1
|
McCann T, Sundaramurthi H, Walsh C, Virdi S, Alvarez Y, Sapetto-Rebow B, Collery RF, Carter SP, Moran A, Mulholland R, O'Connor JJ, Taylor MR, Rauch N, Starostik MR, English MA, Swaroop A, Geisler R, Reynolds AL, Kennedy BN. Emc1 is essential for vision and zebrafish photoreceptor outer segment morphogenesis. FASEB J 2024; 38:e70086. [PMID: 39360639 DOI: 10.1096/fj.202401977r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Inherited retinal diseases (IRDs) are a rare group of eye disorders characterized by progressive dysfunction and degeneration of retinal cells. In this study, we characterized the raifteirí (raf) zebrafish, a novel model of inherited blindness, identified through an unbiased ENU mutagenesis screen. A mutation in the largest subunit of the endoplasmic reticulum membrane protein complex, emc1 was subsequently identified as the causative raf mutation. We sought to elucidate the cellular and molecular phenotypes in the emc1-/- knockout model and explore the association of emc1 with retinal degeneration. Visual behavior and retinal electrophysiology assays demonstrated that emc1-/- mutants had severe visual impairments. Retinal histology and morphometric analysis revealed extensive abnormalities, including thinning of the photoreceptor layer, in addition to large gaps surrounding the lens. Notably, photoreceptor outer segments were drastically smaller, outer segment protein expression was altered and hyaloid vasculature development was disrupted. Transcriptomic profiling identified cone and rod-specific phototransduction genes significantly downregulated by loss of emc1. These data shed light on why emc1 is a causative gene in inherited retinal disease and how outer segment morphogenesis is regulated.
Collapse
Affiliation(s)
- Tess McCann
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ciara Walsh
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Sanamjeet Virdi
- Karlsruhe Institute of Technology (KIT) Institute of Biological and Chemical Systems -Biological Information Processing, Eggenstein-Leopoldshafen, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Yolanda Alvarez
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Beata Sapetto-Rebow
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ross F Collery
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
- Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin, USA
| | - Stephen P Carter
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ailis Moran
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ruth Mulholland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - John J O'Connor
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Michael R Taylor
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nora Rauch
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Milton A English
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert Geisler
- Karlsruhe Institute of Technology (KIT) Institute of Biological and Chemical Systems -Biological Information Processing, Eggenstein-Leopoldshafen, Germany
| | - Alison L Reynolds
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Peng L, Wang T. Histamine synthesis and transport are coupled in axon terminals via a dual quality control system. EMBO J 2024; 43:4472-4491. [PMID: 39242788 PMCID: PMC11480334 DOI: 10.1038/s44318-024-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024] Open
Abstract
Monoamine neurotransmitters generated by de novo synthesis are rapidly transported and stored into synaptic vesicles at axon terminals. This transport is essential both for sustaining synaptic transmission and for limiting the toxic effects of monoamines. Here, synthesis of the monoamine histamine by histidine decarboxylase (HDC) and subsequent loading of histamine into synaptic vesicles are shown to be physically and functionally coupled within Drosophila photoreceptor terminals. This process requires HDC anchoring to synaptic vesicles via interactions with N-ethylmaleimide-sensitive fusion protein 1 (NSF1). Disassociating HDC from synaptic vesicles disrupts visual synaptic transmission and causes somatic accumulation of histamine, which leads to retinal degeneration. We further identified a proteasome degradation system mediated by the E3 ubiquitin ligase, purity of essence (POE), which clears mislocalized HDC from the soma, thus eliminating the cytotoxic effects of histamine. Taken together, our results reveal a dual mechanism for translocation and degradation of HDC that ensures restriction of histamine synthesis to axonal terminals and at the same time rapid loading into synaptic vesicles. This is crucial for sustaining neurotransmission and protecting against cytotoxic monoamines.
Collapse
Affiliation(s)
- Lei Peng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
3
|
Leung M, Steinman J, Li D, Lor A, Gruesen A, Sadah A, van Kuijk FJ, Montezuma SR, Kondkar AA, Radhakrishnan R, Lobo GP. The Logistical Backbone of Photoreceptor Cell Function: Complementary Mechanisms of Dietary Vitamin A Receptors and Rhodopsin Transporters. Int J Mol Sci 2024; 25:4278. [PMID: 38673863 PMCID: PMC11050646 DOI: 10.3390/ijms25084278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this review, we outline our current understanding of the mechanisms involved in the absorption, storage, and transport of dietary vitamin A to the eye, and the trafficking of rhodopsin protein to the photoreceptor outer segments, which encompasses the logistical backbone required for photoreceptor cell function. Two key mechanisms of this process are emphasized in this manuscript: ocular and systemic vitamin A membrane transporters, and rhodopsin transporters. Understanding the complementary mechanisms responsible for the generation and proper transport of the retinylidene protein to the photoreceptor outer segment will eventually shed light on the importance of genes encoded by these proteins, and their relationship on normal visual function and in the pathophysiology of retinal degenerative diseases.
Collapse
Affiliation(s)
- Matthias Leung
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Jeremy Steinman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Dorothy Li
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Anjelynt Lor
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Andrew Gruesen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Ahmed Sadah
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Frederik J. van Kuijk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 12271, Saudi Arabia;
| | - Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (J.S.); (D.L.); (A.L.); (A.G.); (A.S.); (F.J.v.K.); (S.R.M.)
| |
Collapse
|
4
|
Sun K, Liu L, Jiang X, Wang H, Wang L, Yang Y, Liu W, Zhang L, Zhao X, Zhu X. The endoplasmic reticulum membrane protein complex subunit Emc6 is essential for rhodopsin localization and photoreceptor cell survival. Genes Dis 2024; 11:1035-1049. [PMID: 37692493 PMCID: PMC10492031 DOI: 10.1016/j.gendis.2023.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/17/2023] [Accepted: 03/29/2023] [Indexed: 09/12/2023] Open
Abstract
The endoplasmic reticulum (ER) membrane protein complex (EMC) is responsible for monitoring the biogenesis and synthetic quality of membrane proteins with tail-anchored or multiple transmembrane domains. The EMC subunit EMC6 is one of the core members of EMC and forms an enclosed hydrophilic vestibule in cooperation with EMC3. Despite studies demonstrating that deletion of EMC3 led to rhodopsin mislocalization in rod photoreceptors of mice, the precise mechanism leading to the failure of rhodopsin trafficking remains unclear. Here, we generated the first rod photoreceptor-specific knockout of Emc6 (RKO) and cone photoreceptor-specific knockout of Emc6 (CKO) mouse models. Deficiency of Emc6 in rod photoreceptors led to progressive shortening of outer segments (OS), impaired visual function, mislocalization and reduced expression of rhodopsin, and increased gliosis in rod photoreceptors. In addition, CKO mice displayed the progressive death of cone photoreceptors and abnormal localization of cone opsin protein. Subsequently, proteomics analysis of the RKO mouse retina illustrated that several cilium-related proteins, particularly anoctamin-2 (ANO2) and transmembrane protein 67 (TMEM67), were significantly down-regulated prior to OS degeneration. Detrimental rod photoreceptor cilia and mislocalized membrane disc proteins were evident in RKO mice. Our data revealed that in addition to monitoring the synthesis of rhodopsin-dominated membrane disc proteins, EMC6 also impacted rod photoreceptors' ciliogenesis by regulating the synthesis of membrane proteins associated with cilia, contributing to the mislocalization of membrane disc proteins.
Collapse
Affiliation(s)
- Kuanxiang Sun
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Lu Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Heting Wang
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lin Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaohui Zhao
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476000, China
| |
Collapse
|
5
|
Li X, Jiang Z, Su Y, Wang K, Jiang X, Sun K, Yang Y, Zhou Y, Zhu X, Zhang L. Deletion of Emc1 in photoreceptor cells causes retinal degeneration in mice. FEBS J 2023; 290:4356-4370. [PMID: 37098815 DOI: 10.1111/febs.16807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/27/2023]
Abstract
The endoplasmic reticulum membrane protein complex (EMC) plays a critical role in the synthesis of multipass membrane proteins. Genetic studies indicated that mutations in EMC1 gene were associated with retinal degeneration diseases; however, the role of EMC1 in photoreceptor has not been confirmed. Here, we show that Emc1 ablation in the photoreceptor cells of mice recapitulated the retinitis pigmentosa phenotypes, including an attenuated scotopic electroretinogram response and the progressive degeneration of rod cells and cone cells. Histopathological examination of tissues from rod-specific Emc1 knockout mice revealed mislocalized rhodopsin and irregularly arranged cone cells at the age of 2 months. Further immunoblotting analysis revealed decreased levels of membrane proteins and endoplasmic reticulum chaperones in 1-month-old rod-specific Emc1 knockout mice retinae, and this led us to speculate that the loss of membrane proteins is the main cause of the degeneration of photoreceptors. EMC1 most likely regulated the membrane protein levels at an earlier step in the biosynthetic process before the proteins translocated into the endoplasmic reticulum. The present study demonstrates the essential roles of Emc1 in photoreceptor cells, and reveals the mechanism through which EMC1 mutations are linked to retinitis pigmentosa.
Collapse
Affiliation(s)
- Xiao Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujing Su
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaifang Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
6
|
Li YP, Shen RJ, Cheng YM, Zhao Q, Jin K, Jin ZB, Zhang S. Exome sequencing in retinal dystrophy patients reveals a novel candidate gene ER membrane protein complex subunit 3. Heliyon 2023; 9:e20146. [PMID: 37809982 PMCID: PMC10559921 DOI: 10.1016/j.heliyon.2023.e20146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are a heterogeneous group of visual disorders caused by different pathogenic mutations in genes and regulatory sequences. The endoplasmic reticulum (ER) membrane protein complex (EMC) subunit 3 (EMC3) is the core unit of the EMC insertase that integrates the transmembrane peptides into lipid bilayers, and the function of its cytoplasmic carboxyl terminus remains to be elucidated. In this study, an insertional mutation c.768insT in the C-terminal coding region of EMC3 was identified and associated with dominant IRDs in a five-generation family. This mutation caused a frameshift in the coding sequence and a gain of an additional 16 amino acid residues (p.L256F-fs-ext21) to form a helix structure in the C-terminus of the EMC3 protein. The mutation is heterozygous with an incomplete penetrance, and cosegregates in all patients examined. This finding indicates that the C-terminus of EMC3 is essential for EMC functions and that EMC3 may be a novel candidate gene for retinal degenerative diseases.
Collapse
Affiliation(s)
- Yan-Ping Li
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Basic Medical College, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - You-Min Cheng
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Basic Medical College, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingqing Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Basic Medical College, Wenzhou Medical University, Wenzhou, 325027, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Shaodan Zhang
- The Eye Hospital of Wenzhou Medical University, National Clinical Research Center for Ocular Diseases, Glaucoma Research Institute of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
7
|
Zhao N, Li N, Wang T. PERK prevents rhodopsin degradation during retinitis pigmentosa by inhibiting IRE1-induced autophagy. J Cell Biol 2023; 222:e202208147. [PMID: 37022709 PMCID: PMC10082367 DOI: 10.1083/jcb.202208147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic endoplasmic reticulum (ER) stress is the underlying cause of many degenerative diseases, including autosomal dominant retinitis pigmentosa (adRP). In adRP, mutant rhodopsins accumulate and cause ER stress. This destabilizes wild-type rhodopsin and triggers photoreceptor cell degeneration. To reveal the mechanisms by which these mutant rhodopsins exert their dominant-negative effects, we established an in vivo fluorescence reporter system to monitor mutant and wild-type rhodopsin in Drosophila. By performing a genome-wide genetic screen, we found that PERK signaling plays a key role in maintaining rhodopsin homeostasis by attenuating IRE1 activities. Degradation of wild-type rhodopsin is mediated by selective autophagy of ER, which is induced by uncontrolled IRE1/XBP1 signaling and insufficient proteasome activities. Moreover, upregulation of PERK signaling prevents autophagy and suppresses retinal degeneration in the adRP model. These findings establish a pathological role for autophagy in this neurodegenerative condition and indicate that promoting PERK activity could be used to treat ER stress-related neuropathies, including adRP.
Collapse
Affiliation(s)
- Ning Zhao
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Li
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
8
|
Tang X, Wei W, Snowball JM, Nakayasu ES, Bell SM, Ansong C, Lin X, Whitsett JA. EMC3 regulates mesenchymal cell survival via control of the mitotic spindle assembly. iScience 2022; 26:105667. [PMID: 36624844 PMCID: PMC9823123 DOI: 10.1016/j.isci.2022.105667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cells transit through the cell cycle to produce two daughter cells. Dysregulation of the cell cycle leads to cell death or tumorigenesis. Herein, we found a subunit of the ER membrane complex, EMC3, as a key regulator of cell cycle. Conditional deletion of Emc3 in mouse embryonic mesoderm led to reduced size and patterning defects of multiple organs. Emc3 deficiency impaired cell proliferation, causing spindle assembly defects, chromosome mis-segregation, cell cycle arrest at G2/M, and apoptosis. Upon entry into mitosis, mesenchymal cells upregulate EMC3 protein levels and localize EMC3 to the mitotic centrosomes. Further analysis indicated that EMC3 works together with VCP to tightly regulate the levels and activity of Aurora A, an essential factor for centrosome function and mitotic spindle assembly: while overexpression of EMC3 or VCP degraded Aurora A, their loss led to increased Aurora A stability but reduced Aurora A phosphorylation in mitosis.
Collapse
Affiliation(s)
- Xiaofang Tang
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China
| | - John M. Snowball
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sheila M. Bell
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China,Corresponding author
| | - Jeffrey A. Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Corresponding author
| |
Collapse
|
9
|
Lai W, Li D, Wang Q, Ma Y, Tian J, Fang Q. Bacterial Magnetosomes Release Iron Ions and Induce Regulation of Iron Homeostasis in Endothelial Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3995. [PMID: 36432281 PMCID: PMC9695978 DOI: 10.3390/nano12223995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Magnetosomes (MAGs) extracted from magnetotactic bacteria are well-defined membrane-enveloped single-domain magnetic nanoparticles. Due to their superior magnetic and structural properties, MAGs constitute potential materials that can be manipulated via genetic and chemical engineering for use in biomedical and biotechnological applications. However, the long-term effects exerted by MAGs on cells are of concern in the context of in vivo applications. Meanwhile, it remains relatively unclear which mechanisms are employed by cells to process and degrade MAGs. Hence, a better understanding of MAGs' degradation and fundamental signal modulations occurring throughout this process is essential. In the current study, we investigated the potential actions of MAGs on endothelial cells over a 10-day period. MAGs were retained in cells and found to gradually gather in the lysosome-like vesicles. Meanwhile, iron-ion release was observed. Proteomics further revealed a potential cellular mechanism underlying MAGs degradation, in which a group of proteins associated with vesicle biogenesis, and lysosomal enzymes, which participate in protein hydrolysis and lipid degradation, were rapidly upregulated. Moreover, the released iron triggered the regulation of the iron metabolic profiles. However, given that the levels of cell oxidative damage were relatively stable, the released iron ions were handled by iron metabolic profiles and incorporated into normal metabolic routes. These results provide insights into the cell response to MAGs degradation that may improve their in vivo applications.
Collapse
Affiliation(s)
- Wenjia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Dan Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Ma
- Aviation Service Department, Yantai Engineering & Technology College, Yantai 264006, China
| | - Jiesheng Tian
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Chung HL, Rump P, Lu D, Glassford MR, Mok JW, Fatih J, Basal A, Marcogliese PC, Kanca O, Rapp M, Fock JM, Kamsteeg EJ, Lupski JR, Larson A, Haninbal MC, Bellen H, Harel T. De novo variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration and affect glial function in Drosophila. Hum Mol Genet 2022; 31:3231-3244. [PMID: 35234901 PMCID: PMC9523557 DOI: 10.1093/hmg/ddac053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse. METHODS Exome sequencing was used to investigate the genetic cause underlying severe developmental delay in three unrelated children. EMC1 variants were modeled in Drosophila, using loss-of-function (LoF) and overexpression studies. Glial-specific and neuronal-specific assays were used to determine whether the dysfunction was specific to one cell type. RESULTS Exome sequencing identified de novo variants in EMC1 in three individuals affected by global developmental delay, hypotonia, seizures, visual impairment and cerebellar atrophy. All variants were located at Pro582 or Pro584. Drosophila studies indicated that imbalance of EMC1-either overexpression or knockdown-results in pupal lethality and suggest that the tested homologous variants are LoF alleles. In addition, glia-specific gene dosage, overexpression or knockdown, of EMC1 led to lethality, whereas neuron-specific alterations were tolerated. DISCUSSION We establish de novo monoallelic EMC1 variants as causative of a neurological disease trait by providing functional evidence in a Drosophila model. The identified variants failed to rescue the lethality of a null allele. Variations in dosage of the wild-type EMC1, specifically in glia, lead to pupal lethality, which we hypothesize results from the altered stoichiometry of the multi-subunit protein complex EMC.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick Rump
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen 9700 RB, The Netherlands
| | - Di Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Megan R Glassford
- Division of Pediatric Genetics, Metabolism & Genomic Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jawid Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adily Basal
- Department of Genetics, Hadassah Medical Organization, Jerusalem 9112001, Israel
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Michele Rapp
- University of Colorado Anschutz Medical Campus, Aurora, CO 60045, USA
| | - Johanna M Fock
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Groningen 9700 RB, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| | - Austin Larson
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 60045, United States
| | - Mark C Haninbal
- Division of Pediatric Genetics, Metabolism & Genomic Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hugo Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
11
|
Wang Y, Liu Y, Liu S, Li X, Liu X, Jiao M, Yang Y, Luo X, Wang F, Wan X, Sun X. A novel and efficient murine model of Bietti crystalline dystrophy. Dis Model Mech 2022; 15:274545. [PMID: 35230417 PMCID: PMC8906172 DOI: 10.1242/dmm.049222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Bietti crystalline dystrophy (BCD) is an autosomal recessive inherited retinal disease, resulting in blindness in most patients. The etiology and development mechanism of it remain unclear. Given the defects in previous mouse models of BCD, we generated a new Cyp4v3-/- mouse model, using CRISPR/Cas9 technology, for investigating the pathogenesis of BCD. We estimated the ocular phenotypes by fundus imaging, optical coherence tomography (OCT) and full-field scotopic electroretinography, and investigated the histological features by Hematoxylin and Eosin staining, Oil Red O staining and immunofluorescence. This model effectively exhibited age-related progression that mimicked the human ocular phenotypes. Moreover, gas chromatography-mass spectrometry and RNA-seq analysis indicated that the defect of Cyp4v3 led to the abnormal lipid metabolism, inflammation activation and oxidative stress of retina. Notably, inflammation activation and oxidative stress could also promote the progression of BCD in light-induced retinal degeneration. In conclusion, our data provided evidence that we established a novel and more effective Cyp4v3 knockout preclinical mouse model for BCD, which served as a useful tool for evaluating the effect of drugs and gene therapy in vivo.
Collapse
Affiliation(s)
- Yafang Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, China200080
| | - Yang Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, China200080
| | - Shu Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, China200080
| | - Xiaomeng Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, China200080
| | - Xinxin Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, China200080.,Shanghai Key Laboratory of Ocular Fundus Diseases, 100 Haining Road, Shanghai, China200080
| | - Ming Jiao
- Laboratory Animal Center, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Shanghai, China201620
| | - Yuqin Yang
- Laboratory Animal Center, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Shanghai, China201620
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, China200080.,Shanghai Key Laboratory of Ocular Fundus Diseases, 100 Haining Road, Shanghai, China200080
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, China200080.,Shanghai Key Laboratory of Ocular Fundus Diseases, 100 Haining Road, Shanghai, China200080.,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, China200080.,National Clinical Research Center for Eye Diseases, 100 Haining Road, Shanghai, China200080.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Shanghai, China200080
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, China200080.,Shanghai Key Laboratory of Ocular Fundus Diseases, 100 Haining Road, Shanghai, China200080
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, China200080.,Shanghai Key Laboratory of Ocular Fundus Diseases, 100 Haining Road, Shanghai, China200080.,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, China200080.,National Clinical Research Center for Eye Diseases, 100 Haining Road, Shanghai, China200080.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 100 Haining Road, Shanghai, China200080
| |
Collapse
|
12
|
Gaspar CJ, Vieira LC, Santos CC, Christianson JC, Jakubec D, Strisovsky K, Adrain C, Domingos PM. EMC is required for biogenesis of Xport-A, an essential chaperone of Rhodopsin-1 and the TRP channel. EMBO Rep 2022; 23:e53210. [PMID: 34918864 PMCID: PMC8728618 DOI: 10.15252/embr.202153210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
The ER membrane protein complex (EMC) is required for the biogenesis of a subset of tail anchored (TA) and polytopic membrane proteins, including Rhodopsin-1 (Rh1) and the TRP channel. To understand the physiological implications of EMC-dependent membrane protein biogenesis, we perform a bioinformatic identification of Drosophila TA proteins. From 254 predicted TA proteins, screening in larval eye discs identified two proteins that require EMC for their biogenesis: fan and Xport-A. Fan is required for male fertility in Drosophila and we show that EMC is also required for this process. Xport-A is essential for the biogenesis of both Rh1 and TRP, raising the possibility that disruption of Rh1 and TRP biogenesis in EMC mutants is secondary to the Xport-A defect. We show that EMC is required for Xport-A TMD membrane insertion and that EMC-independent Xport-A mutants rescue Rh1 and TRP biogenesis in EMC mutants. Finally, our work also reveals a role for Xport-A in a glycosylation-dependent triage mechanism during Rh1 biogenesis in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Catarina J Gaspar
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
- Membrane Traffic LabInstituto Gulbenkian de Ciência (IGC)OeirasPortugal
| | - Lígia C Vieira
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
- Present address:
Center for Genomics and Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Cristiana C Santos
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - David Jakubec
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Colin Adrain
- Membrane Traffic LabInstituto Gulbenkian de Ciência (IGC)OeirasPortugal
- Patrick G Johnston Centre for Cancer ResearchQueen’s UniversityBelfastUK
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
| |
Collapse
|
13
|
Smylla TK, Wagner K, Huber A. Application of Fluorescent Proteins for Functional Dissection of the Drosophila Visual System. Int J Mol Sci 2021; 22:8930. [PMID: 34445636 PMCID: PMC8396179 DOI: 10.3390/ijms22168930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in Drosophila vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the Drosophila eye.
Collapse
Affiliation(s)
- Thomas K. Smylla
- Department of Biochemistry, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany; (K.W.); (A.H.)
| | | | | |
Collapse
|
14
|
Li D, Lai W, Wang Q, Xiang Z, Nan X, Yang X, Fang Q. CD151 enrichment in exosomes of luminal androgen receptor breast cancer cell line contributes to cell invasion. Biochimie 2021; 189:65-75. [PMID: 34157361 DOI: 10.1016/j.biochi.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 02/03/2023]
Abstract
Breast cancer is the most common and highly heterogeneous disease in women worldwide. Given the challenges in the treatment of advanced metastatic breast cancer, it is necessary to understand the molecular mechanisms related to disease progression. Exosomes play various roles in the progression of tumors, including promoting the invasion and advancing the distant metastasis. To study the molecular mechanisms related to the progression of luminal androgen receptor (LAR) breast cancer, we first isolated exosomes of MDA-MB-453 cells, a representative cell line of LAR. Through quantitative proteomic analysis, we identified 180 proteins specifically enriched in exosomes after comparing with those in cells, microvesicles, and the 150K supernatant. Among these, CD151, a protein involved in the regulation of cell motility was the most enriched one. CD151-knockdown exosomes reduced the invasion ability of the recipient breast cancer cell and lowered the phosphorylation level of tyrosine-protein kinase Lck, indicating that the invasion of LAR breast cancer may be due to CD151-enriched exosomes. Our work reports for the first time that CD151 was highly abundant in the exosomes of MDA-MB-453 cells and expands the understanding of the development process of LAR subtype, suggesting CD151 may be a potential candidate for the treatment of LAR breast cancer.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenjia Lai
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Zhichu Xiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiaohui Nan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoliang Yang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
15
|
The ER membrane protein complex subunit Emc3 controls angiogenesis via the FZD4/WNT signaling axis. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1868-1883. [PMID: 34128175 DOI: 10.1007/s11427-021-1941-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) membrane protein complex (EMC) regulates the synthesis and quality control of membrane proteins with multiple transmembrane domains. One of the membrane spanning subunits, EMC3, is a core member of the EMC complex that provides essential hydrophilic vestibule for substrate insertion. Here, we show that the EMC subunit Emc3 plays critical roles in the retinal vascular angiogenesis by regulating Norrin/Wnt signaling. Postnatal endothelial cell (EC)-specific deletion of Emc3 led to retarded retinal vascular development with a hyperpruned vascular network, the appearance of blunt-ended, aneurysm-like tip endothelial cells (ECs) with reduced numbers of filopodia and leakage of erythrocytes at the vascular front. Diminished tube formation and cell proliferation were also observed in EMC3 depleted human retinal endothelial cells (HRECs). We then discovered a critical role for EMC3 in expression of FZD4 receptor of β-catenin signaling using RNA sequencing, real-time quantitative PCR (RT-qPCR) and luciferase reporter assay. Moreover, augmentation of Wnt activity via lithium chloride (LiCl) treatment remarkably enhanced β-catenin signaling and cell proliferation of HRECs. Additionally, LiCl partially reversed the angiogenesis defects in Emc3-cKO mice. Our data reveal that Emc3 plays essential roles in angiogenesis through direct control of FZD4 expression and Norrin/β-catenin signaling.
Collapse
|
16
|
Cao X, An J, Cao Y, Lv J, Wang J, Ding Y, Lin X, Zhou X. EMC3 Is Essential for Retinal Organization and Neurogenesis During Mouse Retinal Development. Invest Ophthalmol Vis Sci 2021; 62:31. [PMID: 33605987 PMCID: PMC7900856 DOI: 10.1167/iovs.62.2.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose We used a mouse model to explore the role of the endoplasmic reticulum membrane protein complex subunit 3 (EMC3) in mammalian retinal development. Methods The transcription pattern of Emc3 in C57BL/6 mice was analyzed by in situ hybridization. To explore the effects of EMC3 absence on retinal development, the Cre-loxP system was used to generate retina-specific Emc3 in knockout mice (Emc3flox/flox, Six3-cre+; CKO). Morphological changes in the retina of E13.5, E17.5, P0.5, and P7 mice were observed via hematoxylin and eosin staining. Immunofluorescence staining was used to assess protein distribution and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to assess apoptosis changes. Proteins were identified and quantified by Western blotting and proteomic analysis. Electroretinogram (ERG), fundus color photography, and optical coherence tomography were performed on 5-week-old mice to evaluate retinal function and structure. Results The Emc3 mRNA was widely distributed in the whole retina during development. Loss of retinal EMC3 led to retinal rosette degeneration with mislocalization of cell junction molecules (β-catenin, N-cadherin, and zonula occludens-1) and polarity molecules (Par3 and PKCζ). Endoplasmic reticulum stress and TUNEL apoptosis signals were present in retinal rosette-forming cells. Although the absence of EMC3 promoted the production of photoreceptor cells, 5-week-old mice lost all visual function and had severe retinal morphological degeneration. Conclusions EMC3 regulates retinal structure by maintaining the polarity of retinal progenitor cells and regulating retinal cell apoptosis.
Collapse
Affiliation(s)
- Xiaowen Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jianhong An
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Juan Lv
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jiawei Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yang Ding
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Huang M, Yang L, Jiang N, Dai Q, Li R, Zhou Z, Zhao B, Lin X. Emc3 maintains intestinal homeostasis by preserving secretory lineages. Mucosal Immunol 2021; 14:873-886. [PMID: 33785873 PMCID: PMC8222001 DOI: 10.1038/s41385-021-00399-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 02/04/2023]
Abstract
Intestinal exocrine secretory lineages, including goblet cells and Paneth cells, provide vital innate host defense to pathogens. However, how these cells are specified and maintained to ensure intestinal barrier function remains poorly defined. Here we show that endoplasmic reticulum membrane protein complex subunit 3 (Emc3) is essential for differentiation and function of exocrine secretory lineages. Deletion of Emc3 in intestinal epithelium decreases mucus production by goblet cells and Paneth cell population, along with gut microbial dysbiosis, which result in spontaneous inflammation and increased susceptibility to DSS-induced colitis. Moreover, Emc3 deletion impairs stem cell niche function of Paneth cells, thus resulting in intestinal organoid culture failure. Mechanistically, Emc3 deficiency leads to increased endoplasmic reticulum (ER) stress. Mitigating ER stress with tauroursodeoxycholate acid alleviates secretory dysfunction and restores organoid formation. Our study identifies a dominant role of Emc3 in maintaining intestinal mucosal homeostasis.
Collapse
Affiliation(s)
- Meina Huang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Li Yang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Jiang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quanhui Dai
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runsheng Li
- grid.8547.e0000 0001 0125 2443National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Zhao
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinhua Lin
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Phillips BP, Miller EA. Ribosome-associated quality control of membrane proteins at the endoplasmic reticulum. J Cell Sci 2020; 133:133/22/jcs251983. [PMID: 33247003 PMCID: PMC7116877 DOI: 10.1242/jcs.251983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein synthesis is an energetically costly, complex and risky process. Aberrant protein biogenesis can result in cellular toxicity and disease, with membrane-embedded proteins being particularly challenging for the cell. In order to protect the cell from consequences of defects in membrane proteins, quality control systems act to maintain protein homeostasis. The majority of these pathways act post-translationally; however, recent evidence reveals that membrane proteins are also subject to co-translational quality control during their synthesis in the endoplasmic reticulum (ER). This newly identified quality control pathway employs components of the cytosolic ribosome-associated quality control (RQC) machinery but differs from canonical RQC in that it responds to biogenesis state of the substrate rather than mRNA aberrations. This ER-associated RQC (ER-RQC) is sensitive to membrane protein misfolding and malfunctions in the ER insertion machinery. In this Review, we discuss the advantages of co-translational quality control of membrane proteins, as well as potential mechanisms of substrate recognition and degradation. Finally, we discuss some outstanding questions concerning future studies of ER-RQC of membrane proteins.
Collapse
Affiliation(s)
- Ben P Phillips
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
19
|
Miller-Vedam LE, Bräuning B, Popova KD, Schirle Oakdale NT, Bonnar JL, Prabu JR, Boydston EA, Sevillano N, Shurtleff MJ, Stroud RM, Craik CS, Schulman BA, Frost A, Weissman JS. Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. eLife 2020; 9:e62611. [PMID: 33236988 PMCID: PMC7785296 DOI: 10.7554/elife.62611] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane protein biogenesis in the endoplasmic reticulum (ER) is complex and failure-prone. The ER membrane protein complex (EMC), comprising eight conserved subunits, has emerged as a central player in this process. Yet, we have limited understanding of how EMC enables insertion and integrity of diverse clients, from tail-anchored to polytopic transmembrane proteins. Here, yeast and human EMC cryo-EM structures reveal conserved intricate assemblies and human-specific features associated with pathologies. Structure-based functional studies distinguish between two separable EMC activities, as an insertase regulating tail-anchored protein levels and a broader role in polytopic membrane protein biogenesis. These depend on mechanistically coupled yet spatially distinct regions including two lipid-accessible membrane cavities which confer client-specific regulation, and a non-insertase EMC function mediated by the EMC lumenal domain. Our studies illuminate the structural and mechanistic basis of EMC's multifunctionality and point to its role in differentially regulating the biogenesis of distinct client protein classes.
Collapse
Affiliation(s)
- Lakshmi E Miller-Vedam
- Molecular, Cellular, and Computational Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Katerina D Popova
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Nicole T Schirle Oakdale
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jessica L Bonnar
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jesuraj R Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Elizabeth A Boydston
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Matthew J Shurtleff
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jonathan S Weissman
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
20
|
Tan JH, Cao RC, Zhou L, Zhou ZT, Chen HJ, Xu J, Chen XM, Jin YC, Lin JY, Qi ZC, Zeng JL, Li SJ, Luo M, Hu GD, Jin J, Zhang GW. EMC6 regulates acinar apoptosis via APAF1 in acute and chronic pancreatitis. Cell Death Dis 2020; 11:966. [PMID: 33177505 PMCID: PMC7658364 DOI: 10.1038/s41419-020-03177-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Treatment of acute pancreatitis (AP) and chronic pancreatitis (CP) remains problematic due to a lack of knowledge about disease-specific regulatory targets and mechanisms. The purpose of this study was to screen proteins related to endoplasmic reticulum (ER) stress and apoptosis pathways that may play a role in pancreatitis. Human pancreatic tissues including AP, CP, and healthy volunteers were collected during surgery. Humanized PRSS1 (protease serine 1) transgenic (PRSS1Tg) mice were constructed and treated with caerulein to mimic the development of human AP and CP. Potential regulatory proteins in pancreatitis were identified by proteomic screen using pancreatic tissues of PRSS1Tg AP mice. Adenoviral shRNA-mediated knockdown of identified proteins, followed by functional assays was performed to validate their roles. Functional analyses included transmission electron microscopy for ultrastructural analysis; qRT-PCR, western blotting, co-immunoprecipitation, immunohistochemistry, and immunofluorescence for assessment of gene or protein expression, and TUNEL assays for assessment of acinar cell apoptosis. Humanized PRSS1Tg mice could mimic the development of human pancreatic inflammatory diseases. EMC6 and APAF1 were identified as potential regulatory molecules in AP and CP models by proteomic analysis. Both EMC6 and APAF1 regulated apoptosis and inflammatory injury in pancreatic inflammatory diseases. Moreover, APAF1 was regulated by EMC6, induced apoptosis to injure acinar cells and promoted inflammation. In the progression of pancreatitis, EMC6 was activated and then upregulated APAF1 to induce acinar cell apoptosis and inflammatory injury. These findings suggest that EMC6 may be a new therapeutic target for the treatment of pancreatic inflammatory diseases.
Collapse
Affiliation(s)
- Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Tao Zhou
- Department of the Electronic Microscope Room, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Huo-Ji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang-Chen Jin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zhao-Chang Qi
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jun-Ling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Ji Li
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Min Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Dong Hu
- Department of Respiratory and Crit Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Xu J, Zhao H, Wang T. Suppression of retinal degeneration by two novel ERAD ubiquitin E3 ligases SORDD1/2 in Drosophila. PLoS Genet 2020; 16:e1009172. [PMID: 33137101 PMCID: PMC7660902 DOI: 10.1371/journal.pgen.1009172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/12/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the gene rhodopsin are one of the major causes of autosomal dominant retinitis pigmentosa (adRP). Mutant forms of Rhodopsin frequently accumulate in the endoplasmic reticulum (ER), cause ER stress, and trigger photoreceptor cell degeneration. Here, we performed a genome-wide screen to identify suppressors of retinal degeneration in a Drosophila model of adRP, carrying a point mutation in the major rhodopsin, Rh1 (Rh1G69D). We identified two novel E3 ubiquitin ligases SORDD1 and SORDD2 that effectively suppressed Rh1G69D-induced photoreceptor dysfunction and retinal degeneration. SORDD1/2 promoted the ubiquitination and degradation of Rh1G69D through VCP (valosin containing protein) and independent of processes reliant on the HRD1 (HMG-CoA reductase degradation protein 1)/HRD3 complex. We further demonstrate that SORDD1/2 and HRD1 function in parallel and in a redundant fashion to maintain rhodopsin homeostasis and integrity of photoreceptor cells. These findings identify a new ER-associated protein degradation (ERAD) pathway and suggest that facilitating SORDD1/2 function may be a therapeutic strategy to treat adRP. Misfolded rhodopsins accumulated in endoplasmic reticulum (ER) could disrupt the homeostasis of the ER and cause ER stress. Chronic ER stress would finally lead to photoreceptor cell death and retinal degeneration. To diminish the stress and sustain homeostasis cells develop alternative strategies to clear the misfolded rhodopsins. Previous studies have suggested that ubiquitin E3 ligase HRD1 is involved in the degradation of misfolded rhodopsins. In this study, we define novel ubiquitin E3 ligase SORDD1/2 based on a genetic screen and demonstrate that SORDD1/2 promotes the degradation of misfolded rhodopsins through ER-associated degradation (ERAD) pathway. Furthermore, we demonstrate that SORDD1/2 function independently of HRD1 in misfolded rhodopsins degradation. We also show SORDD1/2 and HRD1 play redundant roles in rhodopsin homeostasis. Finally, we demonstrate that SORDD1 works well in a Drosophila disease model. Our studies identify a novel ERAD pathway that acts in parallel to HRD1, and suggest that SORDD1 is a good candidate therapeutic target.
Collapse
Affiliation(s)
- Jaiwei Xu
- College of Biological Sciences, China Agricultural University, China
- National Institute of Biological Sciences, China
| | - Haifang Zhao
- National Institute of Biological Sciences, China
| | - Tao Wang
- National Institute of Biological Sciences, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, China
- * E-mail:
| |
Collapse
|
22
|
Zhao H, Wang T. PE homeostasis rebalanced through mitochondria-ER lipid exchange prevents retinal degeneration in Drosophila. PLoS Genet 2020; 16:e1009070. [PMID: 33064773 PMCID: PMC7592913 DOI: 10.1371/journal.pgen.1009070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/28/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The major glycerophospholipid phosphatidylethanolamine (PE) in the nervous system is essential for neural development and function. There are two major PE synthesis pathways, the CDP-ethanolamine pathway in the endoplasmic reticulum (ER) and the phosphatidylserine decarboxylase (PSD) pathway in mitochondria. However, the role played by mitochondrial PE synthesis in maintaining cellular PE homeostasis is unknown. Here, we show that Drosophila pect (phosphoethanolamine cytidylyltransferase) mutants lacking the CDP-ethanolamine pathway, exhibited alterations in phospholipid composition, defective phototransduction, and retinal degeneration. Induction of the PSD pathway fully restored levels and composition of cellular PE, thus rescued the retinal degeneration and defective visual responses in pect mutants. Disrupting lipid exchange between mitochondria and ER blocked the ability of PSD to rescue pect mutant phenotypes. These findings provide direct evidence that the synthesis of PE in mitochondria contributes to cellular PE homeostasis, and suggest the induction of mitochondrial PE synthesis as a promising therapeutic approach for disorders associated with PE deficiency.
Collapse
Affiliation(s)
- Haifang Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Umair M, Ballow M, Asiri A, Alyafee Y, Al Tuwaijri A, Alhamoudi KM, Aloraini T, Abdelhakim M, Althagafi AT, Kafkas S, Alsubaie L, Alrifai MT, Hoehndorf R, Alfares A, Alfadhel M. EMC10 homozygous variant identified in a family with global developmental delay, mild intellectual disability, and speech delay. Clin Genet 2020; 98:555-561. [PMID: 32869858 PMCID: PMC7756316 DOI: 10.1111/cge.13842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
In recent years, several genes have been implicated in the variable disease presentation of global developmental delay (GDD) and intellectual disability (ID). The endoplasmic reticulum membrane protein complex (EMC) family is known to be involved in GDD and ID. Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders. EMC10 is a bone marrow‐derived angiogenic growth factor that plays an important role in infarct vascularization and promoting tissue repair. However, this gene has not been previously associated with human disease. Herein, we describe a Saudi family with two individuals segregating a recessive neurodevelopmental disorder. Both of the affected individuals showed mild ID, speech delay, and GDD. Whole‐exome sequencing (WES) and Sanger sequencing were performed to identify candidate genes. Further, to elucidate the functional effects of the variant, quantitative real‐time PCR (RT‐qPCR)‐based expression analysis was performed. WES revealed a homozygous splice acceptor site variant (c.679‐1G>A) in EMC10 (chromosome 19q13.33) that segregated perfectly within the family. RT‐qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients, indicating the pathogenicity of the identified variant. For the first time in the literature, the EMC10 gene variant was associated with mild ID, speech delay, and GDD. Thus, this gene plays a key role in developmental milestones, with the potential to cause neurodevelopmental disorders in humans.
Collapse
Affiliation(s)
- Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Mariam Ballow
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Abdulaziz Asiri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Yusra Alyafee
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Kheloud M Alhamoudi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Taghrid Aloraini
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Marwa Abdelhakim
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Azza Thamer Althagafi
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Senay Kafkas
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lamia Alsubaie
- Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Muhammad Talal Alrifai
- Department of Pediatrics, Division of Neurology, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ahmed Alfares
- Department of Pediatrics, College of Medicine, Qassim University, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Loss of the ER membrane protein complex subunit Emc3 leads to retinal bipolar cell degeneration in aged mice. PLoS One 2020; 15:e0238435. [PMID: 32886670 PMCID: PMC7473584 DOI: 10.1371/journal.pone.0238435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023] Open
Abstract
The endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved protein complex involved in inserting the transmembrane domain of membrane proteins into membranes in the ER. EMC3 is an essential component of EMC and is important for rhodopsin synthesis in photoreceptor cells. However, the in vivo function of Emc3 in bipolar cells (BCs) has not been determined. To explore the role of Emc3 in BCs, we generated a BC-specific Emc3 knockout mouse model (named Emc3 cKO) using the Purkinje cell protein 2 (Pcp2) Cre line. Although normal electroretinography (ERG) b-waves were observed in Emc3 cKO mice at 6 months of age, Emc3 cKO mice exhibited reduced b-wave amplitudes at 12 months of age, as determined by scotopic and photopic ERG, and progressive death of BCs, whereas the ERG a-wave amplitudes were preserved. PKCa staining of retinal cryosections from Emc3 cKO mice revealed death of rod BCs. Loss of Emc3 led to the presence of the synaptic protein mGLuR6 in the outer nuclear layer (ONL). Immunostaining analysis of presynaptic protein postsynaptic density protein 95 (PSD95) revealed rod terminals retracted to the ONL in Emc3 cKO mice at 12 months of age. In addition, deletion of Emc3 resulted in elevated glial fibrillary acidic protein, indicating reactive gliosis in the retina. Our data demonstrate that loss of Emc3 in BCs leads to decreased ERG response, increased astrogliosis and disruption of the retinal inner nuclear layer in mice of 12 months of age. Taken together, our studies indicate that Emc3 is not required for the development of BCs but is important for long-term survival of BCs.
Collapse
|
25
|
Volkmar N, Christianson JC. Squaring the EMC - how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis. J Cell Sci 2020; 133:133/8/jcs243519. [PMID: 32332093 PMCID: PMC7188443 DOI: 10.1242/jcs.243519] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Integral membrane proteins play key functional roles at organelles and the plasma membrane, necessitating their efficient and accurate biogenesis to ensure appropriate targeting and activity. The endoplasmic reticulum membrane protein complex (EMC) has recently emerged as an important eukaryotic complex for biogenesis of integral membrane proteins by promoting insertion and stability of atypical and sub-optimal transmembrane domains (TMDs). Although confirmed as a bona fide complex almost a decade ago, light is just now being shed on the mechanism and selectivity underlying the cellular responsibilities of the EMC. In this Review, we revisit the myriad of functions attributed the EMC through the lens of these new mechanistic insights, to address questions of the cellular and organismal roles the EMC has evolved to undertake. Summary: The EMC is an important factor facilitating membrane protein biogenesis. Here we discuss the broad cellular and organismal responsibilities overseen by client proteins requiring the EMC for maturation.
Collapse
Affiliation(s)
- Norbert Volkmar
- Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - John C Christianson
- Oxford Centre for Translational Myeloma Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, Headington, Oxford OX3 7LD, UK
| |
Collapse
|
26
|
Gorbatyuk MS, Starr CR, Gorbatyuk OS. Endoplasmic reticulum stress: New insights into the pathogenesis and treatment of retinal degenerative diseases. Prog Retin Eye Res 2020; 79:100860. [PMID: 32272207 DOI: 10.1016/j.preteyeres.2020.100860] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Physiological equilibrium in the retina depends on coordinated work between rod and cone photoreceptors and can be compromised by the expression of mutant proteins leading to inherited retinal degeneration (IRD). IRD is a diverse group of retinal dystrophies with multifaceted molecular mechanisms that are not fully understood. In this review, we focus on the contribution of chronically activated unfolded protein response (UPR) to inherited retinal pathogenesis, placing special emphasis on studies employing genetically modified animal models. As constitutively active UPR in degenerating retinas may activate pro-apoptotic programs associated with oxidative stress, pro-inflammatory signaling, dysfunctional autophagy, free cytosolic Ca2+ overload, and altered protein synthesis rate in the retina, we focus on the regulatory mechanisms of translational attenuation and approaches to overcoming translational attenuation in degenerating retinas. We also discuss current research on the role of the UPR mediator PERK and its downstream targets in degenerating retinas and highlight the therapeutic benefits of reprogramming PERK signaling in preclinical animal models of IRD. Finally, we describe pharmacological approaches targeting UPR in ocular diseases and consider their potential applications to IRD.
Collapse
Affiliation(s)
- Marina S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA.
| | - Christopher R Starr
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| | - Oleg S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| |
Collapse
|
27
|
Hiramatsu N, Tago T, Satoh T, Satoh AK. ER membrane protein complex is required for the insertions of late-synthesized transmembrane helices of Rh1 in Drosophila photoreceptors. Mol Biol Cell 2019; 30:2890-2900. [PMID: 31553680 PMCID: PMC6822582 DOI: 10.1091/mbc.e19-08-0434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Most membrane proteins are synthesized on and inserted into the membrane of the endoplasmic reticulum (ER), in eukaryote. The widely conserved ER membrane protein complex (EMC) facilitates the biogenesis of a wide range of membrane proteins. In this study, we investigated the EMC function using Drosophila photoreceptor as a model system. We found that the EMC was necessary only for the biogenesis of a subset of multipass membrane proteins such as rhodopsin (Rh1), TRP, TRPL, Csat, Cni, SERCA, and Na+K+ATPase α, but not for that of secretory or single-pass membrane proteins. Additionally, in EMC-deficient cells, Rh1 was translated to its C terminus but degraded independently from ER-associated degradation. Thus, EMC exerted its effect after translation but before or during the membrane integration of transmembrane domains (TMDs). Finally, we found that EMC was not required for the stable expression of the first three TMDs of Rh1 but was required for that of the fourth and fifth TMDs. Our results suggested that EMC is required for the ER membrane insertion of succeeding TMDs of multipass membrane proteins.
Collapse
Affiliation(s)
- Naoki Hiramatsu
- Program of Life and Environmental Sciences, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Tatsuya Tago
- Program of Life and Environmental Sciences, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takunori Satoh
- Program of Life and Environmental Sciences, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Sciences, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|