1
|
Pang SG, Zhang X, Li ZX, He LF, Chen F, Liu ML, Huang YZ, Mo JM, Luo KL, Xiao JJ, Zhu F. TOPK Inhibition Enhances the Sensitivity of Colorectal Cancer Cells to Radiotherapy by Reducing the DNA Damage Response. Curr Med Sci 2024; 44:545-553. [PMID: 38900386 DOI: 10.1007/s11596-024-2884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistance in lung cancer. However, the role of TOPK inhibition in enhancing radiosensitivity of colorectal cancer (CRC) cells is unclear. This study aimed to evaluate the radiosensitization of TOPK knockdown in CRC cells. METHODS The expression of TOPK was detected in CRC tissues by immunohistochemistry, and the effect of TOPK knockdown was detected in CRC cells by Western blotting. CCK-8 and clonogenic assays were used to detect the growth and clonogenic ability of CRC cells after TOPK knockdown combined with radiotherapy in CRC cells. Furthermore, proteomic analysis showed that the phosphorylation of TOPK downstream proteins changed after radiotherapy. DNA damage was detected by the comet assay. Changes in the DNA damage response signaling pathway were analyzed by Western blotting, and apoptosis was detected by flow cytometry. RESULTS The expression of TOPK was significantly greater in CRC tissues at grades 2-4 than in those at grade 1. After irradiation, CRC cells with genetically silenced TOPK had shorter comet tails and reduced expression levels of DNA damage response-associated proteins, including phospho-cyclin-dependent kinase 1 (p-CDK1), phospho-ataxia telangiectasia-mutated (p-ATM), poly ADP-ribose polymerase (PARP), and meiotic recombination 11 homolog 1 (MRE11). CONCLUSIONS TOPK was overexpressed in patients with moderately to poorly differentiated CRC. Moreover, TOPK knockdown significantly enhanced the radiosensitivity of CRC cells by reducing the DNA damage response.
Collapse
Affiliation(s)
- Shi-Gui Pang
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xin Zhang
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Zhao-Xin Li
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Li-Fei He
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Feng Chen
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ming-Long Liu
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ying-Ze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Jian-Mei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Kong-Lan Luo
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Juan-Juan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
- Translational Medical Center, Huaihe Hospital, Henan University, Kaifeng, 475000, China.
| | - Feng Zhu
- Translational Medical Center, Huaihe Hospital, Henan University, Kaifeng, 475000, China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
2
|
Naik A, Lattab B, Qasem H, Decock J. Cancer testis antigens: Emerging therapeutic targets leveraging genomic instability in cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200768. [PMID: 38596293 PMCID: PMC10876628 DOI: 10.1016/j.omton.2024.200768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer care has witnessed remarkable progress in recent decades, with a wide array of targeted therapies and immune-based interventions being added to the traditional treatment options such as surgery, chemotherapy, and radiotherapy. However, despite these advancements, the challenge of achieving high tumor specificity while minimizing adverse side effects continues to dictate the benefit-risk balance of cancer therapy, guiding clinical decision making. As such, the targeting of cancer testis antigens (CTAs) offers exciting new opportunities for therapeutic intervention of cancer since they display highly tumor specific expression patterns, natural immunogenicity and play pivotal roles in various biological processes that are critical for tumor cellular fitness. In this review, we delve deeper into how CTAs contribute to the regulation and maintenance of genomic integrity in cancer, and how these mechanisms can be exploited to specifically target and eradicate tumor cells. We review the current clinical trials targeting aforementioned CTAs, highlight promising pre-clinical data and discuss current challenges and future perspectives for future development of CTA-based strategies that exploit tumor genomic instability.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Boucif Lattab
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Hanan Qasem
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
3
|
Yang X, Hu X, Yin J, Li W, Fu Y, Yang B, Fan J, Lu F, Qin T, Kang X, Zhuang X, Li F, Xiao R, Shi T, Song K, Li J, Chen G, Sun C. Comprehensive multi-omics analysis reveals WEE1 as a synergistic lethal target with hyperthermia through CDK1 super-activation. Nat Commun 2024; 15:2089. [PMID: 38453961 PMCID: PMC10920785 DOI: 10.1038/s41467-024-46358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.
Collapse
Affiliation(s)
- Xiaohang Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Xingyuan Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Jingjing Yin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Wenting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University Shihezi, Xinjiang, 832000, PR China
| | - Yu Fu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Bin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Junpeng Fan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Funian Lu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Tianyu Qin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Xiaoyan Kang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Xucui Zhuang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Fuxia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University Shihezi, Xinjiang, 832000, PR China
| | - Rourou Xiao
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Tingyan Shi
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Jing Li
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, 33 Yingfeng Road, Guangzhou, 510000, PR China.
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
| |
Collapse
|
4
|
Liao H, Yang S, Liang Z, Xiao L, Xie S, Lin P, Xia F, Fang C, Chen Q, Ling D, Li F. A Cancer Cell Selective Replication Stress Nano Amplifier Promotes Replication Fork Catastrophe to Overcome Radioresistance. ACS NANO 2023; 17:18548-18561. [PMID: 37706454 DOI: 10.1021/acsnano.3c06774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Replication stress (RS) induced by DNA damage plays a significant role in conferring the anticancer effects of radiotherapy and is tightly associated with radioresistance of cancer cells. Amplification of RS represents an effective approach to improving the efficacy of radiotherapy, although the development of selective RS amplifiers remains an unexplored frontier. We herein present an RS nano amplifier (RSNA) consisting of a catalytic FePt nanoparticle loaded with the chemotherapeutic doxorubicin (DOX), which selectively exacerbates RS in cancer cells by promoting replication fork (RF) catastrophe. RSNA converts the excessive reactive oxygen species (ROS) in cancer cells into oxygen, enhancing the DNA-damaging effects of radiotherapy to create more template lesions that impede RF progression in coalition with DOX. After radiation, ROS scavenging by RSNA accelerates RF progression through damaged template strands, increasing the frequency of RF collapse into double-strand breaks. Moreover, pretreatment with RSNA accumulates cancer cells in the S phase, exposing more RFs to radiation-induced RS. These effects of RSNA convergently maximize RS in cancer cells, effectively overcoming the radioresistance of cancer cells without affecting normal cells. Our study demonstrates the feasibility of selectively amplifying RS to boost radiotherapy.
Collapse
Affiliation(s)
- Hongwei Liao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Liang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Lin
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- WLA Laboratories, Shanghai 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- WLA Laboratories, Shanghai 201203, China
| |
Collapse
|
5
|
Li J, Sun H, Fu M, Zheng Z, Xu C, Yang K, Liu Y, Xuan Z, Bai Y, Zheng J, Zhao Y, Shi Z, Shao C. TOPK mediates immune evasion of renal cell carcinoma via upregulating the expression of PD-L1. iScience 2023; 26:107185. [PMID: 37404377 PMCID: PMC10316654 DOI: 10.1016/j.isci.2023.107185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/08/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Although anti-PD-L1 therapy has been used in the clinical treatment of renal cell carcinoma (RCC), a proportion of patients are not sensitive to it, which may be attributed to the heterogeneity of PD-L1 expression. Here, we demonstrated that high TOPK (T-LAK cell-originated Protein Kinase) expression in RCC promoted PD-L1 expression by activating ERK2 and TGF-β/Smad pathways. TOPK was positively correlated with PD-L1 expression levels in RCC. Meanwhile, TOPK significantly inhibited the infiltration and function of CD8+ T cells and promoted the immune escape of RCC. Moreover, inhibition of TOPK significantly enhanced CD8+ T cell infiltration, promoted CD8+ T cell activation, enhanced anti-PD-L1 therapeutic efficacy, and synergistically enhanced anti-RCC immune response. In conclusion, this study proposes a new PD-L1 regulatory mechanism that is expected to improve the effectiveness of immunotherapy for RCC.
Collapse
Affiliation(s)
- Jinxin Li
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Huimin Sun
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Central Laboratory, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Meiling Fu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Zeyuan Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Chunlan Xu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Kunao Yang
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Yankuo Liu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Zuodong Xuan
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Yang Bai
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Jianzhong Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Yue Zhao
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Zhiyuan Shi
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Chen Shao
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| |
Collapse
|
6
|
Li F, Liu C, Nong W, Lin L, Ge Y, Luo B, Xiao S, Zhang Q, Xie X. Identification of potential biomarkers in cancer testis antigens for glioblastoma. Am J Transl Res 2023; 15:799-816. [PMID: 36915736 PMCID: PMC10006807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/16/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To screen and validate cancer testis antigens (CTAs) as potential biomarkers and explore their molecular mechanisms in glioblastoma (GBM). METHODS Ribonucleic acid sequencing (RNA-seq) and bioinformatics analyses were utilized to screen the highly expressed CTAs in GBM. Correlation analysis was used to identify potential biomarkers associated with tumor purity and prognosis. Immunohistochemistry was applied for detection of protein expression. Protein-protein interaction (PPI) network construction, functional enrichment analysis, and binding domain prediction were performed to investigate the underlying molecular mechanisms of GBM. RESULTS A total of 8 highly expressed CTAs were identified in GBM. One of them was PDZ-binding kinase (PBK). PBK messenger RNA (mRNA) was most highly expressed in GBM and associated with tumor purity and prognosis, PBK protein expression was also significantly increased in GBM tissues and correlated with p53 expression. Functional enrichment analysis revealed that the PBK related genes were predominantly enriched in cell cycle pathway with 38 genes enriched. The proteins encoding by these 38 genes were performed by binding domain prediction analysis, which demonstrated 15 proteins interacting with PBK. Most of these proteins were up regulated in GBM. CONCLUSION PBK is highly expressed in GBM. It may serve as a potential biomarker for GBM targeting therapy and the cell cycle modulator by interacting with certain key molecules of cell cycle in GBM.
Collapse
Affiliation(s)
- Feng Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, China.,Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China
| | - Weixia Nong
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Lina Lin
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Shaowen Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University Nanning, Guangxi, China.,Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region Nanning, Guangxi, China
| |
Collapse
|
7
|
Ma H, Qi G, Han F, Peng J, Yuan C, Kong B. PBK drives PARP inhibitor resistance through the TRIM37/NFκB axis in ovarian cancer. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:999-1010. [PMID: 35859118 PMCID: PMC9355941 DOI: 10.1038/s12276-022-00809-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022]
Abstract
Resistance to PARP inhibitors (PARPi) remains a therapeutic challenge in ovarian cancer patients. PDZ-binding kinase (PBK) participates in the chemoresistance of many malignancies. However, the role of PBK in PARPi resistance of ovarian cancer is obscure. In the current study, we demonstrated that overexpression of PBK contributed to olaparib resistance in ovarian cancer cells. Knockdown of PBK sensitized olaparib-resistant SKOV3 cells to olaparib. Inhibition of PBK using a specific inhibitor enhanced the therapeutic efficiency of olaparib. Mechanically, PBK directly interacted with TRIM37 to promote its phosphorylation and nuclear translocation. which subsequently activates the NFκB pathway. Additionally, PBK enhanced olaparib resistance of ovarian cancer by regulating the NFκB/TRIM37 axis in vitro and in vivo. In conclusion, PBK confers ovarian cancer resistance to PARPi through activating the TRIM37-mediated NFκB pathway, and targeted inhibition of PBK provided the new therapy to improve PARPi treatment outcomes for ovarian cancer patients. An enzyme implicated in tumor progression also helps cancers thwart a commonly used type of targeted drug therapy. Beihua Kong and colleagues from Shandong University, Jinan, China, showed how PDZ-binding kinase (PBK), an enzyme that promotes the proliferation and spread of cancer cells, activates a signaling pathway that renders tumors resistant to treatment with olaparib. This precision anti-cancer drug works by blocking a protein called PARP that normally helps cells repair damaged DNA. The researchers showed how PBK interacts with another protein to stimulate a transcription factor previously shown to reduce the effectiveness of radiation and chemotherapy. Blocking the activity of PBK, either pharmacologically or genetically, enhanced the sensitivity of ovarian cancer cells to olaparib. A similar drug strategy could help improve outcomes for cancer patients undergoing PARP inhibitor treatment.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China. .,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
8
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
TOPK Affects Autophagy of Skin Squamous Cell Carcinoma by Regulating NF-KB Pathway through HDAC1. DISEASE MARKERS 2022; 2022:3771711. [PMID: 35756488 PMCID: PMC9217538 DOI: 10.1155/2022/3771711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the effect and potential mechanism of T-LAK cell-originated protein kinase (TOPK) on autophagy in cutaneous squamous cell carcinoma (cSCC). Methods Human cSCC cancer tissue and paracancerous tissue samples were collected clinically; immunohistochemistry was used to detect the expression of TOPK, nuclear factor κB p65 (NF-κB p65), phosphorylated nuclear factor κB inhibitor α (p-IκBα), Beclin-1, and microtubule-associated protein 1 light chain 3 (LC3) in cSCC tissue; and immunofluorescence was adopted to detect the coexpression of NF-κB p65, p-IκBα, and TOPK in cSCC tissue. After TOPK silencing or overexpression, SCL-1 and A431 cells were treated with PDTC and 3-MA, respectively. RT-qPCR and Western Blot were used to detect the mRNA and protein expressions of histone deacetylase 1 (HDAC1) in TOPK-silenced/overexpressing cells. Western Blot was performed to detect the protein expressions of NF-κB p65, p-p65, IκBα, p-IκBα, Beclin-1, and LC3 in each group. Transwell and scratch healing experiments were used to detect the ability of cells to invade and migrate. The formation of autophagosomes in each group was observed by TEM. Results Compared with adjacent tissues, TOPK, NF-κB p65, p-IκBα, Beclin-1, and LC3 were highly expressed in cSCC cancer tissues; TOPK and NF-κB p65 were coexpressed; and TOPK and p-IκBα were expressed in cSCC cancer tissues both increased. The mRNA and protein levels of TOPK in human cSCC cells were significantly higher than those in human normal skin HaCaT cells. After TOPK knockout, the expression of HDAC1, p-IκBα/IκBα, NF-κB p65, p-p65, Beclin-1, LC3II/I proteins, cell invasion, and migration abilities were significantly reduced, and fewer autophagosomes were observed. Treatment with PDTC and 3-MA significantly downregulated NF-κB pathway protein activity and autophagy level and reduced cell migration and invasion ability. Conclusion TOPK promotes the malignant progression of cSCC by upregulating HDAC1 to activate the NF-κB pathway and promote autophagy.
Collapse
|
10
|
Sun H, Zheng J, Xiao J, Yue J, Shi Z, Xuan Z, Chen C, Zhao Y, Tang W, Ye S, Li J, Deng Q, Zhang L, Zhu F, Shao C. TOPK/PBK is phosphorylated by ERK2 at serine 32, promotes tumorigenesis and is involved in sorafenib resistance in RCC. Cell Death Dis 2022; 13:450. [PMID: 35546143 PMCID: PMC9095598 DOI: 10.1038/s41419-022-04909-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
TOPK/PBK (T-LAK Cell-Originated Protein Kinase) is a serine/threonine kinase that is highly expressed in a variety of human tumors and is associated with poor prognosis in many types of human malignancies. Its activation mechanism is not yet fully understood. A bidirectional signal transduced between TOPK and ERK2 (extracellular signal-regulated kinase 2) has been reported, with ERK2 able to phosphorylate TOPK at the Thr9 residue. However, mutated TOPK at Thr9 cannot repress cellular transformation. In the present study, Ser32 was revealed to be a novel phosphorylated site on TOPK that could be activated by ERK2. Phospho-TOPK (S32) was found to be involved in the resistance of renal cell carcinoma (RCC) to sorafenib. Herein, combined a TOPK inhibitor with sorafenib could promoted the apoptosis of sorafenib-resistant RCC. High expression of HGF/c-met contributes to activation of p-TOPK (S32) during the development of sorafenib resistance in RCC. The current research presents a possible mechanism of sorafenib resistance in RCC and identifies a potential diagnostic marker for predicting sorafenib resistance in RCC, providing a valuable supplement for the clinically targeted treatment of advanced RCC.
Collapse
Affiliation(s)
- Huimin Sun
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
- The Key Laboratory for Endocrine-Related Cancer precision Medicine of Xiamen, Xiamen, 361102, Fujian, China
| | - Jianzhong Zheng
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Juanjuan Xiao
- Cancer Research Institute, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Novel Onco-Kinases in Target Therapy, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Juntao Yue
- Department of Urology, 985th hospital of PLA, Taiyuan, 030002, Shanxi, China
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Zuodong Xuan
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Chen Chen
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Yue Zhao
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Wenbin Tang
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Shaopei Ye
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Jinxin Li
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiumin Deng
- The Key Laboratory for Endocrine-Related Cancer precision Medicine of Xiamen, Xiamen, 361102, Fujian, China
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lei Zhang
- Department of Public healthy, Xiamen University, Xiamen, 361102, Fujian, China
| | - Feng Zhu
- Cancer Research Institute, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Novel Onco-Kinases in Target Therapy, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
11
|
Targeted inhibition of acidic nucleoplasmic DNA-binding protein 1 enhances radiosensitivity of non-small cell lung cancer. Cancer Lett 2022; 530:100-109. [DOI: 10.1016/j.canlet.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/17/2023]
|
12
|
PDZ Binding Kinase/T-LAK Cell-Derived Protein Kinase Plays an Oncogenic Role and Promotes Immune Escape in Human Tumors. JOURNAL OF ONCOLOGY 2021; 2021:8892479. [PMID: 34603451 PMCID: PMC8486520 DOI: 10.1155/2021/8892479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Background PDZ binding kinase (PBK)/T-LAK cell-derived protein kinase (TOPK) is an important mitotic kinase that promotes tumor progression in some cancers. However, the pan-cancer analysis of PBK/TOPK and its role in tumor immunity are limited. Methods The oncogenic and immune roles of PBK in various cancers were explored using multiple databases, including Oncomine, Human Protein Atlas, ULCAN, Tumor Immune Estimation Resource 2.0, STRING, and Gene Expression Profiling Interactive Analysis 2, and data collected from The Cancer Genome Atlas and Genotype-Tissue Expression Project. Several bioinformatics tools and methods were used for quantitative analyses and panoramic descriptions, such as the DESeq2 and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Results PBK was expressed at higher levels in most solid tumors than in normal tissues in multiple databases. PBK was associated with an advanced tumor stage and grade and a poor prognosis in most cases. PBK was associated with tumor immune cell infiltration in most cases and was especially positively correlated with TAMs, Tregs, MDSCs, and T cell exhaustion in KIRC, LGG, and LIHC. PBK was closely related to TMB, MSI, and immune checkpoint genes in various cancers, and patients with higher expression of PBK in KIRC, LGG, and LIHC had higher TIDE scores and lower immune responses in the predicted results. PBK was closely related to cell cycle regulation and immune-related processes in LIHC and LGG according to GO and KEGG enrichment analyses. Conclusions PBK may play an oncogenic role in most solid tumors and promotes immune escape, especially in KIRC, LGG, and LIHC. This study suggests the potential value of PBK inhibitors combined with immunotherapy.
Collapse
|
13
|
Lashen AG, Toss MS, Katayama A, Gogna R, Mongan NP, Rakha EA. Assessment of proliferation in breast cancer: cell cycle or mitosis? An observational study. Histopathology 2021; 79:1087-1098. [PMID: 34455622 DOI: 10.1111/his.14542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Proliferation is an important indicator of breast cancer (BC) prognosis, but is assessed using different approaches. Not all cells in the cell cycle are committed to division. This study aimed to characterise quantitative differences between BC cells in the cell cycle and those in mitosis and assess their relationship with other pathological parameters. METHODS AND RESULTS A cohort of BC sections (n = 621) was stained with haematoxylin and eosin and immunohistochemistry for Ki-67. The proportion of mitotic cells and Ki-67-positive cells was assessed in the same areas. The Cancer Genome Atlas (TCGA) BC cohort was used to assess MKI-67 transcriptome level and its association with the mitotic counts. The mean proportion of BC cells in the cell cycle was 24% (range = 1-90%), while the mean proportion of BC cells in mitosis was 5% (range = 0-73%). A low proportion of mitoses to whole cycling cells was associated with low histological grade tumours and the luminal A molecular subtype, while tumours with a high proportion of mitoses to the overall cycling cells were associated with triple-negative subtype, larger tumour size, grade 3 tumours and lymph node metastasis. The high mitosis/low Ki-67-positive cells tumours showed a significant association with variables of poor prognosis, including high-grade and triple-negative subtypes. CONCLUSION The proportion of BC cells in the cell cycle and mitosis is variable. We show that not only the number of cells in the cell cycle or mitosis, but also the difference between them, provides valuable information on tumour aggressiveness.
Collapse
Affiliation(s)
- Ayat G Lashen
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Michael S Toss
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ayaka Katayama
- Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebaashi, Japan
| | - Rajan Gogna
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Huang H, Lee MH, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: An Effective Drug Target with Diverse Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13092232. [PMID: 34066486 PMCID: PMC8124186 DOI: 10.3390/cancers13092232] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer is a major public health problem worldwide, and addressing its morbidity, mortality, and prevalence is the first step towards appropriate control measures. Over the past several decades, many pharmacologists have worked to identify anti-cancer targets and drug development strategies. Within this timeframe, many natural compounds have been developed to inhibit cancer growth by targeting kinases, such as AKT, AURKA, and TOPK. Kinase assays and computer modeling are considered to be effective and powerful tools for target screening, as they can predict physical interactions between small molecules and their bio-molecular targets. In the present review, we summarize the inhibitors and compounds that target TOPK and describe its role in cancer progression. The extensive body of research that has investigated the contribution of TOPK to cancer suggests that it may be a promising target for cancer therapy. Abstract T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progression. Abnormal overexpression or activation of TOPK has been observed in many cancers, including colorectal cancer, triple-negative breast cancer, and melanoma, and it is associated with increased development, dissemination, and poor clinical outcomes and prognosis in cancer. Moreover, TOPK phosphorylates p38, JNK, ERK, and AKT, which are involved in many cellular functions, and participates in the activation of multiple signaling pathways related to MAPK, PI3K/PTEN/AKT, and NOTCH1; thus, the direct or indirect interactions of TOPK make it a highly attractive yet elusive target for cancer therapy. Small molecule inhibitors targeting TOPK have shown great therapeutic potential in the treatment of cancer both in vitro and in vivo, even in combination with chemotherapy or radiotherapy. Therefore, targeting TOPK could be an important approach for cancer prevention and therapy. Thus, the purpose of the present review was to consider and analyze the role of TOPK as a drug target in cancer therapy and describe the recent findings related to its role in tumor development. Moreover, this review provides an overview of the current progress in the discovery and development of TOPK inhibitors, considering future clinical applications.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo 58245, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zeayoung Ryoo
- School of Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| |
Collapse
|
15
|
PBK/TOPK: A Therapeutic Target Worthy of Attention. Cells 2021; 10:cells10020371. [PMID: 33670114 PMCID: PMC7916869 DOI: 10.3390/cells10020371] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence supports the role of PDZ-binding kinase (PBK)/T-lymphokine-activated killer-cell-originated protein kinase (TOPK) in mitosis and cell-cycle progression of mitotically active cells, especially proliferative malignant cells. PBK/TOPK was confirmed to be associated with the development, progression, and metastasis of malignancies. Therefore, it is a potential therapeutic target in cancer therapy. Many studies have been conducted to explore the clinical applicability of potent PBK/TOPK inhibitors. However, PBK/TOPK has also been shown to be overexpressed in normal proliferative cells, including sperm and neural precursor cells in the subventricular zone of the adult brain, as well as under pathological conditions, such as ischemic tissues, including the heart, brain, and kidney, and plays important roles in their physiological functions, including proliferation and self-renewal. Thus, more research is warranted to further our understanding of PBK/TOPK inhibitors before we can consider their applicability in clinical practice. In this study, we first review the findings, general features, and signaling mechanisms involved in the regulation of mitosis and cell cycle. We then review the functions of PBK/TOPK in pathological conditions, including tumors and ischemic conditions in the heart, brain, and kidney. Finally, we summarize the advances in potent and selective inhibitors and describe the potential use of PBK/TOPK inhibitors in clinical settings.
Collapse
|