α in gastric cancer cells were decreased after adding envafolimab. Furthermore, the DDX20 gene was silenced by small interfering RNA to further study the effect of DDX20 on PDL1 low expression in gastric cancer cells. CONCLUSION This study confirmed that envafolimab could inhibit the growth of gastric cancer cells with low PD-L1 expression by down-regulating DDX20 expression and regulating the NF- κB/TNF-α signaling pathway.
Collapse
Affiliation(s)
- Zhuanxia Dong
- First Hospital of Shanxi Medical University, Shanxi Medical University,, Taiyuan, Shanxi, 030001, China
| | - Zefeng Yang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing Ren
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150040, China
| | - Feng Li
- Central laboratory, Shanxi Provincial Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150040, China
| | - Yusheng Wang
- Department of Oncology Digestive, First Hospital of Shanxi Medical University, Taiyuan City, 030001, China
| |
Collapse
|
3
|
Kinane DF, Gabert J, Xynopoulos G, Guzeldemir‐Akcakanat E. Strategic approaches in oral squamous cell carcinoma diagnostics using liquid biopsy. Periodontol 2000 2024; 96:316-328. [PMID: 38676371 PMCID: PMC11579816 DOI: 10.1111/prd.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
Liquid biopsy is a noninvasive diagnostic technique used for monitoring cancer utilizing specific genetic biomarkers present in bodily fluids, such as blood, saliva, or urine. These analyses employ multiple biomolecular sources including circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomes (that contain DNA fragments) to detect genetic biomarkers that can predict, disclose, and/or monitor cancers. Levels of these biomarkers can inform on the presence of cancer, its genetic characteristics, and its potential treatment response and also provide predictive genetic predisposition information for specific cancers including oral squamous cell carcinomas (OSCC). Liquid biopsies can aid cancer management as they offer real-time dynamic information on the response to say chemotherapy or radiotherapy and recurrence following surgical excision. Unlike traditional tissue biopsies, which are invasive with a degree of morbidity and require specific tumor location sampling, liquid biopsies are noninvasive and can be repeated frequently. For oral squamous cell carcinoma, on which this review focuses, liquid biopsy of blood or saliva can be valuable in predicting susceptibility, providing early detection, and monitoring the disease's progression and response to therapy. This review gives a general narrative overview of the technology, its current medical usage, and advantages and disadvantages compared with current techniques and discusses a range of current potential biomarkers for disclosing OSCC and predicting its risk. Oral squamous cell carcinoma is all too often detected in the late stages. In future, liquid biopsy may provide an effective screening process such that cancers including OSCC will be detected in the early stages rather than later when prognosis is poor and morbidity and debilitation are greater. In this screening process, periodontists and hygienists have a critical role in that they are adept in examining mucosa, they see patients with shared risk factors for periodontitis and OSCC, namely smoking and poor oral hygiene, and they see patients frequently such that OSCC examinations should be a routine part of the recall visit. With this additional screening manpower, oral medicine and oral surgery colleagues will detect OSCC earlier and this coupled with new techniques such as liquid biopsy may greatly decrease global morbidity in OSCC.
Collapse
Affiliation(s)
- Denis F. Kinane
- Department of Periodontology, Dental SchoolUniversity BernBernSwitzerland
- ExpressTestCignpost Diagnostics Ltd.FarnboroughUnited Kingdom
| | | | | | - Esra Guzeldemir‐Akcakanat
- Department of Periodontology, Faculty of DentistryKocaeli UniversityİzmitTurkey
- College of Dental MedicineQU Health, Qatar UniversityQatarQatar
| |
Collapse
|
4
|
Rezapour M, Wesolowski R, Gurcan MN. Identifying Key Genes Involved in Axillary Lymph Node Metastasis in Breast Cancer Using Advanced RNA-Seq Analysis: A Methodological Approach with GLMQL and MAS. Int J Mol Sci 2024; 25:7306. [PMID: 39000413 PMCID: PMC11242629 DOI: 10.3390/ijms25137306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Our study aims to address the methodological challenges frequently encountered in RNA-Seq data analysis within cancer studies. Specifically, it enhances the identification of key genes involved in axillary lymph node metastasis (ALNM) in breast cancer. We employ Generalized Linear Models with Quasi-Likelihood (GLMQLs) to manage the inherently discrete and overdispersed nature of RNA-Seq data, marking a significant improvement over conventional methods such as the t-test, which assumes a normal distribution and equal variances across samples. We utilize the Trimmed Mean of M-values (TMMs) method for normalization to address library-specific compositional differences effectively. Our study focuses on a distinct cohort of 104 untreated patients from the TCGA Breast Invasive Carcinoma (BRCA) dataset to maintain an untainted genetic profile, thereby providing more accurate insights into the genetic underpinnings of lymph node metastasis. This strategic selection paves the way for developing early intervention strategies and targeted therapies. Our analysis is exclusively dedicated to protein-coding genes, enriched by the Magnitude Altitude Scoring (MAS) system, which rigorously identifies key genes that could serve as predictors in developing an ALNM predictive model. Our novel approach has pinpointed several genes significantly linked to ALNM in breast cancer, offering vital insights into the molecular dynamics of cancer development and metastasis. These genes, including ERBB2, CCNA1, FOXC2, LEFTY2, VTN, ACKR3, and PTGS2, are involved in key processes like apoptosis, epithelial-mesenchymal transition, angiogenesis, response to hypoxia, and KRAS signaling pathways, which are crucial for tumor virulence and the spread of metastases. Moreover, the approach has also emphasized the importance of the small proline-rich protein family (SPRR), including SPRR2B, SPRR2E, and SPRR2D, recognized for their significant involvement in cancer-related pathways and their potential as therapeutic targets. Important transcripts such as H3C10, H1-2, PADI4, and others have been highlighted as critical in modulating the chromatin structure and gene expression, fundamental for the progression and spread of cancer.
Collapse
Affiliation(s)
- Mostafa Rezapour
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Robert Wesolowski
- Division of Medical Oncology, James Cancer Hospital and the Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Metin Nafi Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
5
|
Kumar A, Asiedu E, Hefni E, Armstrong C, Menon D, Ma T, Sands L, Mbadugha E, Sodhi A, Schneider A, Montaner S. Angiopoietin-like 4 is upregulated by amphiregulin and activates cell proliferation and migration through p38 kinase in head and neck squamous cell carcinoma. J Oral Pathol Med 2024; 53:366-375. [PMID: 38763759 PMCID: PMC11931727 DOI: 10.1111/jop.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Angiopoietin-like 4 is a molecular hallmark that correlates with the growth and metastasis of head and neck squamous cell carcinoma, one of the most prevalent cancers worldwide. However, the molecular mechanisms by which angiopoietin-like 4 promotes head and neck squamous cell carcinoma tumorigenesis are unclear. METHODS Using well-characterized cell lines of head and neck squamous cell carcinoma development, including human normal oral keratinocytes, dysplastic oral keratinocytes, oral leukoplakia-derived oral keratinocytes, and head and neck squamous cell carcinoma cell lines, HN13, HN6, HN4, HN12, and CAL27, we investigated the signaling pathways upstream and downstream of angiopoietin-like 4-induced head and neck squamous cell carcinoma tumorigenesis. RESULTS We found that both epidermal growth factor receptor ligands, epithelial growth factor, and amphiregulin led to angiopoietin-like 4 upregulation in normal oral keratinocytes and dysplastic oral keratinocytes and cooperated with the activation of hypoxia-inducible factor-1 in this effect. Interestingly, amphiregulin and angiopoietin-like 4 were increased in dysplastic oral keratinocytes and head and neck squamous cell carcinoma cell lines, and amphiregulin-induced activation of cell proliferation was dependent on angiopoietin-like 4. Although both p38 mitogen-activated protein kinases (p38 MAPK) and protein kinase B (AKT) were activated by angiopoietin-like 4, only pharmacological inhibition of p38 MAPK was sufficient to prevent head and neck squamous cell carcinoma cell proliferation and migration. We further observed that angiopoietin-like 4 promoted the secretion of interleukin 11 (IL-11), interleukin 12 (IL-12), interleukin-1 alpha (IL-1α), vascular endothelial growth factor, platelet-derived growth factor (PDGF), and tumour necrosis factor alpha (TNF-α), cytokines and chemokines previously implicated in head and neck squamous cell carcinoma pathogenesis. CONCLUSION Our results demonstrate that angiopoietin-like 4 is a downstream effector of amphiregulin and promotes head and neck squamous cell carcinoma development both through direct activation of p38 kinase as well as paracrine mechanisms.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Emmanuel Asiedu
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Eman Hefni
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Basic and Clinical Oral Sciences, College of Dental Medicine, Umm Al Qura University, Makkah, Saudi Arabia
| | - Cheryl Armstrong
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Lauren Sands
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Eberechi Mbadugha
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Li G, Li R, Wang W, Sun M, Wang X. DDX27 regulates oral squamous cell carcinoma development through targeting CSE1L. Life Sci 2024; 340:122479. [PMID: 38301874 DOI: 10.1016/j.lfs.2024.122479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
THE HEADINGS AIMS DEAD-box helicase 27 (DDX27), a member of the DEAD-Box nucleic acid helicase family, holds an elusive role in oral squamous cell carcinoma (OSCC). This study aims to unravel the regulatory functions of DDX27 in OSCC and explore its downstream targets. MATERIALS AND METHODS A commercial oral squamous cell carcinoma (OSCC) tissue microarray (TMA) was utilized. We analyzed differentially expressed genes in OSCC through the GEO database. Target gene silencing was achieved using the shRNA-mediated lentivirus method. Coexpedia analysis identified co-expressed genes associated with DDX27. Additionally, a Co-Immunoprecipitation (Co-IP) experiment confirmed the protein interaction between DDX27 and CSE1L. Xenograft tumor models were employed to evaluate DDX27's role in OSCC tumor formation. KEY FINDINGS Elevated DDX27 expression in OSCC correlated with a higher pathological grade. DDX27 knockdown resulted in decreased cell proliferation, increased apoptosis, inhibited cell migration, and induced G2/M phase cell cycle arrest, as well as impaired tumor outgrowth. Coexpedia analysis identified STAU1, NELFCD, and CSE1L as top co-expressed genes. Lentiviral vectors targeting STAU1, NELFCD, and CSE1L revealed that silencing CSE1L significantly impaired cell growth, indicating it as a downstream target of DDX27. Cell rescue experiments demonstrated that increased DDX27 levels ameliorated cell proliferation, attenuated apoptosis, and CSE1L depletion blocked cell development induced by DDX27 overexpression. SIGNIFICANCES This study highlighted DDX27 as a potential therapeutic target for OSCC treatment, shedding light on its crucial role in OSCC development. Targeting DDX27 or its downstream effector, CSE1L, holds promise for innovative OSCC therapies.
Collapse
Affiliation(s)
- Guanghui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Ran Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Weiyan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Minglei Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China.
| | - Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jian She Road, Zhengzhou 450000, Henan Province, China.
| |
Collapse
|
7
|
He L, Yang J, Hao Y, Yang X, Shi X, Zhang D, Zhao D, Yan W, Bie X, Chen L, Chen G, Zhao S, Liu X, Zheng H, Zhang K. DDX20: A Multifunctional Complex Protein. Molecules 2023; 28:7198. [PMID: 37894677 PMCID: PMC10608988 DOI: 10.3390/molecules28207198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
DEAD-box decapping enzyme 20 (DDX20) is a putative RNA-decapping enzyme that can be identified by the conserved motif Asp-Glu-Ala-Asp (DEAD). Cellular processes involve numerous RNA secondary structure alterations, including translation initiation, nuclear and mitochondrial splicing, and assembly of ribosomes and spliceosomes. DDX20 reportedly plays an important role in cellular transcription and post-transcriptional modifications. On the one hand, DDX20 can interact with various transcription factors and repress the transcriptional process. On the other hand, DDX20 forms the survival motor neuron complex and participates in the assembly of snRNP, ultimately affecting the RNA splicing process. Finally, DDX20 can potentially rely on its RNA-unwinding enzyme function to participate in microRNA (miRNA) maturation and act as a component of the RNA-induced silencing complex. In addition, although DDX20 is not a key component in the innate immune system signaling pathway, it can affect the nuclear factor kappa B (NF-κB) and p53 signaling pathways. In particular, DDX20 plays different roles in tumorigenesis development through the NF-κB signaling pathway. This process is regulated by various factors such as miRNA. DDX20 can influence processes such as viral replication in cells by interacting with two proteins in Epstein-Barr virus and can regulate the replication process of several viruses through the innate immune system, indicating that DDX20 plays an important role in the innate immune system. Herein, we review the effects of DDX20 on the innate immune system and its role in transcriptional and post-transcriptional modification processes, based on which we provide an outlook on the future of DDX20 research in innate immunity and viral infections.
Collapse
Affiliation(s)
- Lu He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dengshuai Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xintian Bie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Siyue Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
8
|
Hsieh CC, Yang CY, Peng B, Ho SL, Tsao CH, Lin CK, Lin CS, Lin GJ, Lin HY, Huang HC, Chang SC, Sytwu HK, Chia WT, Chen YW. Allyl Isothiocyanate Suppresses the Proliferation in Oral Squamous Cell Carcinoma via Mediating the KDM8/CCNA1 Axis. Biomedicines 2023; 11:2669. [PMID: 37893043 PMCID: PMC10604360 DOI: 10.3390/biomedicines11102669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The dysregulated expression of cyclin genes can lead to the uncontrolled proliferation of cancer cells. Histone demethylase Jumonji-C domain-containing protein 5 (KDM8, JMJD5) and cyclin A1 (CCNA1) are pivotal in cell cycle progression. A promising candidate for augmenting cancer treatment is Allyl isothiocyanate (AITC), a natural dietary chemotherapeutic and epigenetic modulator. This study aimed to investigate AITC's impact on the KDM8/CCNA1 axis to elucidate its role in oral squamous cell carcinoma (OSCC) tumorigenesis. The expression of KDM8 and CCNA1 was assessed using a tissue microarray (TMA) immunohistochemistry (IHC) assay. In vitro experiments with OSCC cell lines and in vivo experiments with patient-derived tumor xenograft (PDTX) and SAS subcutaneous xenograft tumor models were conducted to explore AITC's effects on their expression and cell proliferation. The results showed elevated KDM8 and CCNA1 levels in the OSCC patient samples. AITC exhibited inhibitory effects on OSCC tumor growth in vitro and in vivo. Additionally, AITC downregulated KDM8 and CCNA1 expression while inducing histone H3K36me2 expression in oral cancer cells. These findings underscore AITC's remarkable anticancer properties against oral cancer, highlighting its potential as a therapeutic option for oral cancer treatment by disrupting the cell cycle by targeting the KDM8/CCNA1 axis.
Collapse
Grants
- TSGH-C01-109017, TSGH-C05-110035, TSGH-C04-111037, TSGH-D-110148, TSGH-D-110149, TSGH-D-110151, TSGH-D-110152, TSGH-D-110154, TSGH-C02-112032 Tri-Service General Hospital, Taiwan, Republic of China
- MAB-E-109003, MAB-D-110003, MND-MAB-110-043, MND-MAB-110-076, MND-MAB-C-111036, MAB-E-111002, MND-MAB-D-111149, MND-MAB-D-112176, MND-MAB-C08-112033 Ministry of National Defense, Taiwan, Republic of China
- MOST 108-2314-B-016-005 Ministry of Science and Technology, Taiwan, Republic of China
- KAFGH-E-111047, KAFGH_E_112061 Kaohsiung Armed Forces General Hospital, Taiwan, Republic of China
- KSVGH112-135 Kaohsiung Veterans General Hospital, Taiwan, Republic of China
- HAFGH_E_112018 Hualien Armed Forces General Hospital, Taiwan, Republic of China
- CTH107A-2C01 Cardinal Tien Hospital, Taipei, Taiwan, Republic of China
Collapse
Affiliation(s)
- Cheng-Chih Hsieh
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Pharmacy and Institute of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Yu Yang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Bo Peng
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Sien-Lin Ho
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, New Taipei City 231, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei 114, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Heng-Yi Lin
- Department of Dentistry, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Hung-Chi Huang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Dentistry, Hualien Armed Forces General Hospital, Hualien 971, Taiwan
| | - Szu-Chien Chang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan
| | - Wei-Tso Chia
- Department of Orthopedics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
- Department of Nursing, Yuan Pie University of Medical Technology, Hsinchu 302, Taiwan
- Tri-Service General Hospital, Taipei 114, Taiwan
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| |
Collapse
|
9
|
Jacquet E, Chuffart F, Vitte AL, Nika E, Mousseau M, Khochbin S, Rousseaux S, Bourova-Flin E. Aberrant activation of five embryonic stem cell-specific genes robustly predicts a high risk of relapse in breast cancers. BMC Genomics 2023; 24:463. [PMID: 37592220 PMCID: PMC10436393 DOI: 10.1186/s12864-023-09571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND In breast cancer, as in all cancers, genetic and epigenetic deregulations can result in out-of-context expressions of a set of normally silent tissue-specific genes. The activation of some of these genes in various cancers empowers tumours cells with new properties and drives enhanced proliferation and metastatic activity, leading to a poor survival prognosis. RESULTS In this work, we undertook an unprecedented systematic and unbiased analysis of out-of-context activations of a specific set of tissue-specific genes from testis, placenta and embryonic stem cells, not expressed in normal breast tissue as a source of novel prognostic biomarkers. To this end, we combined a strict machine learning framework of transcriptomic data analysis, and successfully created a new robust tool, validated in several independent datasets, which is able to identify patients with a high risk of relapse. This unbiased approach allowed us to identify a panel of five biomarkers, DNMT3B, EXO1, MCM10, CENPF and CENPE, that are robustly and significantly associated with disease-free survival prognosis in breast cancer. Based on these findings, we created a new Gene Expression Classifier (GEC) that stratifies patients. Additionally, thanks to the identified GEC, we were able to paint the specific molecular portraits of the particularly aggressive tumours, which show characteristics of male germ cells, with a particular metabolic gene signature, associated with an enrichment in pro-metastatic and pro-proliferation gene expression. CONCLUSIONS The GEC classifier is able to reliably identify patients with a high risk of relapse at early stages of the disease. We especially recommend to use the GEC tool for patients with the luminal-A molecular subtype of breast cancer, generally considered of a favourable disease-free survival prognosis, to detect the fraction of patients undergoing a high risk of relapse.
Collapse
Affiliation(s)
- Emmanuelle Jacquet
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
- Université Grenoble Alpes, CHU Grenoble Alpes, Medical Oncology Unit, Cancer and Blood Diseases Department, Grenoble, France
| | - Florent Chuffart
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Laure Vitte
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
| | - Eleni Nika
- Université Grenoble Alpes, CHU Grenoble Alpes, Department of Pathology, Grenoble, France
| | - Mireille Mousseau
- Université Grenoble Alpes, CHU Grenoble Alpes, Medical Oncology Unit, Cancer and Blood Diseases Department, Grenoble, France
- Université Grenoble Alpes, INSERM U1039, Bioclinical Radiopharmaceuticals, Grenoble, France
| | - Saadi Khochbin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France
| | - Ekaterina Bourova-Flin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, EpiMed, Institute for Advanced Biosciences, Grenoble, France.
| |
Collapse
|
10
|
A Macrophage Differentiation-Mediated Gene: DDX20 as a Molecular Biomarker Encompassing the Tumor Microenvironment, Disease Staging, and Prognoses in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9971776. [PMID: 36246406 PMCID: PMC9556188 DOI: 10.1155/2022/9971776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Background DDX20 involves the mechanism of cell proliferate, mitogenic Ets transcriptional suppressor (METS), which can arrest the cell cycle of macrophages. However, little is known about DDX20 expression, clinical values, and the relationship with tumor microenvironment in HCC. Methods We mined the transcriptional, protein expression and survival data of DDX20 in HCC from online databases. The immunological effects of DDX20 were estimated by bioinformatic algorithms. The RNAi and CRISPR screening were used to assess the gene effect of DDX20 for the EGFR gene in liver tumor cell. Results We found that the DDX20 was highly expressed in HCC. The qRT-PCR result shows a significantly upregulated DDX20 expression in HCC samples from the West China Hospital. The high mRNA expression of DDX20 is associated with a poor survival. DDX20 expression is positively correlated with MDSCs in HCC tissues. Moreover, DDX20 has a high predicted ability for the response to immunotherapy. Furthermore, hsa-mir-324-5p could regulate the macrophage differentiation by interacting with DDX20. Meanwhile, the EGFR gene gets a high dependency score for DDX20. Conclusion In sum, DDX20 may serve as a prognostic marker for worse clinical outcomes with HCC and potentially enable more precise and personalized immunotherapeutic strategies in the future.
Collapse
|
11
|
Hobani YH, Almars AI, Alelwani W, Toraih EA, Nemr NA, Shaalan AAM, Fawzy MS, Attallah SM. Genetic Variation in DEAD-Box Helicase 20 as a Putative Marker of Recurrence in Propensity-Matched Colon Cancer Patients. Genes (Basel) 2022; 13:1404. [PMID: 36011315 PMCID: PMC9407271 DOI: 10.3390/genes13081404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Variants of the DEAD-Box Helicase 20 (DDX20), one of the microRNAs (miRNAs) machinery genes, can modulate miRNA/target gene expressions and, hence, influence cancer susceptibility and prognosis. Here, we aimed to unravel the association of DDX20 rs197412 T/C variant with colon cancer risk and/or prognosis in paired samples of 122 colon cancer and non-cancer tissue specimens by TaqMan allelic discrimination analysis. Structural/functional bioinformatic analyses were carried out, followed by a meta-analysis. We found that the T allele was more frequent in cancer tissues compared to control tissues (60.2% vs. 35.7%, p < 0.001). Furthermore, the T variant was highly frequent in primary tumors with evidence of recurrence (73% vs. 47.5%, p < 0.001). Genetic association models, adjusted by age and sex, revealed that the T allele was associated with a higher risk of developing colon cancer under heterozygote (T/C vs. C/C: OR = 2.35, 95%CI = 1.25−4.44, p < 0.001), homozygote (T/T vs. C/C: OR = 7.6, 95%CI = 3.5−16.8, p < 0.001), dominant (T/C-T/T vs. C/C: OR = 3.4, 95%CI = 1.87−8.5, p < 0.001), and recessive (T/T vs. C/C-T/C: OR = 4.42, 95%CI = 2.29−8.54, p = 0.001) models. Kaplan−Meier survival curves showed the shift in the C > T allele to be associated with poor disease-free survival. After adjusting covariates using a multivariate cox regression model, patients harboring C > T somatic mutation were 3.5 times more likely to develop a recurrence (p < 0.001). A meta-analysis of nine studies (including ours) showed a higher risk of CRC (81%) in subjects harboring the T/T genotype than in T/C + C/C genotypes, supporting the potential clinical utility of the specified study variant as a biomarker for risk stratification in CRC cases. However, results were not significant in non-colorectal cancers. In conclusion, the DDX20 rs197412 variant is associated with increased colon cancer risk and a higher likelihood of recurrence in the study population.
Collapse
Affiliation(s)
- Yahya H. Hobani
- Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 82911, Saudi Arabia
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Nader A. Nemr
- Endemic and Infectious Diseases Department, Suez Canal University, Ismailia 41522, Egypt
| | - Aly A. M. Shaalan
- Department of Anatomy, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Samy M. Attallah
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Clinical Pathology Department, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| |
Collapse
|
12
|
Wongpattaraworakul W, Gibson-Corley KN, Choi A, Buchakjian MR, Lanzel EA, Rajan KD A, Simons AL. Prognostic Role of Combined EGFR and Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:885236. [PMID: 35957892 PMCID: PMC9357911 DOI: 10.3389/fonc.2022.885236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundEpidermal growth factor receptor (EGFR) is well known as a general prognostic biomarker for head and neck tumors, however the specific prognostic value of EGFR in oral squamous cell carcinoma (OSCC) is controversial. Recently, the presence of tumor-infiltrating T cells has been associated with significant survival advantages in a variety of disease sites. The present study will determine if the inclusion of T cell specific markers (CD3, CD4 and CD8) would enhance the prognostic value of EGFR in OSCCs.MethodsTissue microarrays containing 146 OSCC cases were analyzed for EGFR, CD3, CD4 and CD8 expression using immunohistochemical staining. EGFR and T cell expression scores were correlated with clinicopathological parameters and survival outcomes.ResultsResults showed that EGFR expression had no impact on overall survival (OS), but EGFR-positive (EGFR+) OSCC patients demonstrated significantly worse progression free survival (PFS) compared to EGFR-negative (EGFR-) patients. Patients with CD3, CD4 and CD8-positive tumors had significantly better OS compared to CD3, CD4 and CD8-negative patients respectively, but no impact on PFS. Combined EGFR+/CD3+ expression was associated with cases with no nodal involvement and significantly more favorable OS compared to EGFR+/CD3- expression. CD3 expression had no impact on OS or PFS in EGFR- patients. Combinations of EGFR/CD8 and EGFR/CD4 expression showed no significant differences in OS or PFS among the expression groups.ConclusionAltogether these results suggest that the expression of CD3+ tumor-infiltrating T cells can enhance the prognostic value of EGFR expression and warrants further investigation as prognostic biomarkers for OSCC.
Collapse
Affiliation(s)
- Wattawan Wongpattaraworakul
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Allen Choi
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Marisa R. Buchakjian
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Emily A. Lanzel
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Anand Rajan KD
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Andrean L. Simons
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
- Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States
- *Correspondence: Andrean L. Simons,
| |
Collapse
|
13
|
Kondoh N, Mizuno-Kamiya M. The Role of Immune Modulatory Cytokines in the Tumor Microenvironments of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2022; 14:cancers14122884. [PMID: 35740551 PMCID: PMC9221278 DOI: 10.3390/cancers14122884] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Malignant phenotypes of head and neck squamous cell carcinomas (HNSCCs) are regulated by the pro- and anti-tumoral activities of immune modulatory cytokines associated with tumor microenvironments (TMEs). We first present the immune modulatory effects of pro-inflammatory cytokines, pro- and anti- (pro-/anti-) inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. We then report our evaluation of the functions of cytokines and chemokines that mediate the crosstalk between tumors and stromal cells, including cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), plasmacytoid dendritic cells (pDCs), and tumor-associated macrophages (TAMs). In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. Several chemokines mediate lymph node metastases in HNSCC patients. There are therapeutic approaches, using antitumoral cytokines or immunotherapies, that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. Finally, modulation by human papilloma virus (HPV) infection in HNSCC phenotypes and the prognostic significance of serum cytokine levels in HNSCC patients are discussed. Abstract HNSCCs are the major progressive malignancy of the upper digestive and respiratory organs. Malignant phenotypes of HNSCCs are regulated by the pro- and anti-tumoral activities of the immune modulatory cytokines associated with TMEs, i.e., a representative pro-inflammatory cytokine, interferon (IFN)-γ, plays a role as an anti-tumor regulator against HNSCCs; however, IFN-γ also drives programmed death-ligand (PD-L) 1 expression to promote cancer stem cells. Interleukin (IL)-2 promotes the cytotoxic activity of T cells and natural killer cells; however, endogenous IL-2 can promote regulatory T cells (Tregs), resulting in the protection of HNSCCs. In this report, we first classified and mentioned the immune modulatory aspects of pro-inflammatory cytokines, pro-/anti-inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. In the TME of HNSCCs, pro-tumoral immune modulation is mediated by stromal cells, including CAFs, MDSCs, pDCs, and TAMs. Therefore, we evaluated the functions of cytokines and chemokines that mediate the crosstalk between tumor cells and stromal cells. In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. We therefore evaluated the possibility of chemokines mediating lymph node metastases in HNSCC patients. We also mention therapeutic approaches using anti-tumoral cytokines or immunotherapies that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. We finally discuss modulation by HPV infection upon HNSCC phenotypes, as well as the prognostic significance of serum cytokine levels in HNSCC patients.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho 501-0296, Gifu, Japan
- Correspondence: ; Tel.: +81-58-329-1416; Fax: +81-58-329-1417
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, Mizuho 501-0296, Gifu, Japan;
| |
Collapse
|
14
|
Yang KS, Che PC, Hsieh MJ, Lee IN, Wu YP, Chen MS, Chen JC. Propofol induces apoptosis and ameliorates 5‑fluorouracil resistance in OSCC cells by reducing the expression and secretion of amphiregulin. Mol Med Rep 2021; 25:36. [PMID: 34859260 PMCID: PMC8669682 DOI: 10.3892/mmr.2021.12552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Among the different types of oral cancer, >90% of cases are oral squamous cell carcinoma (OSCC). 5-fluorouracil (5-FU) is a commonly used treatment for OSCC, but cells typically display resistance to the drug. Propofol, an intravenous anesthetic agent, exhibits certain anticancer effects, including the inhibition of cancer cell proliferation, migration and invasion. Secreted proteins, such as growth factors and cytokines are involved in cancer development and progression, but the effect of propofol on secreted proteins in OSCC is not completely understood. An MTT assay, flow cytometry and western blotting were performed to determine the anticancer effects of propofol. The secretion profile of OSCC was determined using an antibody array, and clinical importance was assessed using the Gene Expression Profiling Interactive Analysis database. The results were verified by performing reverse transcription-quantitative PCR (RT-qPCR) and western blotting. 5-FU-resistant cells were established to determine the role of the gene of interest in drug resistance. The results demonstrated that propofol decreased cell viability and promoted cell apoptosis. The antibody array results showed that propofol attenuated the secretion of multiple growth factors. The bioinformatics results indicated that amphiregulin (AREG) was expressed at significantly higher levels in cancer tissues, which was also related to poor prognosis. The results of RT-qPCR and western blotting revealed that propofol decreased AREG expression. Pretreatment with exogenous recombinant AREG increased EGFR activation and conferred propofol resistance. Moreover, the results indicated that the expression and activation of AREG was also related to 5-FU resistance, but propofol ameliorated 5-FU drug resistance. Therefore, the present study suggested that propofol combination therapy may serve as an effective treatment strategy for OSCC.
Collapse
Affiliation(s)
- Kung-Ssu Yang
- Department of Anesthesiology, Ditmanson Medical Foundation Chia‑Yi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Pi-Cheng Che
- Department of Anesthesiology, Ditmanson Medical Foundation Chia‑Yi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua 500209, Taiwan, R.O.C
| | - I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Yu-Ping Wu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia‑Yi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| |
Collapse
|
15
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|