1
|
Soliman N, Maqsood A, Connor AA. Role of genomics in liver transplantation for cholangiocarcinoma. Curr Opin Organ Transplant 2025; 30:158-170. [PMID: 39917813 DOI: 10.1097/mot.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current knowledge of cholangiocarcinoma molecular biology and to suggest a framework for implementation of next-generation sequencing in all stages of liver transplantation. This is timely as recent guidelines recommend increased use of these technologies with promising results. RECENT FINDINGS The main themes covered here address germline and somatic genetic alterations recently discovered in cholangiocarcinoma, particularly those associated with prognosis and treatment responses, and nascent efforts to translate these into contemporary practice in the peri-liver transplantation period. SUMMARY Early efforts to translate molecular profiling to cholangiocarcinoma care demonstrate a growing number of potentially actionable alterations. Still lacking is a consensus on what biomarkers and technologies to adopt, at what scale and cost, and how to integrate them most effectively into care with the ambition of increasing the number of patients eligible for liver transplantation and improving their long-term outcomes.
Collapse
Affiliation(s)
- Nadine Soliman
- Department of Surgery
- J. C. Walter Jr. Transplant Center, Houston Methodist Hospital
- Houston Methodist Academic Institute
| | - Anaum Maqsood
- Department of Medicine
- Neill Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Ashton A Connor
- Department of Surgery
- J. C. Walter Jr. Transplant Center, Houston Methodist Hospital
- Houston Methodist Academic Institute
- Neill Cancer Center, Houston Methodist Hospital, Houston, Texas
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
2
|
Skok K, Stift J, Schirmacher P, Kashofer K, Stauber R, Ranković B, Lackner K. Molecular Landscape and Treatment Paradigms of Hepatocellular and Cholangiocarcinoma: A Multinational Review. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025. [PMID: 40164125 DOI: 10.1055/a-2548-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represent the most prevalent primary liver cancers and pose significant challenges in oncology. While their etiology and incidence vary globally, the molecular landscape of these tumors is increasingly understood, offering new opportunities for precision medicine. In this joint multinational review, we present a comprehensive analysis of the key molecular pathways involved in the pathogenesis of HCC and CCA, highlighting actionable targets for emerging therapies. Recent advances in molecular diagnostics have significantly influenced treatment paradigms for both cancers. In HCC, while genetic alterations have not yet led to established diagnostic or therapeutic applications, targeting vascular endothelial growth factor (VEGF), immune checkpoints, and tyrosine kinase pathways has demonstrated considerable therapeutic potential. In CCA, genetic profiling has uncovered actionable alterations, such as FGFR2 fusions and IDH1 mutations, driving the development of targeted therapies. The growing complexity of precision oncology underscores the need for standardized molecular testing and streamlined diagnostic workflows to ensure timely and effective treatment. This review also emphasizes the importance of collaborative efforts between clinicians, pathologists, and oncologists to optimize outcomes. By synthesizing the latest molecular insights and treatment trends, this review provides a valuable resource to guide the personalized management of HCC and CCA.
Collapse
Affiliation(s)
- Kristijan Skok
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Insitute of Biomedical Sciences, Faculty of Medicine University of Maribor in Slovenia, Maribor, Slovenia
| | - Judith Stift
- Institute of Pathology, Versorgungspathologie of the University Clinic of Innsbruck, INNPATH GmbH, Innsbruck, Austria
- ADK Diagnostics, Center for Liver and Pancreatic Pathology, Vienna, Austria
| | - Peter Schirmacher
- Heidelberg University Hospital Institute of Pathology, Heidelberg, Germany
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Rudolf Stauber
- Internal Medicine, Medical University of Graz, Graz, Austria
| | - Branislava Ranković
- Institute of Pathology, University of Ljubljana Faculty of Medicine, Ljubljana, Slovenia
| | - Karoline Lackner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- ADK Diagnostics, Center for Liver and Pancreatic Pathology, Vienna, Austria
| |
Collapse
|
3
|
Zhang P, Liu X, Liu Y, Zhu H, Zheng C, Ling Q, Yan F, He Q, Zhu H, Yuan T, Yang B. VCP Promotes Cholangiocarcinoma Development by Mediating BAP1 Ubiquitination-Dependent Degradation. Cancer Sci 2025. [PMID: 40122668 DOI: 10.1111/cas.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Cholangiocarcinoma (CCA), recognized for its high malignancy, has been an enormous challenge due to lacking effective treatment therapy over the past decades. Recently, the targeted therapies, such as Pemigatinib and Ivosidenib, have provided new treatment options for patients carrying fibroblast growth factor receptor (FGFR) and isocitrate dehydrogenase 1/2 (IDH1/2) mutations, but only ~30% of patients harbor these mutants; it is urgent to explore novel targets and therapeutic therapies. The frequent downregulation of BAP1 has been observed in CCA, and the low expression of BAP1 is closely related to the poor prognosis of CCA. However, there are no effective interventions to re-activate BAP1 protein; blocking its degradation may provide a feasible strategy for BAP1-downregulation CCA treatment. In this study, we demonstrated the tumor-suppressive roles of BAP1 in CCA and identified VCP functions as the key upstream regulator mediated by BAP1 protein homeostasis. Mechanistically, VCP binds to BAP1 and promotes the latter's ubiquitination degradation via the ubiquitin-proteasome pathway, thus promoting cell proliferation and inhibiting cell apoptosis. Moreover, we found that VCP inhibitors inhibited CCA cell growth and promoted cell apoptosis by blocking BAP1 ubiquitination degradation. Collectively, our findings not only provided a novel mechanism underlying the aberrant low expression of BAP1 in CCA but also verified the anti-tumor effect of VCP inhibitors in CCA, offering a novel therapeutic target for CCA treatment.
Collapse
Affiliation(s)
- Peiying Zhang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangning Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongdao Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Churun Zheng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Soliman N, Connor AA, Saharia A, Kodali S, Elaileh A, Patel K, Semaan S, Basra T, Victor DW, Simon CJ, Cheah YL, Hobeika MJ, Mobley CM, Divatia M, Dhingra S, Schwartz M, Maqsood A, Heyne K, Abdelrahim M, Javle M, Vauthey JN, Gaber AO, Ghobrial RM. Neoadjuvant Multiagent Systemic Therapy Approach to Liver Transplantation for Perihilar Cholangiocarcinoma. Transplant Direct 2025; 11:e1760. [PMID: 39936132 PMCID: PMC11809964 DOI: 10.1097/txd.0000000000001760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/12/2024] [Indexed: 02/13/2025] Open
Abstract
Background Perihilar cholangiocarcinoma (phCCA) has excellent outcomes following liver transplantation (LT). Neoadjuvant radiation-based locoregional therapy is standard-of-care. Gemcitabine and cisplatin (gem/cis) combination systemic therapies have improved outcomes in advanced settings, but their efficacy pre-LT has not been studied. Methods We review our experience following neoadjuvant gem/cis alone versus radiation-based approaches. Patients with phCCA undergoing LT at a single center between January 2008 and February 2023 were identified retrospectively. Neoadjuvant therapy was categorized as gem/cis systemic therapy (ST) alone, or any ST and radiotherapy (RT). Outcomes were posttransplant overall survival (OS), recurrence-free survival (RFS), waitlist time, and pathologic tumor response. Results During study period, 27 phCCA patients underwent LT. One patient decompensated with neoadjuvant therapy and was excluded. Median age was 61 y (interquartile range, 53-68 y) and 14 (54%) were male. Of 26 patients, 12 (46%) received ST and 14 (54%) RT. Six RT patients received gem/cis ST. Median waitlist time was 199 d (interquartile range, 98-405 d) and did not differ by neoadjuvant regimen. Explanted tumors were predominantly T1 stage, without lymphovascular invasion or nodal involvement. Neither pathologic features nor percent tumor necrosis differed by regimen. OS probabilities at 1 and 3 y were 84% and 55% for the cohort. There was no significant difference in OS and RFS when stratified by regimen. Conclusions Post-LT OS, RFS, waitlist time, and tumor response were similar in the 2 groups. Patients with phCCA who do not undergo RT may still be considered for LT under appropriate institution-based protocols that adhere to other established criteria.
Collapse
Affiliation(s)
- Nadine Soliman
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Ashton A. Connor
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Ashish Saharia
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Sudha Kodali
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Department of Medicine, Houston Methodist Hospital, Houston, TX
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ahmed Elaileh
- Department of Surgery, Houston Methodist Hospital, Houston, TX
| | - Khush Patel
- Department of Surgery, Houston Methodist Hospital, Houston, TX
| | - Samar Semaan
- Department of Surgery, Houston Methodist Hospital, Houston, TX
| | - Tamneet Basra
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - David W. Victor
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Department of Medicine, Houston Methodist Hospital, Houston, TX
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | | | - Yee Lee Cheah
- Department of Surgery, Houston Methodist Hospital, Houston, TX
| | - Mark J. Hobeika
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Constance M. Mobley
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Mukul Divatia
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | - Sadhna Dhingra
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | - Mary Schwartz
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | - Anaum Maqsood
- Division of Medical Oncology, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Kirk Heyne
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Division of Medical Oncology, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Maen Abdelrahim
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Division of Medical Oncology, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Milind Javle
- Department of Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - A. Osama Gaber
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - R. Mark Ghobrial
- Department of Surgery, Houston Methodist Hospital, Houston, TX
- Department of Surgery, Weill Cornell Medical College, New York, NY
| |
Collapse
|
5
|
Putatunda V, Jusakul A, Roberts L, Wang XW. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:362-377. [PMID: 39532242 PMCID: PMC11841490 DOI: 10.1016/j.ajpath.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree that carries a poor prognosis. Multiple features at the genetic, epigenetic, and microenvironmental levels have been identified to better characterize CCA carcinogenesis. Genetic alterations, such as mutations in IDH1/2, BAP1, ARID1A, and FGFR2, play significant roles in CCA pathogenesis, with variations across different subtypes, races/ethnicities, and causes. Epigenetic dysregulation, characterized by DNA methylation and histone modifications, further contributes to the complexity of CCA, influencing gene expression and tumor behavior. Furthermore, CCA cells exchange autocrine and paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment, including cancer-associated fibroblasts and tumor-associated macrophages, further contributing to an immunosuppressive niche that supports tumorigenesis. This review explores the multifaceted genetic, epigenetic, and microenvironmental drivers of CCA. Understanding these diverse mechanisms is essential for characterizing the complex pathways of CCA carcinogenesis and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Vijay Putatunda
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
6
|
Malik AK, Davidson BR, Manas DM. Surgical management, including the role of transplantation, for intrahepatic and peri-hilar cholangiocarcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108248. [PMID: 38467524 DOI: 10.1016/j.ejso.2024.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
Intrahepatic and peri-hilar cholangiocarcinoma are life threatening disease with poor outcomes despite optimal treatment currently available (5-year overall survival following resection 20-35%, and <10% cured at 10-years post resection). The insidious onset makes diagnosis difficult, the majority do not have a resection option and the high recurrence rate post-resection suggests that occult metastatic disease is frequently present. Advances in perioperative management, such as ipsilateral portal vein (and hepatic vein) embolisation methods to increase the future liver remnant volume, genomic profiling, and (neo)adjuvant therapies demonstrate great potential in improving outcomes. However multiple areas of controversy exist. Surgical resection rate and outcomes vary between centres with no global consensus on how 'resectable' disease is defined - molecular profiling and genomic analysis could potentially identify patients unlikely to benefit from resection or likely to benefit from targeted therapies. FDG-PET scanning has also improved the ability to detect metastatic disease preoperatively and avoid futile resection. However tumours frequently invade major vasculo-biliary structures, with resection and reconstruction associated with significant morbidity and mortality even in specialist centres. Liver transplantation has been investigated for very selected patients for the last decade and yet the selection algorithm, surgical approach and both value of both neoadjuvant and adjuvant therapies remain to be clarified. In this review, we discuss the contemporary management of intrahepatic and peri-hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Abdullah K Malik
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle Upon Tyne, UK.
| | - Brian R Davidson
- Department of HPB and Liver Transplant Surgery, Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK; Division of Surgery and Interventional Sciences, University College London, London, UK
| | - Derek M Manas
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle Upon Tyne, UK; NHS Blood and Transplant, Bristol, UK
| |
Collapse
|
7
|
Ursprung S, Thaiss W, Beha J, Möller Y, Malek NP, Beer M, Gaidzik VI, Seufferlein T, Beer AJ, Nikolaou K, Reinert CP. Standardized Response Assessment in Patients with Advanced Cholangiocarcinoma Treated with Personalized Therapy. J Pers Med 2024; 14:1143. [PMID: 39728056 DOI: 10.3390/jpm14121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Current guidelines recommend Cisplatin/Gemcitabine/Durvalumab as first-line treatment for inoperable or recurrent cholangiocarcinoma (CCA). Molecular tumor boards (MTB) have the expertise to support organ-specific tumor boards with evidence-based treatment recommendations for subsequent lines of treatment, based on genomic tumor data and scientific evidence. This study evaluates the adoption of an MTB at a comprehensive cancer center in Germany and whether actionable genetic alterations are associated with specific imaging phenotypes. Methods: Patients with CCA referred to MTB were enrolled from May 2019 to September 2021. For comparison, a cohort of patients from a second center was included. Data on treatment recommendations, regimens, and survival were collected from prospective registries. Baseline and follow-up contrast-enhanced CT were analyzed according to RECIST 1.1. The chi-square test and t-test were used to compare categorical and continuous variables. Results: 583 patients were referred to the MTB, and 92 patients (47 female/51%) with a mean age of 60.3 ± 11.2 were referred for CCA treatment. 65/92 patients harbored 1-3 targetable mutations. Liver metastases were more frequently observed in patients with targetable mutations (84% vs. 62%). Metastasis to the liver and lung was associated with increased sums of diameters (93 mm and 111 mm vs. 40/73 mm in patients with no liver/lung metastasis). The number of metastases in individual organs was unrelated to treatment targets. Follow-up was available for 25 patients with a median time until imaging progression of 23 weeks. Progression occurred as target progression in 63%, nontarget progression in 13%, and appearance of new lesions in 63%. Conclusions: Most patients with CCA harbored targetable mutations, some were related to disease patterns on imaging. The pattern of treatment response and progression was as diverse as the metastatic spread.
Collapse
Affiliation(s)
- Stephan Ursprung
- Department of Radiology, University Hospital Tuebingen, 72076 Tübingen, Germany
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
- Department of Radiology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Janina Beha
- Center for Personalized Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| | - Yvonne Möller
- Center for Personalized Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University Hospital, Eberhard-Karls University, 72076 Tübingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Meinrad Beer
- Department of Radiology, Ulm University Medical Center, 89081 Ulm, Germany
- National Center for Tumour Diseases SouthWest: Tuebingen-Stuttgart/Ulm, 89070 Ulm, Germany
- Innovative Imaging in Surgical Oncology, Ulm University Hospital, 89070 Ulm, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
- Center of Personalised Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas Seufferlein
- Center of Personalised Medicine, University Hospital Ulm, 89081 Ulm, Germany
- Department of Internal Medicine III, Ulm University Hospital, 89081 Ulm, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Konstantin Nikolaou
- Department of Radiology, University Hospital Tuebingen, 72076 Tübingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | |
Collapse
|
8
|
Belli C, Boscolo Bielo L, Repetto M, Crimini E, Scalia R, Diana A, Orefice J, Ascione L, Pellizzari G, Fusco N, Barberis M, Daniele B, Guerini-Rocco E, Curigliano G. Deleterious alterations in homologous recombination repair genes and efficacy of platinum-based chemotherapy in biliary tract cancers. Oncologist 2024; 29:707-715. [PMID: 38823036 PMCID: PMC11299956 DOI: 10.1093/oncolo/oyae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Platinum-based chemotherapy represents the standard first-line treatment for biliary tract cancers (BTC). Deficits in genes involved in the homologous recombination (HR) and DNA damage response (DDR) may confer higher sensitivity to platinum agents. METHODS We retrospectively included patients affected by BTC from 2 Italian institutions. Inclusion criteria consist of the receipt of platinum-based chemotherapy in the metastatic setting and the availability of comprehensive genomic profiling using next-generation sequencing (NGS). Patients were included in the HRD-like group if demonstrated oncogenic or likely oncogenic alterations in HR-/DDR-genes. Clinical endpoints were compared between the HRD-like group and the non-HRD-like group. RESULTS Seventy-four patients were included, of whom 25 (33%) in the HRD-like group and 49 (66%) in the non-HRD group. With a median follow-up of 26.04 months (interquartile-range [IQR] 9.41-29.27) in the HRD-like group and of 22.48 months (IQR 16.86-40.53) in the non-HRD group, no PFS difference emerged, with a mPFS of 5.18 months in the HRD-like group compared to 6.04 months in the non-HRD group (hazard ratio [HR], 1.017, 95% CI 0.58-1.78; P = .95). No differences were observed in DCR (64% [95 CI 45%-83%] vs 73% [95 CI 61%-86%]; P = .4), and CBR (45% [95% CI 28%-73%] vs 50% [95% CI, 37%-68%]; P = .9) between the HRD-like group and non-HRD groups, respectively. Median OS did not statistically differ between the HRD-like group and non-HRD group (26.7 vs 18.0 months, respectively; HR, 0.670, 0.33 to 1.37, P = .27). CONCLUSION HR-/DDR-genes, when assessed with regular tumor-only NGS panels, provide limited clinical validity to identify patients with BTC more likely to benefit from platinum-based chemotherapy.
Collapse
Affiliation(s)
- Carmen Belli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Matteo Repetto
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
- Early Drug Development Service, Memorial Sloan-Kettering Cancer Center, New York 10065, United States
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Raimondo Scalia
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, Naples 80147, Italy
| | - Jessica Orefice
- Medical Oncology Unit, Ospedale del Mare, Naples 80147, Italy
| | - Liliana Ascione
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Gloria Pellizzari
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, Naples 80147, Italy
| | - Elena Guerini-Rocco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| |
Collapse
|
9
|
Remiszewski P, Topolewski P, Łaski D, Drobińska A. Outcomes of Liver Transplantation with Incidental Intrahepatic Cholangiocarcinoma-Own Experience and a Systematic Review. J Clin Med 2024; 13:4303. [PMID: 39124571 PMCID: PMC11313440 DOI: 10.3390/jcm13154303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Cholangiocarcinoma, the second most common primary liver cancer, is still a contraindication for performing liver transplantation in most patients. Despite various trials being performed in large clinical centers, the results are still not satisfactory. The aim of this study was to present cases from our own cohort and perform a systematic review of the results of liver transplantation in patients with incidental intrahepatic cholangiocarcinoma. Materials and methods: We retrospectively reviewed the records of all patients who underwent liver transplantation and identified two patients with incidental intrahepatic cholangiocarcinoma via histopathological examination of the explanted liver. The results of radiological and biochemical screening performed during liver transplantation, standardized histopathological examination and follow-up data are presented. Additionally, a systematic review of PubMed and Cochrane Reviews based on the PRISMA protocol was performed, yielding 413 similar cases. Results: We present two cases of incidental intrahepatic cholangiocarcinoma found after liver transplantation. The patients were managed according to a standard protocol with no consecutive modification of immunosuppression or chemotherapy. There was no recurrence or mortality. In this systematic review, the mean reported number of lesions ranged between 1 and 2 per patient. A total of 42 recurrences were reported. The percentage of recurrences ranged between 28.6% and 80%. Conclusions: Despite not being a frequent finding, follow-up and further treatment of patients with incidental iCCA should be reported and analyzed. Extra carefulness in screening is advised in patients who are already diagnosed with oncological disease of the liver. In long-term follow-up, recurrence of the disease is rather probable.
Collapse
Affiliation(s)
- Piotr Remiszewski
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.T.); (D.Ł.); (A.D.)
| | | | | | | |
Collapse
|
10
|
Chick RC, Ruff SM, Pawlik TM. Factors associated with prognosis and staging of intrahepatic cholangiocarcinoma. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a relatively rare but aggressive primary liver cancer with a poor prognosis. A number of established clinical and pathologic factors correlate with prognosis, and this is reflected in the American Joint Committee on Cancer (AJCC) 8th Edition staging manual. Researchers have identified areas for improvement in staging and prognostication of ICC using more nuanced tools, including serum biomarkers, molecular profiling, immunophenotyping, and multimodal prognostic scoring systems. These data have led to proposals of novel staging systems that attempt to improve the correlation between stage and prognosis. More accurate staging tools may aid in treatment decisions that are tailored to each individual patient, to maximize therapy for individuals most likely to benefit and to avoid unnecessary toxicity and decision regret in those for whom aggressive treatment is unlikely to alter outcomes. Artificial intelligence and machine learning may help researchers develop new models that predict outcomes with more accuracy and precision.
Collapse
|
11
|
Kendall T, Overi D, Guido M, Braconi C, Banales J, Cardinale V, Gaudio E, Groot Koerkamp B, Carpino G. Recommendations on maximising the clinical value of tissue in the management of patients with intrahepatic cholangiocarcinoma. JHEP Rep 2024; 6:101067. [PMID: 38699072 PMCID: PMC11060959 DOI: 10.1016/j.jhepr.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 05/05/2024] Open
Abstract
Background & Aims Patients with intrahepatic cholangiocarcinoma can now be managed with targeted therapies directed against specific molecular alterations. Consequently, tissue samples submitted to the pathology department must produce molecular information in addition to a diagnosis or, for resection specimens, staging information. The pathologist's role when evaluating these specimens has therefore changed to accommodate such personalised approaches. Methods We developed recommendations and guidance for pathologists by conducting a systematic review of existing guidance to generate candidate statements followed by an international Delphi process. Fifty-nine pathologists from 28 countries in six continents rated statements mapped to all elements of the specimen pathway from receipt in the pathology department to authorisation of the final written report. A separate survey of 'end-users' of the report including surgeons, oncologists, and gastroenterologists was undertaken to evaluate what information should be included in the written report to enable appropriate patient management. Results Forty-eight statements reached consensus for inclusion in the guidance including 10 statements about the content of the written report that also reached consensus by end-user participants. A reporting proforma to allow easy inclusion of the recommended data points was developed. Conclusions These guiding principles and recommendations provide a framework to allow pathologists reporting on patients with intrahepatic cholangiocarcinoma to maximise the informational yield of specimens required for personalised patient management. Impact and Implications Biopsy or resection lesional tissue from intrahepatic cholangiocarcinoma must yield information about the molecular abnormalities within the tumour that define suitability for personalised therapies in addition to a diagnosis and staging information. Here, we have developed international consensus guidance for pathologists that report such cases using a Delphi process that sought the views of both pathologists and 'end-users of pathology reports. The guide highlights the need to report cases in a way that preserves tissue for molecular testing and emphasises that reporting requires interpretation of histological characteristics within the broader clinical and radiological context. The guide will allow pathologists to report cases of intrahepatic cholangiocarcinoma in a uniform manner that maximises the value of the tissue received to facilitate optimal multidisciplinary patient management.
Collapse
Affiliation(s)
- Timothy Kendall
- University of Edinburgh Centre for Inflammation Research and Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Guido
- Department of Medicine, DIMED, University of Padua, Padua, Italy
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, CRUK Scotland Cancer Centre, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Jesus Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, CIBERehd and University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Komuta M. Intrahepatic cholangiocarcinoma: histological diversity and the role of the pathologist. JOURNAL OF LIVER CANCER 2024; 24:17-22. [PMID: 38171533 PMCID: PMC10990672 DOI: 10.17998/jlc.2023.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is one of the primary liver cancers and presents with tumor heterogeneity. About 50% of iCCAs comprise actionable mutations, which completely change patient management. In addition, the precise diagnosis of iCCA, including subtype, has become crucial, and pathologists play an important role in this regard. This review focuses on iCCA heterogeneity; looking at different perspectives to guide diagnosis and optimal treatment choice.
Collapse
Affiliation(s)
- Mina Komuta
- Department of Pathology, International University of Health and Welfare School of Medicine, IUHW Narita Hospital, Chiba, Japan
| |
Collapse
|
13
|
Olkus A, Tomczak A, Berger AK, Rauber C, Puchas P, Wehling C, Longerich T, Mehrabi A, Chang DH, Liermann J, Schäfer S, Pfeiffenberger J, Jäger D, Michl P, Springfeld C, Dill MT. Durvalumab Plus Gemcitabine and Cisplatin in Patients with Advanced Biliary Tract Cancer: An Exploratory Analysis of Real-World Data. Target Oncol 2024; 19:213-221. [PMID: 38416377 DOI: 10.1007/s11523-024-01044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The combination of gemcitabine and cisplatin (gem/cis) with the anti-PD-L1-antibody durvalumab was recently approved as first line therapy for biliary tract cancer (BTC) based on the results of the TOPAZ-1 trial. OBJECTIVE We aim to analyse the feasibility and efficacy of the triple combination therapy in patients with BTC in a real-world setting and in correspondence with the genetic alterations of the cancer. METHODS In this single-centre retrospective analysis, all patients with BTC and treated with durvalumab plus gem/cis from April 2022 to September 2023 were included. Survival and treatment response were investigated, within the context of the inclusion and exclusion criteria of TOPAZ-1 and in correspondence with genetic alterations of the cancer. RESULTS In total, 35 patients, of which 51% met the inclusion criteria of the TOPAZ-1 trial, were analysed. Patients treated within TOPAZ-1 criteria did not have a significantly different median overall survival and progression free survival than the rest of the patients (10.3 versus 9.7 months and 5.3 versus 5 months, respectively). The disease control rate of patients within the TOPAZ-1 criteria was 61.1%, in comparison to 58.8% in the rest of patients. A total of 51 grade 3 and 4 adverse events were observed without significant differences in the subgroups. No specific correlating patterns of genetic alterations with survival and response were observed. CONCLUSIONS The treatment of advanced patients with BTC with durvalumab and gem/cis, even beyond the inclusion criteria of the TOPAZ-1 trial, shows promising safety.
Collapse
Affiliation(s)
- Alexander Olkus
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Aurelie Tomczak
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Katrin Berger
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Conrad Rauber
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Philip Puchas
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Cyrill Wehling
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - De-Hua Chang
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jakob Liermann
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sophia Schäfer
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cancer Registry, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Pfeiffenberger
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Michl
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Michael T Dill
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- Liver Cancer Center Heidelberg, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, Research Group Experimental Hepatology, Inflammation and Cancer, Heidelberg, Germany.
| |
Collapse
|
14
|
Schönherr H, Ayaz P, Taylor AM, Casaletto JB, Touré BB, Moustakas DT, Hudson BM, Valverde R, Zhao S, O’Hearn PJ, Foster L, Sharon DA, Garfinkle S, Giordanetto F, Lescarbeau A, Kurukulasuriya R, Gerami-Moayed N, Maglic D, Bruderek K, Naik G, Gunaydin H, Mader MM, Boezio AA, McLean TH, Chen R, Wang Y, Shaw DE, Watters J, Bergstrom DA. Discovery of lirafugratinib (RLY-4008), a highly selective irreversible small-molecule inhibitor of FGFR2. Proc Natl Acad Sci U S A 2024; 121:e2317756121. [PMID: 38300868 PMCID: PMC10861881 DOI: 10.1073/pnas.2317756121] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/23/2023] [Indexed: 02/03/2024] Open
Abstract
Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rongfeng Chen
- Pharmaron Beijing Co., Ltd., Beijing100176, People’s Republic of China
| | - Yanxia Wang
- Pharmaron Beijing Co., Ltd., Beijing100176, People’s Republic of China
| | - David E. Shaw
- D. E. Shaw Research, New York, NY10036
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY10032
| | | | | |
Collapse
|
15
|
Longerich T, Stenzinger A, Schirmacher P. Molecular diagnostics of hepatobiliary and pancreatic neoplasias. Virchows Arch 2024; 484:263-272. [PMID: 38429607 PMCID: PMC10948571 DOI: 10.1007/s00428-024-03744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Neoplasias of the hepatopancreatobiliary tract are growing in numbers, have the poorest prognosis of all major cancer entities, and thus represent a rising clinical problem. Their molecular diagnostic has dramatically improved, contributing to tumor subtyping, definition of malignancy, and uncovering cases with hereditary predisposition. Most of all, predictive molecular testing allows to identify cases amenable to treatment with the rising number of approved targeted drugs, immune-oncological treatment, and clinical trials. In this review, the current state of molecular testing and its contribution to clinical decision-making are outlined.
Collapse
Affiliation(s)
- T Longerich
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69118, Heidelberg, Germany
| | - A Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69118, Heidelberg, Germany
| | - P Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69118, Heidelberg, Germany.
| |
Collapse
|
16
|
Stenzinger A, Vogel A, Lehmann U, Lamarca A, Hofman P, Terracciano L, Normanno N. Molecular profiling in cholangiocarcinoma: A practical guide to next-generation sequencing. Cancer Treat Rev 2024; 122:102649. [PMID: 37984132 DOI: 10.1016/j.ctrv.2023.102649] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Cholangiocarcinomas (CCA) are a heterogeneous group of tumors that are classified as intrahepatic, perihilar, or distal according to the anatomic location within the biliary tract. Each CCA subtype is associated with distinct genomic alterations, including single nucleotide variants, copy number variants, and chromosomal rearrangements or gene fusions, each of which can influence disease prognosis and/or treatment outcomes. Molecular profiling using next-generation sequencing (NGS) is a powerful technique for identifying unique gene variants carried by an individual tumor, which can facilitate their accurate diagnosis as well as promote the optimal selection of gene variant-matched targeted treatments. NGS is particularly useful in patients with CCA because between one-third and one-half of these patients have genomic alterations that can be targeted by drugs that are either approved or in clinical development. NGS can also provide information about disease evolution and secondary resistance alterations that can develop during targeted therapy, and thus facilitate assessment of prognosis and choice of alternative targeted treatments. Pathologists play a critical role in assessing the viability of biopsy samples for NGS, and advising treating clinicians whether NGS can be performed and which of the available platforms should be used to optimize testing outcomes. This review aims to provide clinical pathologists and other healthcare professionals with practical step-by-step guidance on the use of NGS for molecular profiling of patients with CCA, with respect to tumor biopsy techniques, pre-analytic sample preparation, selecting the appropriate NGS panel, and understanding and interpreting results of the NGS test.
Collapse
Affiliation(s)
- Albrecht Stenzinger
- Institute of Pathology Heidelberg (IPH), Center for Molecular Pathology, University Hospital Heidelberg, In Neuenheimer Feld 224, 69120 Heidelberg, Building 6224, Germany.
| | - Arndt Vogel
- Division of Gastroenterology and Hepatology, Toronto General Hospital Medical Oncology, Princess Margaret Cancer Centre, Schwartz Reisman Liver Research Centre, 200 Elizabeth Street, Office: 9 EB 236 Toronto, ON, M5G 2C4, Canada.
| | - Ulrich Lehmann
- Institute for Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Angela Lamarca
- Department of Medical Oncology, Oncohealth Institute, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital, Av. de los Reyes Católicos, 2, 28040 Madrid, Spain; Department of Medical Oncology, The Christie NHS Foundation Trust, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, IHU RespirERA, Siège de l'Université: Grand Château, 28 Avenue de Valrose, 06103 Nice CEDEX 2, France.
| | - Luigi Terracciano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Alessandro Manzoni, 56, 20089 Rozzano, Milan, Italy.
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy.
| |
Collapse
|
17
|
Andraus W, Tustumi F, de Meira Junior JD, Pinheiro RSN, Waisberg DR, Lopes LD, Arantes RM, Rocha Santos V, de Martino RB, Carneiro D’Albuquerque LA. Molecular Profile of Intrahepatic Cholangiocarcinoma. Int J Mol Sci 2023; 25:461. [PMID: 38203635 PMCID: PMC10778975 DOI: 10.3390/ijms25010461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a relatively uncommon but highly aggressive primary liver cancer that originates within the liver. The aim of this study is to review the molecular profile of intrahepatic cholangiocarcinoma and its implications for prognostication and decision-making. This comprehensive characterization of ICC tumors sheds light on the disease's underlying biology and offers a foundation for more personalized treatment strategies. This is a narrative review of the prognostic and therapeutic role of the molecular profile of ICC. Knowing the molecular profile of tumors helps determine prognosis and support certain target therapies. The molecular panel in ICC helps to select patients for specific therapies, predict treatment responses, and monitor treatment responses. Precision medicine in ICC can promote improvement in prognosis and reduce unnecessary toxicity and might have a significant role in the management of ICC in the following years. The main mutations in ICC are in tumor protein p53 (TP53), Kirsten rat sarcoma virus (KRAS), isocitrate dehydrogenase 1 (IDH1), and AT-rich interactive domain-containing protein 1A (ARID1A). The rate of mutations varies significantly for each population. Targeting TP53 and KRAS is challenging due to the natural characteristics of these genes. Different stages of clinical studies have shown encouraging results with inhibitors of mutated IDH1 and target therapy for ARID1A downstream effectors. Fibroblast growth factor receptor 2 (FGFR2) fusions are an important target in patients with ICC. Immune checkpoint blockade can be applied to a small percentage of ICC patients. Molecular profiling in ICC represents a groundbreaking approach to understanding and managing this complex liver cancer. As our comprehension of ICC's molecular intricacies continues to expand, so does the potential for offering patients more precise and effective treatments. The integration of molecular profiling into clinical practice signifies the dawn of a new era in ICC care, emphasizing personalized medicine in the ongoing battle against this malignancy.
Collapse
Affiliation(s)
| | - Francisco Tustumi
- Department of Gastroenterology, Transplantation Unit, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chao J, Wang S, Wang H, Zhang N, Wang Y, Yang X, Zhu C, Ning C, Zhang X, Xue J, Zhang L, Piao M, Wang M, Yang X, Lu L, Zhao H. Real-world cohort study of PD-1 blockade plus lenvatinib for advanced intrahepatic cholangiocarcinoma: effectiveness, safety, and biomarker analysis. Cancer Immunol Immunother 2023; 72:3717-3726. [PMID: 37787790 PMCID: PMC10991235 DOI: 10.1007/s00262-023-03523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND In clinical practice, some patients with advanced intrahepatic cholangiocarcinoma (ICC) cannot tolerate or refuse chemotherapy due to the toxicity, necessitating alternative treatments. PD-1 blockade combined with lenvatinib showed promising results in phase II studies with small sample size, but there is a lack of data on the routine use with this regimen. This study aimed to evaluate the effectiveness and safety of the regimen in patients with advanced ICC, and to identify predictors for treatment response and prognosis. METHODS We conducted a retrospective cohort study of patients treated with PD-1 inhibitors plus lenvatinib for advanced ICC between July 2017 and August 2022. The study endpoints were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety. Biomarker analysis for CA19-9 and PD-L1 expression was performed. Exploratory analysis for genetic alternation was conducted. RESULTS The study included 103 patients. It demonstrated a median PFS of 5.9 months and a median OS of 11.4 months. ORR was 18.4% and DCR was 80.6%. The incidence of grade 3 or 4 adverse events was 50.5%. Positive PD-L1 expression (TPS ≥ 1%) was associated with higher ORR (P = 0.013) and prolonged PFS (P = 0.023). Elevated CA19-9 (> 37 U/ml) was associated with decreased ORR (P = 0.019), poorer PFS (P = 0.005) and OS (P = 0.034). Patients with IDH1 mutations exhibited a favorable response to the treatment (P = 0.011), and patients with TP53 mutations tended to have worse OS (P = 0.031). CONCLUSIONS PD-1 blockade plus lenvatinib is effective and safe in routine practice. PD-L1 expression and CA19-9 level appear to predict the treatment efficacy. IDH1 mutations might indicate a better treatment response. CLINICAL TRIAL REGISTRATION NCT03892577.
Collapse
Affiliation(s)
- Jiashuo Chao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Nanjing, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Nanjing, China
| | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yunchao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Chengpei Zhu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Cong Ning
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinmu Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jingnan Xue
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Longhao Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingming Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Nanjing, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ling Lu
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Nanjing, China.
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
19
|
Doleschal B, Taghizadeh H, Webersinke G, Piringer G, Schreil G, Decker J, Aichberger KJ, Kirchweger P, Thaler J, Petzer A, Schmitt CA, Prager GW, Rumpold H. Real world evidence reveals improved survival outcomes in biliary tract cancer through molecular matched targeted treatment. Sci Rep 2023; 13:15421. [PMID: 37723192 PMCID: PMC10507096 DOI: 10.1038/s41598-023-42083-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Biliary tract cancers are rare cancers with poor prognosis due to a lack of therapeutic options, especially after the failure of first-line systemic treatment. Targeted treatments for this clinical situation are promising and have entered clinical practice. We aimed to describe the overall survival of matched targeted treatment after first-line treatment in patients with biliary tract cancers in an Austrian real-world multicenter cohort. We performed a multicenter retrospective chart review of patients with biliary tract cancer between September 2015 and January 2022. Data, including comprehensive molecular characteristics-next generation sequencing (NGS) and immunohistochemistry (IHC), clinical history, surgical procedures, ablative treatments, patient history, and systemic chemotherapy, were extracted from the records of the participating institutions. Targeted treatment was matched according to the ESMO scale for the clinical actionability of molecular targets (ESCAT). We identified 159 patients with the available molecular characteristics. A total of 79 patients underwent second-line treatment. Of these, 36 patients received matched targeted treatment beyond the first-line and were compared with 43 patients treated with cytotoxic chemotherapy in terms of efficacy outcomes. For Tier I/II alterations, we observed a progression free survival ratio (PFStargeted/PFSpre-chemotherapy) of 1.86, p = 0.059. The overall survival for patients receiving at least two lines of systemic treatment significantly favored the targeted approach, with an overall survival of 22.3 months (95% CI 14.7-29.3) vs. 17.5 months (95% CI 1.7-19.8; p = 0.048). Our results underscore the value of targeted treatment approaches based on extended molecular characterization of biliary tract cancer to improve clinical outcomes.
Collapse
Affiliation(s)
- Bernhard Doleschal
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology, and Medical Oncology, Ordensklinikum Linz, Seilerstaette 4, 4010, Linz, Austria.
| | - Hossein Taghizadeh
- Department of Internal Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Gerald Webersinke
- Laboratory for Molecular Genetic Diagnostics, Ordensklinikum Linz, Linz, Austria
| | - Gudrun Piringer
- Department of Oncology and Hematology, Kepler University Clinic Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Georg Schreil
- Department of Internal Medicine, State Hospital Pyhrn Eisenwurzen, Steyr, Austria
| | - Jörn Decker
- Department of Internal Medicine, State Hospital Rohrbach, Rohrbach, Austria
| | - Karl J Aichberger
- Department of Internal Medicine, State Hospital Rohrbach, Rohrbach, Austria
| | - Patrick Kirchweger
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Department of General and Visceral Surgery, Ordensklinikum Linz, Linz, Austria
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz, Austria
| | - Josef Thaler
- Department of Internal Medicine IV, Hospital Wels-Grieskirchen, Wels, Austria
| | - Andreas Petzer
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology, and Medical Oncology, Ordensklinikum Linz, Seilerstaette 4, 4010, Linz, Austria
| | - Clemens A Schmitt
- Department of Oncology and Hematology, Kepler University Clinic Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Gerald W Prager
- Division of Oncology, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Holger Rumpold
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz, Austria
| |
Collapse
|
20
|
Zhang D, Dorman K, Heinrich K, Weiss L, Boukovala M, Haas M, Greif PA, Ziemann F, Beyer G, Roessler D, Goni E, Renz B, D'Haese JG, Kunz WG, Seidensticker M, Corradini S, Niyazi M, Ormanns S, Kumbrink J, Jung A, Mock A, Rudelius M, Klauschen F, Werner J, Mayerle J, von Bergwelt-Baildon M, Boeck S, Heinemann V, Westphalen CB. A Retrospective Analysis of Biliary Tract Cancer Patients Presented to the Molecular Tumor Board at the Comprehensive Cancer Center Munich. Target Oncol 2023; 18:767-776. [PMID: 37594677 PMCID: PMC10517894 DOI: 10.1007/s11523-023-00985-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND AND OBJECTIVE With the rising importance of precision oncology in biliary tract cancer (BTC), the aim of this retrospective single-center analysis was to describe the clinical and molecular characteristics of patients with BTC who underwent comprehensive genomic profiling (CGP) and were discussed in the CCCMunichLMU molecular tumor board (MTB). PATIENTS AND METHODS In this single-center observational study, we included BTC patients with intrahepatic cholangiocarcinoma (iCCA), extrahepatic CCA (eCCA), and gallbladder cancer (GB), who had been discussed in the institutional MTB from May 29, 2017, to July 25, 2022. Patients were followed up until 31 January 2023. Data were retrospectively collected by review of medical charts, and MTB recommendation. RESULTS In total, 153 cases were registered to the MTB with a median follow-up of 15 months. Testing was successful in 81.7% of the patients. CGP detected targetable alterations in 35.3% of our BTC patients (most commonly ARID1A/ERBB2/IDH1/PIK3CA/BRAF-mutations and FGFR2-fusions). Recommendations for molecularly guided therapy were given in 46.4%. Of those, treatment implementation of targeted therapy followed in 19.4%. In patients receiving the recommended treatment, response rate was 57% and median overall survival was 19 months (vs 8 months in the untreated cohort). The progression-free survival ratio of 1.45 suggest a clinical benefit of molecularly guided treatment. CONCLUSIONS In line with previous work, our series demonstrates feasibility and clinical utility of comprehensive genomic profiling in BTC patients. With the growing number of targeted agents with clinical activity in BTC, CGP should become standard of care in the management of this group of patients.
Collapse
Affiliation(s)
- Danmei Zhang
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Klara Dorman
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena Weiss
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Myrto Boukovala
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Haas
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Philipp A Greif
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Frank Ziemann
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Georg Beyer
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Roessler
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Elisabetta Goni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Bernhard Renz
- Department of General, Visceral and Transplant Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral and Transplant Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | | | - Jörg Kumbrink
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Pathology, LMU Munich, Munich, Germany
| | - Andreas Jung
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Pathology, LMU Munich, Munich, Germany
| | - Andreas Mock
- Institute of Pathology, LMU Munich, Munich, Germany
| | | | - Frederick Klauschen
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Pathology, LMU Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Stefan Boeck
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Volker Heinemann
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - C Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Center, University Hospital, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
21
|
He H, Guo J, Hu Y, Zhang H, Li X, Zhang J, Jin S. Saikosaponin D reverses epinephrine- and norepinephrine-induced gemcitabine resistance in intrahepatic cholangiocarcinoma by downregulating ADRB2/glycolysis signaling. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1404-1414. [PMID: 37489008 PMCID: PMC10520481 DOI: 10.3724/abbs.2023040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly fatal malignancy with rapidly increasing incidence and mortality worldwide. Currently, gemcitabine-based systemic chemotherapy is the main clinical therapeutic regimen; however, its efficacy is poor, and its mechanism has not been elucidated. In this study, we use a Seahorse Extracellular Flux analyser to measure glycolysis capacity (extracellular acidification rate, ECAR) and oxygen consumption rate (OCR). The glucose uptake or lactic acid content is detected, and the effects of saikosaponin D, an active compound derived from Bupleuri Radix (a traditional Chinese medicine for soothing the liver and relieving depression), on gemcitabine cytotoxicity in norepinephrine-stimulated iCCA cells are analysed. We find that adrenergic signaling plays a fundamental role in chronic stress-induced therapeutic resistance in iCCA. Norepinephrine (NE) and epinephrine (E) enhance the proliferation of iCCA cells and interfere with the response to gemcitabine through activation of the β2-adrenergic receptor (ADRB2). Furthermore, we find that NE upregulates the expressions of several drug efflux-related genes (such as ABCG2 and MDR1) and promotes glycolysis in iCCA cells. In addition, saikosaponin D reverses the poor response of iCCA cells to gemcitabine by downregulating ADRB2 level. Furthermore, saikosaponin D inhibits drug efflux and glycolysis in iCCA cells by regulating the expressions of MDR1, ABCG2, HK2, and GLUT1. Collectively, saikosaponin D enhances the antitumor effect of gemcitabine by controlling glucose metabolism and drug efflux by inhibiting the ADRB2 signaling. Therefore, the combination of saikosaponin D and gemcitabine may be a potential therapeutic strategy for the treatment of iCCA.
Collapse
Affiliation(s)
- Hui He
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Jiaqi Guo
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Yunxiang Hu
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Han Zhang
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Xinyang Li
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Jian Zhang
- Department of Interventional Therapy, the First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Shi Jin
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| |
Collapse
|
22
|
Peng J, Fang S, Li M, Liu Y, Liang X, Li Z, Chen G, Peng L, Chen N, Liu L, Xu X, Dai W. Genetic alterations of KRAS and TP53 in intrahepatic cholangiocarcinoma associated with poor prognosis. Open Life Sci 2023; 18:20220652. [PMID: 37483430 PMCID: PMC10358752 DOI: 10.1515/biol-2022-0652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
The aim of this study is to investigate certain genetic features of intrahepatic cholangiocarcinoma (ICCA). A total of 12 eligible ICCA patients were enrolled, and tumor tissues from the patients were subjected to next-generation sequencing of a multi-genes panel. Tumor mutation burden (TMB), mutated genes, copy number variants (CNVs), and pathway enrichment analysis were performed. The median TMB was 2.76 Mutation/Mb (range, 0-36.62 Mutation/Mb) in ICCA patients. The top two most commonly mutated genes in ICCA were KRAS (33%) and TP53 (25%). The co-mutations of KRAS and TP53 were 16.7% (2/12) in ICCA patients. Notably, patient P6 with the highest TMB did not have KRAS and TP53 mutations. Additionally, TP53 and/or KRAS alterations were significantly associated with poor progression-free survival than those with wild type (1.4 months vs 18 months). DNA damage repair and homologs recombinant repair deficiencies were significantly associated with high TMB in ICCA cases. In conclusion, we found that certain genetic mutations of TP53 and KRAS could predict poor prognosis in ICCA patients.
Collapse
Affiliation(s)
- Jianbo Peng
- Foshan Traditional Chinese Medicine Hospital, Guangdong, 518000, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, China
| | - Meisheng Li
- Foshan First People’s Hospital, Guangdong, 518000, China
| | - Yuxin Liu
- Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Xiaolu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Zuobiao Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Gaohui Chen
- Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Lijiao Peng
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Nianping Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Lei Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Wei Dai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
23
|
Kinzler MN, Jeroch J, Klasen C, Himmelsbach V, Koch C, Finkelmeier F, Trojan J, Zeuzem S, Pession U, Reis H, Demes MC, Wild PJ, Walter D. Impact of IDH1 mutation on clinical course of patients with intrahepatic cholangiocarcinoma: a retrospective analysis from a German tertiary center. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04603-7. [PMID: 36757619 DOI: 10.1007/s00432-023-04603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE IDH1 mutation is a known biomarker for targeted therapy of intrahepatic cholangiocarcinoma (iCCA), while its prognostic relevance for current palliative chemotherapy is still unclear. Aim of this study was to analyze clinicopathological characteristics of patients with IDH1 mutations and to outline a potential impact on the outcome after state-of-the-art palliative chemotherapy regimens. METHODS All patients with iCCA receiving large panel molecular profiling and follow-up treatment at Frankfurt University Hospital until 04/2022 were retrospectively analyzed. Clinicopathological characteristics were assessed for IDH1 mutated (mut) and IDH1 wild type (wt) patients, and progression-free survival (PFS) and overall survival (OS) were determined. RESULTS In total, 75 patients with iCCA received molecular profiling. Of the patients with available DNA data, pathogenic mutations in IDH1 were found in 14.5% (n = 10). IDH1 mut status was associated with lower serum CA-19/9 (p = 0.023), lower serum lactate dehydrogenase (p = 0.006), and a higher proportion of primary resectability (p = 0.028) as well as response to chemotherapy after recurrence (p = 0.009). Median PFS was 5.9 months (95% CI 4.4-7.3 months) for IDH1 wt in comparison to 9.8 months (95% CI 7.7-12 months) for patients with IDH1 mut (p = 0.031). IDH1 wt was a significant risk factor for shortened PFS in univariate (p = 0.043), but not in multivariate analysis (p = 0.061). There was no difference in OS between both groups. CONCLUSION Patients with IDH1 mutated iCCA seem to have a favorable tumor biology including a longer PFS for palliative chemotherapy regimens compared to IDH1 wild type.
Collapse
Affiliation(s)
- Maximilian N Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Jan Jeroch
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Christina Klasen
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Vera Himmelsbach
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Christine Koch
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Jörg Trojan
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Ursula Pession
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Melanie C Demes
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt Am Main, Germany.,Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Dirk Walter
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| |
Collapse
|
24
|
Neumann O, Lehmann U, Bartels S, Pfarr N, Albrecht T, Ilm K, Christmann J, Volckmar A, Goldschmid H, Kirchner M, Allgäuer M, Walker M, Kreipe H, Tannapfel A, Weichert W, Schirmacher P, Kazdal D, Stenzinger A. First proficiency testing for NGS-based and combined NGS- and FISH-based detection of FGFR2 fusions in intrahepatic cholangiocarcinoma. J Pathol Clin Res 2023; 9:100-107. [PMID: 36635225 PMCID: PMC9896158 DOI: 10.1002/cjp2.308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
Intrahepatic cholangiocarcinoma harbours druggable genetic lesions including FGFR2 gene fusions. Reliable and accurate detection of these fusions is becoming a critical component of the molecular work-up, but real-world data on the performance of fluorescence in situ hybridisation (FISH) and targeted RNA-based next-generation sequencing (NGS) are very limited. Bridging this gap, we report results of the first round robin test for FGFR2 fusions in cholangiocarcinoma and contextualise test data with genomic architecture. A cohort of 10 cholangiocarcinoma (4 fusion positive and 6 fusion negative) was tested by the Institute of Pathology, University Hospital Heidelberg, Germany. Data were validated by four academic pathology departments in Germany. Fusion-positive cases comprised FGFR2::BICC1, FGFR2::DBP, FGFR2::TRIM8, and FGFR2::ATE1 fusions. In a second step, a round robin test involving 21 academic and non-academic centres testing with RNA-based NGS approaches was carried out; five participants performed FISH testing in addition. Thirteen of 16 (81%) centres successfully passed the NGS only and 3 of 5 (60%) centres passed the combined NGS + FISH round robin test. Identified obstacles were bioinformatic pipelines not optimised for the detection of FGFR2 fusions and assays not capable of detecting unknown fusion partners. This study shows the benefit of targeted RNA-NGS for the detection of FGFR2 gene fusions. Due to the marked heterogeneity of the genomic architecture of these fusions, fusion partner agnostic (i.e. open) methodological approaches that are capable of identifying yet unknown fusion partners are superior. Furthermore, we highlight pitfalls in subsequent bioinformatic analysis and limitations of FISH-based tests.
Collapse
Affiliation(s)
- Olaf Neumann
- Institut für PathologieUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Ulrich Lehmann
- Institut für PathologieMedizinische Hochschule HannoverHannoverGermany
| | - Stephan Bartels
- Institut für PathologieMedizinische Hochschule HannoverHannoverGermany
| | - Nicole Pfarr
- Institut für PathologieTechnische Universität MünchenMunichGermany,German Cancer Consortium (DKTK)HeidelbergGermany
| | - Thomas Albrecht
- Institut für PathologieUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Katharina Ilm
- Qualitätssicherungs‐Initiative Pathologie, QuIP GmbHBerlinGermany
| | | | | | - Hannah Goldschmid
- Institut für PathologieUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Martina Kirchner
- Institut für PathologieUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Michael Allgäuer
- Institut für PathologieUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Maria Walker
- Institut für PathologieTechnische Universität MünchenMunichGermany
| | - Hans Kreipe
- Institut für PathologieMedizinische Hochschule HannoverHannoverGermany
| | | | - Wilko Weichert
- Institut für PathologieTechnische Universität MünchenMunichGermany,German Cancer Consortium (DKTK)HeidelbergGermany
| | - Peter Schirmacher
- Institut für PathologieUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Daniel Kazdal
- Institut für PathologieUniversitätsklinikum HeidelbergHeidelbergGermany
| | | |
Collapse
|
25
|
BAP1 and PTEN mutations shape the immunological landscape of clear cell renal cell carcinoma and reveal the intertumoral heterogeneity of T cell suppression: a proof-of-concept study. Cancer Immunol Immunother 2022; 72:1603-1618. [PMID: 36562826 DOI: 10.1007/s00262-022-03346-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is an immunologically vulnerable tumor entity, and immune checkpoint inhibitors are now widely used to treat patients with advanced disease. Whether and to what extent immune responses in ccRCC are shaped by genetic alterations, however, is only beginning to emerge. In this proof-of-concept study, we performed a detailed correlative analysis of the mutational and immunological landscapes in a series of 23 consecutive kidney cancer patients. We discovered that a high infiltration with CD8 + T cells was not dependent on the number of driver mutations but rather on the presence of specific mutational events, namely pathogenic mutations in PTEN or BAP1. This observation encouraged us to compare mechanisms of T cell suppression in the context of four different genetic patterns, i.e., the presence of multiple drivers, a PTEN or BAP1 mutation, or the absence of detectable driver mutations. We found that ccRCCs harboring a PTEN or BAP1 mutation showed the lowest level of Granzyme B positive tumor-infiltrating lymphocytes (TILs). A multiplex immunofluorescence analysis revealed a significant number of CD8 + TILs in the vicinity of CD68 + macrophages/monocytes in the context of a BAP1 mutation but not in the context of a PTEN mutation. In line with this finding, direct interactions between CD8 + TILs and CD163 + M2-polarized macrophages were found in BAP1-mutated ccRCC but not in tumors with other mutational patterns. While an absence of driver mutations was associated with more CD8 + TILs in the vicinity of FOXP3 + Tregs and CD68 + monocytes/macrophages, the presence of multiple driver mutations was, to our surprise, not found to be strongly associated with immunosuppressive mechanisms. Our results highlight the role of genetic alterations in shaping the immunological landscape of ccRCC. We discovered a remarkable heterogeneity of mechanisms that can lead to T cell suppression, which supports the need for personalized immune oncological approaches.
Collapse
|