1
|
Fisch AS, Farahani AA, Thierauf J, Iafrate AJ, Lennerz JK, Faquin WC. Comparative Analysis of MYB Expression by Immunohistochemistry and RNA Sequencing in Clinical Gene Fusion Detection in Adenoid Cystic Carcinoma. Head Neck Pathol 2024; 18:114. [PMID: 39460831 PMCID: PMC11512985 DOI: 10.1007/s12105-024-01719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE MYB has been shown to play a central role in oncogenesis in a majority of adenoid cystic carcinomas (ACC). Testing for MYB expression via immunohistochemistry (IHC) or testing for the MYB gene fusion by next-generation sequencing (NGS) have become useful tools for the diagnosis of ACC. In addition, detection of MYB expression may have implications for patient management. METHODS A cohort of 35 ACC cases was identified from the archival pathology files of the Massachusetts General Hospital. Cases were tested for MYB expression using a panel of 4 different commercially available MYB antibodies and scored using a modified Allred system. RNA-based NGS for MYB gene fusion detection was also performed. RESULTS Among 4 different MYB antibodies, the sensitivity for MYB detection ranged from 26 to 97%. When a 30% threshold for determination of MYB immunohistochemical positivity was used, the AB_10900735 IHC clone showed the maximum sensitivity (97%). RNA sequencing revealed 19 (54%) cases positive for MYB fusions, and expression analysis derived from the sequencing data confirmed a significant association between MYB expression and fusion status (p = 0.036). Although less sensitive, the AB_778878 MYB clone showed a significant positive association between IHC staining and MYB RNA expression (R2 = 0.15, p = 0.023). CONCLUSION The detection of MYB expression using immunohistochemistry varies significantly depending on the antibody used. Comparison with MYB fusion and transcription levels, as determined by NGS, reveals that MYB has a complex relationship between genetic alterations, transcript levels, and protein abundance.
Collapse
Affiliation(s)
- Adam S Fisch
- Departments of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | - A John Iafrate
- Departments of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - William C Faquin
- Departments of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
2
|
Zhang XY, Zhu BC, He M, Dong SS. Proto-oncogene c-Myb potentiates cisplatin resistance of ovarian cancer cells by downregulating lncRNA NKILA and modulating cancer stemness and LIN28A-let7 axis. J Ovarian Res 2024; 17:102. [PMID: 38745302 PMCID: PMC11092198 DOI: 10.1186/s13048-024-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Ovarian cancer is a major gynecological cancer that has poor prognosis associated mainly to its late diagnosis. Cisplatin is an FDA approved ovarian cancer therapy and even though the therapy is initially promising, the patients mostly progress to resistance against cisplatin. The underlying mechanisms are complex and not very clearly understood. Using two different paired cell lines representing cisplatin-sensitive and the cisplatin-resistant ovarian cancer cells, the ES2 and the A2780 parental and cisplatin-resistant cells, we show an elevated proto-oncogene c-Myb in resistant cells. We further show down-regulated lncRNA NKILA in resistant cells with its de-repression in resistant cells when c-Myb is silenced. NKILA negatively correlates with cancer cell and invasion but has no effect on cellular proliferation or cell cycle. C-Myb activates NF-κB signaling which is inhibited by NKILA. The cisplatin resistant cells are also marked by upregulated stem cell markers, particularly LIN28A and OCT4, and downregulated LIN28A-targeted let-7 family miRNAs. Whereas LIN28A and downregulated let-7s individually de-repress c-Myb-mediated cisplatin resistance, the ectopic expression of let-7s attenuates LIN28A effects, thus underlying a c-Myb-NKILA-LIN28A-let-7 axis in cisplatin resistance of ovarian cancer cells that needs to be further explored for therapeutic intervention.
Collapse
Affiliation(s)
- Xue-Yan Zhang
- School of Nursing, Jilin University, Changchun, 130021, Jilin, China
| | - Bo-Chi Zhu
- Department of Neurology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Miao He
- Department of Anesthesiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130022, Jilin, China
| | - Shan-Shan Dong
- Department of Anesthesiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130022, Jilin, China.
| |
Collapse
|
3
|
Biersack B, Höpfner M. Emerging role of MYB transcription factors in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:15. [PMID: 38835346 PMCID: PMC11149108 DOI: 10.20517/cdr.2023.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
Decades ago, the viral myeloblastosis oncogene v-myb was identified as a gene responsible for the development of avian leukemia. However, the relevance of MYB proteins for human cancer diseases, in particular for solid tumors, remained basically unrecognized for a very long time. The human family of MYB transcription factors comprises MYB (c-MYB), MYBL2 (b-MYB), and MYBL1 (a-MYB), which are overexpressed in several cancers and are associated with cancer progression and resistance to anticancer drugs. In addition to overexpression, the presence of activated MYB-fusion proteins as tumor drivers was described in certain cancers. The identification of anticancer drug resistance mediated by MYB proteins and their underlying mechanisms are of great importance in understanding failures of current therapies and establishing new and more efficient therapy regimens. In addition, new drug candidates targeting MYB transcription factor activity and signaling have emerged as a promising class of potential anticancer therapeutics that could tackle MYB-dependent drug-resistant cancers in a more selective way. This review describes the correlation of MYB transcription factors with the formation and persistence of cancer resistance to various approved and investigational anticancer drugs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
4
|
Anand S, Vikramdeo KS, Sudan SK, Sharma A, Acharya S, Khan MA, Singh S, Singh AP. From modulation of cellular plasticity to potentiation of therapeutic resistance: new and emerging roles of MYB transcription factors in human malignancies. Cancer Metastasis Rev 2024; 43:409-421. [PMID: 37950087 PMCID: PMC11015973 DOI: 10.1007/s10555-023-10153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
MYB transcription factors are encoded by a large family of highly conserved genes from plants to vertebrates. There are three members of the MYB gene family in human, namely, MYB, MYBL1, and MYBL2 that encode MYB/c-MYB, MYBL1/A-MYB, and MYBL2/B-MYB, respectively. MYB was the first member to be identified as a cellular homolog of the v-myb oncogene carried by the avian myeloblastosis virus (AMV) causing leukemia in chickens. Under the normal scenario, MYB is predominantly expressed in hematopoietic tissues, colonic crypts, and neural stem cells and plays a role in maintaining the undifferentiated state of the cells. Over the years, aberrant expression of MYB genes has been reported in several malignancies and recent years have witnessed tremendous progress in understanding of their roles in processes associated with cancer development. Here, we review various MYB alterations reported in cancer along with the roles of MYB family proteins in tumor cell plasticity, therapy resistance, and other hallmarks of cancer. We also discuss studies that provide mechanistic insights into the oncogenic functions of MYB transcription factors to identify potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shashi Anand
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Amod Sharma
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Srijan Acharya
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Mohammad Aslam Khan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Seema Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
5
|
Khan MA, Acharya S, Anand S, Sameeta F, Pramanik P, Keel C, Singh S, Carter JE, Dasgupta S, Singh AP. MYB exhibits racially disparate expression, clinicopathologic association, and predictive potential for biochemical recurrence in prostate cancer. iScience 2023; 26:108487. [PMID: 38089573 PMCID: PMC10711386 DOI: 10.1016/j.isci.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 02/01/2024] Open
Abstract
MYB acts as a potentiator of aggressiveness and castration resistance in prostate cancer (PCa) through aberrant activation of androgen receptor (AR) signaling. Since Black men experience higher PCa incidence and mortality than White men, we examined if MYB was differentially expressed in prostate tumors from patients of these racial backgrounds. The data reveal that aberrant MYB expression starts early in precancerous high-grade prostate intraepithelial neoplastic lesions and increases progressively in malignant cells. PCa tissues from Black patients exhibit higher MYB expression than White patients in overall and grade-wise comparisons. MYB also exhibits a positive correlation with AR expression and both display higher expression in advanced tumor stages. Notably, we find that MYB is a better predictor of biochemical recurrence than AR, pre-treatment PSA, or Gleason's grades. These findings establish MYB as a promising molecular target in PCa that could be used for improved risk prediction and therapeutic planning.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Srijan Acharya
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Fnu Sameeta
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
| | - Paramahansa Pramanik
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA
| | - Christopher Keel
- Department of Urology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - James Elliot Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
| | - Santanu Dasgupta
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
6
|
Patel GK, Verma SK, Misra S, Chand G, Rao RN. Editorial: Molecular drivers of prostate cancer pathogenesis and therapy resistance. Front Cell Dev Biol 2023; 11:1239478. [PMID: 37427384 PMCID: PMC10328384 DOI: 10.3389/fcell.2023.1239478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Girijesh Kumar Patel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Santosh Kumar Verma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Shagun Misra
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ram Nawal Rao
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
7
|
Anand S, Khan MA, Zubair H, Sudan SK, Vikramdeo KS, Deshmukh SK, Azim S, Srivastava SK, Singh S, Singh AP. MYB sustains hypoxic survival of pancreatic cancer cells by facilitating metabolic reprogramming. EMBO Rep 2023; 24:e55643. [PMID: 36592158 PMCID: PMC9986821 DOI: 10.15252/embr.202255643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
Extensive desmoplasia and poor vasculature renders pancreatic tumors severely hypoxic, contributing to their aggressiveness and therapy resistance. Here, we identify the HuR/MYB/HIF1α axis as a critical regulator of the metabolic plasticity and hypoxic survival of pancreatic cancer cells. HuR undergoes nuclear-to-cytoplasmic translocation under hypoxia and stabilizes MYB transcripts, while MYB transcriptionally upregulates HIF1α. Upon MYB silencing, pancreatic cancer cells fail to survive and adapt metabolically under hypoxia, despite forced overexpression of HIF1α. MYB induces the transcription of several HIF1α-regulated glycolytic genes by directly binding to their promoters, thus enhancing the recruitment of HIF1α to hypoxia-responsive elements through its interaction with p300-dependent histone acetylation. MYB-depleted pancreatic cancer cells exhibit a dramatic reduction in tumorigenic ability, glucose-uptake and metabolism in orthotopic mouse model, even after HIF1α restoration. Together, our findings reveal an essential role of MYB in metabolic reprogramming that supports pancreatic cancer cell survival under hypoxia.
Collapse
Affiliation(s)
- Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sachin Kumar Deshmukh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shafquat Azim
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
8
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
9
|
Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities. Int J Mol Sci 2023; 24:ijms24054482. [PMID: 36901912 PMCID: PMC10003184 DOI: 10.3390/ijms24054482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PCa) affects millions of men worldwide and is a major cause of cancer-related mortality. Race-associated PCa health disparities are also common and are of both social and clinical concern. Most PCa is diagnosed early due to PSA-based screening, but it fails to discern between indolent and aggressive PCa. Androgen or androgen receptor-targeted therapies are standard care of treatment for locally advanced and metastatic disease, but therapy resistance is common. Mitochondria, the powerhouse of cells, are unique subcellular organelles that have their own genome. A large majority of mitochondrial proteins are, however, nuclear-encoded and imported after cytoplasmic translation. Mitochondrial alterations are common in cancer, including PCa, leading to their altered functions. Aberrant mitochondrial function affects nuclear gene expression in retrograde signaling and promotes tumor-supportive stromal remodeling. In this article, we discuss mitochondrial alterations that have been reported in PCa and review the literature related to their roles in PCa pathobiology, therapy resistance, and racial disparities. We also discuss the translational potential of mitochondrial alterations as prognostic biomarkers and as effective targets for PCa therapy.
Collapse
|
10
|
Li L, Xu J. The androgen receptor-targeted proteolysis targeting chimera and other alternative therapeutic choices in overcoming the resistance to androgen deprivation treatment in prostate cancer. Clin Transl Oncol 2023; 25:352-363. [PMID: 36203075 PMCID: PMC9873748 DOI: 10.1007/s12094-022-02957-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 01/28/2023]
Abstract
Androgen receptor (AR) plays a vital role in prostate cancer (PCa), including castration-resistant PCa, by retaining AR signalling. Androgen deprivation treatment (ADT) has been the standard treatment in the past decades. A great number of AR antagonists initially had been found effective in tumour remission; however, most PCa relapsed that caused by pre-translational resistance such as AR mutations to turn antagonist into agonist, and AR variants to bypass the androgen binding. Recently, several alternative therapeutic choices have been proposed. Among them, proteolysis targeting chimera (PROTAC) acts different from traditional drugs that usually function as inhibitors or antagonists, and it degrades oncogenic protein and does not disrupt the transcription of an oncogene. This review first discussed some essential mechanisms of ADT resistance, and then introduced the application of AR-targeted PROTAC in PCa cells, as well as other AR-targeted therapeutic choices.
Collapse
Affiliation(s)
- Liuxun Li
- grid.1006.70000 0001 0462 7212Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Jiangli Xu
- Department of Pharmacy, No.921 Hospital of the Joint Logistics Support Force, Changsha, 410003 China
| |
Collapse
|
11
|
Pozas J, Álvarez Rodríguez S, Fernández VA, Burgos J, Santoni M, Manneh Kopp R, Molina-Cerrillo J, Alonso-Gordoa T. Androgen Receptor Signaling Inhibition in Advanced Castration Resistance Prostate Cancer: What Is Expected for the Near Future? Cancers (Basel) 2022; 14:6071. [PMID: 36551557 PMCID: PMC9776956 DOI: 10.3390/cancers14246071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The androgen signaling pathway is the cornerstone in the treatment of high risk or advanced prostate cancer patients. However, in recent years, different mechanisms of resistance have been defined in this field, limiting the efficacy of the currently approved antiandrogen drugs. Different therapeutic approaches are under research to assess the role of combination therapies against escape signaling pathways or the development of novel antiandrogen drugs to try to solve the primary or acquired resistance against androgen dependent or independent pathways. The present review aims to summarize the current state of androgen inhibition in the therapeutic algorithm of patients with advanced prostate cancer and the mechanisms of resistance to those available drugs. In addition, this review conducted a comprehensive overview of the main present and future research approaches in the field of androgen receptor inhibition to overcome these resistances and the potential new drugs under research coming into this setting.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara Álvarez Rodríguez
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | | | - Javier Burgos
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Matteo Santoni
- Medical Oncology Department, Mazerata Hospital, 62100 Macerata, Italy
| | - Ray Manneh Kopp
- Sociedad de Oncología y Hematología del Cesar, Valledupar 200001, Colombia
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| |
Collapse
|
12
|
Acharya S, Anand S, Khan MA, Zubair H, Srivastava SK, Singh S, Singh AP. Biphasic transcriptional and posttranscriptional regulation of MYB by androgen signaling mediates its growth control in prostate cancer. J Biol Chem 2022; 299:102725. [PMID: 36410437 PMCID: PMC9791434 DOI: 10.1016/j.jbc.2022.102725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
MYB, a proto-oncogene, is overexpressed in prostate cancer (PCa) and promotes its growth, aggressiveness, and resistance to androgen-deprivation therapy. Here, we examined the effect of androgen signaling on MYB expression and delineated the underlying molecular mechanisms. Paralleling a dichotomous effect on growth, low-dose androgen induced MYB expression at both transcript and protein levels, whereas it was suppressed in high-dose androgen-treated PCa cells. Interestingly, treatment with both low- and high-dose androgen transcriptionally upregulated MYB by increasing the binding of androgen receptor to the MYB promoter. In a time-course assay, androgen induced MYB expression at early time points followed by a sharp decline in high-dose androgen-treated cells due to decreased stability of MYB mRNA. Additionally, profiling of MYB-targeted miRNAs demonstrated significant induction of miR-150 in high-dose androgen-treated PCa cells. We observed a differential binding of androgen receptor on miR-150 promoter with significantly greater occupancy recorded in high-dose androgen-treated cells than those treated with low-dose androgen. Functional inhibition of miR-150 relieved MYB suppression by high-dose androgen, while miR-150 mimic abolished MYB induction by low-dose androgen. Furthermore, MYB-silencing or miR-150 mimic transfection suppressed PCa cell growth induced by low-dose androgen, whereas miR-150 inhibition rescued PCa cells from growth repression by high-dose androgen. Similarly, we observed that MYB silencing suppressed the expression of androgen-responsive, cell cycle-related genes in low-dose androgen-treated cells, while miR-150 inhibition increased their expression in cells treated with high-dose androgen. Overall, these findings reveal novel androgen-mediated mechanisms of MYB regulation that support its biphasic growth control in PCa cells.
Collapse
Affiliation(s)
- Srijan Acharya
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA; Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
13
|
Chen Y, Zhou Q, Hankey W, Fang X, Yuan F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis 2022; 13:632. [PMID: 35864113 PMCID: PMC9304354 DOI: 10.1038/s41419-022-05084-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Prostate cancer is a hormone-dependent malignancy, whose onset and progression are closely related to the activity of the androgen receptor (AR) signaling pathway. Due to this critical role of AR signaling in driving prostate cancer, therapy targeting the AR pathway has been the mainstay strategy for metastatic prostate cancer treatment. The utility of these agents has expanded with the emergence of second-generation AR antagonists, which began with the approval of enzalutamide in 2012 by the United States Food and Drug Administration (FDA). Together with apalutamide and darolutamide, which were approved in 2018 and 2019, respectively, these agents have improved the survival of patients with prostate cancer, with applications for both androgen-dependent and castration-resistant disease. While patients receiving these drugs receive a benefit in the form of prolonged survival, they are not cured and ultimately progress to lethal neuroendocrine prostate cancer (NEPC). Here we summarize the current state of AR antagonist development and highlight the emerging challenges of their clinical application and the potential resistance mechanisms, which might be addressed by combination therapies or the development of novel AR-targeted therapies.
Collapse
Affiliation(s)
- Yanhua Chen
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Qianqian Zhou
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - William Hankey
- grid.10698.360000000122483208Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xiaosheng Fang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 271000 Jinan, Shandong China
| | - Fuwen Yuan
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|