1
|
Wu Z, Peng Y, Chen W, Xia F, Song T, Ke Q. Lactylation-driven transcriptional activation of FBXO33 promotes gallbladder cancer metastasis by regulating p53 polyubiquitination. Cell Death Dis 2025; 16:144. [PMID: 40021626 PMCID: PMC11871038 DOI: 10.1038/s41419-025-07372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 03/03/2025]
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary tract and is often prone to early distant metastasis. However, the mechanisms underlying GBC's invasive metastasis remain unclear. This study identified that F-box only protein 33 (FBXO33) expression is significantly elevated in GBC and is negatively associated with patient prognosis. In vivo and in vitro experiments demonstrated that knockdown of FBXO33 inhibits epithelial-mesenchymal transition (EMT) progression in GBC, while overexpression of FBXO33 promotes EMT progression. Mechanistically, FBXO33 regulates EMT progression by modulating the polyubiquitination of p53 at K291 and K292. Moreover, the upregulation of FBXO33 in GBC is driven by transcriptional regulation mediated by Yin Yang-1 (YY1). The lactylation modification of YY1 at K183 was found to be essential for the transcriptional activation of FBXO33. These findings underscore the role of the lactylation-driven FBXO33-p53 axis in promoting the invasive metastasis of GBC.
Collapse
Affiliation(s)
- Zhenheng Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - You Peng
- The Third Affiliated Hospital of Sun Yat-sen University, Zhaoqing Hospital, Health Management Center, Zhaoqing, 526070, Guangdong, China
| | - Wen Chen
- Department of Hepatobiliary Surgery, Fuzhou First Hospital Affiliated with Fujian Medical University, Fuzhou, 350009, Fujian, China
| | - Feng Xia
- Department of Hepatic Surgery Center, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Tieshan Song
- The Basic Medical School, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Qiming Ke
- The Basic Medical School, Hubei University of Science and Technology, Xianning, 437100, Hubei, China.
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Ni L, Li H, Cui Y, Xiong W, Chen S, Huang H, Wang Z, Zhao H, Wang B. Construction of a circadian rhythm-related gene signature for predicting the prognosis and immune infiltration of breast cancer. Front Mol Biosci 2025; 12:1540672. [PMID: 39981438 PMCID: PMC11839441 DOI: 10.3389/fmolb.2025.1540672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Objectives In this study, we constructed a model based on circadian rhythm associated genes (CRRGs) to predict prognosis and immune infiltration in patients with breast cancer (BC). Materials and methods By using TCGA and CGDB databases, we conducted a comprehensive analysis of circadian rhythm gene expression and clinicopathological data. Three different machine learning algorithms were used to screen out the characteristic circadian genes associated with BC prognosis. On this basis, a circadian gene prediction model about BC prognosis was constructed and validated. We also evaluated the association of the model's risk score with immune cells and immune checkpoint genes, and analyzed prognostic genes and drug sensitivity in this model. Results We screened 62 DEGs, including 30 upregulated genes and 32 downregulated genes, and performed GO and KEGG analysis on them. The above 62 DEGs were included in Cox analysis, LASSO regression, Random Forest and SVMV-RFE, respectively, and then the intersection was used to obtain 5 prognostic related characteristic genes (SUV39H2, OPN4, RORB, FBXL6 and SIAH2). The Risk Score of each sample was calculated according to the expression level and risk coefficient of 5 genes, Risk Score= (SUV39H2 expression level ×0.0436) + (OPN4 expression level ×1.4270) + (RORB expression level ×0.1917) + (FBXL6 expression level ×0.3190) + (SIAH2 expression level × -0.1984). Conclusion SUV39H2, OPN4, RORB and FBXL6 were positively correlated with Risk Score, while SIAH2 was negatively correlated with Risk Score. The above five circadian rhythm genes can construct a risk model for predicting the prognosis and immune invasion of BC.
Collapse
Affiliation(s)
- Lin Ni
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - He Li
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Yanqi Cui
- Department of Cardiothoracic surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Wanqiu Xiong
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Shuming Chen
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Hancong Huang
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
| | - Zhiwei Wang
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Hu Zhao
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
- Department of General Surgery, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Bing Wang
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of Joint Logistics Support Force, PLA, Fuzhou, China
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
- Department of General Surgery, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| |
Collapse
|
3
|
Tao D, Lou S, Huang W, Sun K, Li J, Wang Z, Pi Y, Zhao Y, Wen J, Xie Q, Meng F, Lou G. Clinical and prognostic significance of FBXL6 expression in ovarian cancer. Gene 2025; 933:148978. [PMID: 39368786 DOI: 10.1016/j.gene.2024.148978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE Growing evidence indicates that F-box and leucine-rich repeat protein 6 (FBXL6) is associated with the progression of various cancers, including gastric cancer, hepatocellular carcinoma, and colorectal cancer. This study focuses on the prognostic significance of FBXL6 in OC. METHODS Differential levels of FBXL6 in multiple cancers were evaluated using the TCGA and GSE26712 databases. We screened FBXL6-related differentially expressed genes using the GSE63885 dataset and conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways analysis. The genes that associate with FBXL6 were screened using the "limma" package, the STRING database, and Cytoscape software, and the association was validated through Gene Expression Profiling Interactive Analysis. The potential substrates of FBXL6 were predicted using UbiBrowser2.0 database. FBXL6 protein levels in 84 OC samples were evaluated using immunohistochemistry. The prognostic significance of FBXL6 was explored using Kaplan-Meier and Cox regression analyses. Based on the Cox regression results, an FBXL6-based nomogram that can predict the overall survival (OS) rate were constructed. Moreover, we examined the net benefits and discriminative ability of the nomogram using the decision curve analysis (DCA), calibration plots, and receiver operating characteristic (ROC) curve. RESULTS FBXL6 was elevated in OC tissues, and the overexpression of FBXL6 was linked to poor prognosis in OC patients. The ROC and DCA curves indicated that the prognostic value of the FBXL6-based nomogram model was superior to that of FBXL6, age, and FIGO stage alone. CONCLUSIONS Elevated FBXL6 expression was an independent factor for OC, and an easily applied nomogram was developed to predict OS in OC patients.
Collapse
Affiliation(s)
- Dianxin Tao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Shenghan Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Wei Huang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Kaidi Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Jian Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Zhiqiang Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Yanan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Yue Zhao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Jinglin Wen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Qin Xie
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Fanling Meng
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| |
Collapse
|
4
|
Ma HY, Cao JM, Zhang YY, Yang JS, Wang X, Yu Y. The Clinical Prediction Value of the Ubiquitination Model Reflecting the Microenvironment Infiltration and Drug Sensitivity in Breast Cancer. J Cancer 2025; 16:784-801. [PMID: 39781342 PMCID: PMC11705054 DOI: 10.7150/jca.101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The ubiquitin-proteasome system influences cancer progression through multiple mechanisms. Due to the extensive proteasomal modifications observed in cancer tissues, ubiquitination is closely related to various biological functions with cancer. However, the roles of ubiquitin-related genes (UbRGs) in breast cancer (BC) have not been thoroughly investigated. In this study, we retrieved 763 reliable UbRGs and identified a potential prognostic signature for breast cancer patients. Additionally, we analyzed eight overall survival-associated UbRGs using univariate Cox proportional hazard regression in the Cancer Genome Atlas (TCGA) database. Subsequently, we used Lasso-Cox risk regression analysis to generate prognostic characteristics of UbRGs associated with overall survival (OS), validated in an external cohort (GSE158309). Next, we compared differences in tumor microenvironment and drug sensitivity between subgroups, describing the potential impact of UbRGs on the landscape of the tumor immune microenvironment and their predictive significance for therapeutic resistance to different strategies. Furthermore, a nomogram model containing eight genes, histology, subtype, T status, N status, and the American Joint Committee on Cancer (AJCC) stage was constructed. Finally, in vitro and in vivo experiments validated the effects of FBXL6 and PDZRN3 on breast cancer development. In conclusion, we demonstrate that ubiquitin-related genes are closely associated with breast cancer prognosis, immune environment, and drug sensitivity. Our results offer a new insight into breast cancer treatment.
Collapse
Affiliation(s)
- Hai-Yan Ma
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jun-Ming Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuan-Yuan Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jin-Shuo Yang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
5
|
Niazi S, Kavana CP, Aishwarya HK, Dharmashekar C, Jain A, Wani TA, Shivamallu C, Purohit MN, Kollur SP. Synthesis, characterization, and anti-cancer potential of novel p53-mediated Mdm2 and Pirh2 modulators: an integrated In silico and In vitro approach. Front Chem 2024; 12:1366370. [PMID: 39081544 PMCID: PMC11286573 DOI: 10.3389/fchem.2024.1366370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction: Leukemia is a global health concern that requires alternative treatments due to the limitations of the FDA-approved drugs. Our focus is on p53, a crucial tumor suppressor that regulates cell division. It appears possible to stabilize p53 without causing damage to DNA by investigating dual-acting inhibitors that target both ligases. The paper aims to identify small molecule modulators of Mdm2 and Pirh2 by using 3D structural models of p53 residues and to further carry out the synthesis and evaluation of hit candidates for anti-cancer potency by in vitro and in silico studies. Methods: We synthesized structural analogues of MMs02943764 and MMs03738126 using a 4,5-(substituted) 1,2,4-triazole-3-thiols with 2-chloro N-phenylacetamide in acetone with derivatives of PAA and PCA were followed. Cytotoxicity assays, including MTT, Trypan Blue Exclusion, and MTS assays, were performed on cancer cell lines. Anti-proliferation activity was evaluated using K562 cells. Cell cycle analysis and protein expression studies of p53, Mdm2, and Pirh2 were conducted using flow cytometry. Results: As for results obtained from our previous studies MMs02943764, and MMs03738126 were selected among the best-fit hit molecules whose structural analogues were further subjected to molecular docking and dynamic simulation. Synthesized compounds exhibited potent anti-proliferative effects, with PAC showing significant cytotoxicity against leukemia cells. PAC induced cell cycle arrest and modulated p53, Mdm2, and Pirh2 protein expressions in K562 cells. Molecular docking revealed strong binding affinity of PAC to p53 protein, further confirmed by molecular dynamics simulation. Discussion: The study presents novel anticancer compounds targeting the p53 ubiquitination pathway, exemplified by PAC. Future perspectives involve further optimization and preclinical studies to validate PAC's potential as an effective anticancer therapy.
Collapse
Affiliation(s)
- Sarfaraj Niazi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, India
| | - C. P. Kavana
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, India
| | - H. K. Aishwarya
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, India
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, India
| | - Madhusudan N. Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, India
| |
Collapse
|
6
|
Lin Q, Zhu J, Zhu W, Zhu H, Li M, Zhao J, Jia S, Nie S. Prognostic value and drug sensitivity of F‑box and leucine‑rich repeat protein 6 in glioma. Oncol Lett 2024; 28:320. [PMID: 38807668 PMCID: PMC11130608 DOI: 10.3892/ol.2024.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/30/2024] Open
Abstract
Gliomas are highly malignant and invasive tumors lacking clear boundaries. Previous bioinformatics and experimental analyses have indicated that F-box and leucine-rich repeat protein 6 (FBXL6), a protein crucial for the cell cycle and tumorigenesis, is highly expressed in certain types of tumors. The high expression level of FBXL6 is reported to promote tumor growth and adversely affect patient survival. However, the molecular mechanism, prognostic value and drug sensitivity of FBXL6 in glioma remain unclear. To address this, the present study analyzed FBXL6 expression in gliomas, utilizing data from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Analysis of FBXL6 mRNA expression levels, combined with patient factors such as age, sex and tumor grade using Kaplan-Meier plots and nomograms, demonstrated a strong correlation between FBXL6 expression and glioma progression. Co-expression networks provided further insights into the biological function of FBXL6. Additionally, using CIBERSORT and TISDB tools, the correlation between FBXL6 expression correlation tumor-infiltrating immune cells and immune genes was demonstrated to be statistically significant. These findings were validated by examining FBXL6 mRNA and protein levels in glioma tissues using various techniques, including western blot, reverse transcription-quantitative PCR and immunohistochemistry. These assays demonstrated the role of FBXL6 in glioma progression. Furthermore, drug sensitivity analysis demonstrated a strong correlation between FBXL6 expression and various drugs, which indicated that FBXL6 may potentially act as a future promising therapeutic target in glioma treatment. Therefore, the present study identified FBXL6 as a diagnostic and prognostic marker in patients with gliomas and highlighted its potential role in glioma progression.
Collapse
Affiliation(s)
- Qingyuan Lin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jinchao Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Weiyao Zhu
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Honglin Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Meijun Li
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jiaqi Zhao
- Department of Ultrasound, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, P.R. China
| | - Shouqiang Jia
- Department of Imaging, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250102, P.R. China
| | - Shengdong Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| |
Collapse
|
7
|
Cui Z, Cong M, Yin S, Li Y, Ye Y, Liu X, Tang J. Role of protein degradation systems in colorectal cancer. Cell Death Discov 2024; 10:141. [PMID: 38485957 PMCID: PMC10940631 DOI: 10.1038/s41420-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/18/2024] Open
Abstract
Protein degradation is essential for maintaining protein homeostasis. The ubiquitin‒proteasome system (UPS) and autophagy-lysosome system are the two primary pathways responsible for protein degradation and directly related to cell survival. In malignant tumors, the UPS plays a critical role in managing the excessive protein load caused by cancer cells hyperproliferation. In this review, we provide a comprehensive overview of the dual roles played by the UPS and autolysosome system in colorectal cancer (CRC), elucidating their impact on the initiation and progression of this disease while also highlighting their compensatory relationship. Simultaneously targeting both protein degradation pathways offers new promise for enhancing treatment efficacy against CRC. Additionally, apoptosis is closely linked to ubiquitination and autophagy, and caspases degrade proteins. A thorough comprehension of the interplay between various protein degradation pathways is highly important for clarifying the mechanism underlying the onset and progression of CRC.
Collapse
Affiliation(s)
- Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, 024000, China
| | - Yuqi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yuguang Ye
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Liu
- Cardiovascular Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, China.
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
8
|
Pu T, Jin Y, Tang C, Fu J, Zhang C, Su B, Cao A. An innovative predictive model for cervical cancer constructed around a gene profile associated with cholesterol metabolism. ENVIRONMENTAL TOXICOLOGY 2024; 39:1055-1071. [PMID: 37694961 DOI: 10.1002/tox.23969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
Cholesterol metabolism is crucial for cell survival and cancer progression. The prognostic patterns of genes linked to cholesterol metabolism (CMAGs) in CESC, however, have received very little attention in research. From public databases, TCGA-CESC cohorts with mRNA expression patterns and the accompanying clinical information of patients were gathered. Consensus clustering was used to find the molecular subtype connected to cholesterol metabolism. In the TCGA-CESC cohort, a predictive risk model with 28 CMAGs was created using Lasso-Cox regression. The function enrichment analysis between groups with high-and low-risk were investigated by employing GO, KEGG, and GSVA software. The immune cell infiltration was analyzed using ESTIMATE, CIBERSORT, and MCPCOUNTER methods. Finally, we select 7 genes in risk model for further multivariate Cox analysis, and ultimately a hub gene, CHIT1, was identified. Meanwhile, the function of CHIT1 was preliminarily verified in cell and mice tumor model. In conclusion, the abundance of the CHIT1 gene might be beneficial for forecasting the prognosis of CESC, demonstrating that cholesterol metabolism could be a promising treatment target for CESC.
Collapse
Affiliation(s)
- Tengda Pu
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Ying Jin
- Department of Ultrasound, Hainan Cancer Hospital, Haikou, China
| | - Chuai Tang
- Department of Rehabilitation Therapeutics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jingjing Fu
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Chengyuan Zhang
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Bingfeng Su
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| | - Aie Cao
- Department of Gynecology, Hainan Cancer Hospital, Haikou, China
| |
Collapse
|
9
|
Łuczkowska K, Kulig P, Baumert B, Machaliński B. Vitamin D and K Supplementation Is Associated with Changes in the Methylation Profile of U266-Multiple Myeloma Cells, Influencing the Proliferative Potential and Resistance to Bortezomib. Nutrients 2023; 16:142. [PMID: 38201971 PMCID: PMC10780809 DOI: 10.3390/nu16010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that, despite recent advances in therapy, continues to pose a major challenge to hematologists. Currently, different classes of drugs are applied to treat MM, among others, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies. Most of them participate in an interplay with the immune system, hijacking its effector functions and redirecting them to anti-MM activity. Therefore, adjuvant therapies boosting the immune system may be potentially beneficial in MM therapy. Vitamin D (VD) and vitamin K (VK) have multiple so called "non-classical" actions. They exhibit various anti-inflammatory and anti-cancer properties. In this paper, we investigated the influence of VD and VK on epigenetic alterations associated with the proliferative potential of MM cells and the development of BTZ resistance. Our results showed that the development of BTZ resistance is associated with a global decrease in DNA methylation. On the contrary, both control MM cells and BTZ-resistant MM cells exposed to VD alone and to the combination of VD and VK exhibit a global increase in methylation. In conclusion, VD and VK in vitro have the potential to induce epigenetic changes that reduce the proliferative potential of plasma cells and may at least partially prevent the development of resistance to BTZ. However, further ex vivo and in vivo studies are needed to confirm the results and introduce new supplementation recommendations as part of adjuvant therapy.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (B.M.)
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (B.M.)
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (B.M.)
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
10
|
Xiong HJ, Yu HQ, Zhang J, Fang L, Wu D, Lin XT, Xie CM. Elevated FBXL6 activates both wild-type KRAS and mutant KRAS G12D and drives HCC tumorigenesis via the ERK/mTOR/PRELID2/ROS axis in mice. Mil Med Res 2023; 10:68. [PMID: 38124228 PMCID: PMC10731709 DOI: 10.1186/s40779-023-00501-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Kirsten rat sarcoma (KRAS) and mutant KRASG12D have been implicated in human cancers, but it remains unclear whether their activation requires ubiquitination. This study aimed to investigate whether and how F-box and leucine-rich repeat 6 (FBXL6) regulates KRAS and KRASG12D activity in hepatocellular carcinoma (HCC). METHODS We constructed transgenic mouse strains LC (LSL-Fbxl6KI/+;Alb-Cre, n = 13), KC (LSL-KrasG12D/+;Alb-Cre, n = 10) and KLC (LSL-KrasG12D/+;LSL-Fbxl6KI/+;Alb-Cre, n = 12) mice, and then monitored HCC for 320 d. Multiomics approaches and pharmacological inhibitors were used to determine oncogenic signaling in the context of elevated FBXL6 and KRAS activation. Co‑immunoprecipitation (Co-IP), Western blotting, ubiquitination assay and RAS activity detection assay were employed to investigate the underlying molecular mechanism by which FBXL6 activates KRAS. The pathological relevance of the FBXL6/KRAS/extracellular signal-regulated kinase (ERK)/mammalian target of rapamycin (mTOR)/proteins of relevant evolutionary and lymphoid interest domain 2 (PRELID2) axis was evaluated in 129 paired samples from HCC patients. RESULTS FBXL6 is highly expressed in HCC as well as other human cancers (P < 0.001). Interestingly, FBXL6 drives HCC in transgenic mice. Mechanistically, elevated FBXL6 promotes the polyubiquitination of both wild-type KRAS and KRASG12D at lysine 128, leading to the activation of both KRAS and KRASG12D and promoting their binding to the serine/threonine-protein kinase RAF, which is followed by the activation of mitogen-activated protein kinase kinase (MEK)/ERK/mTOR signaling. The oncogenic activity of the MEK/ERK/mTOR axis relies on PRELID2, which induces reactive oxygen species (ROS) generation. Furthermore, hepatic FBXL6 upregulation facilitates KRASG12D to induce more severe hepatocarcinogenesis and lung metastasis via the MEK/ERK/mTOR/PRELID2/ROS axis. Dual inhibition of MEK and mTOR effectively suppresses tumor growth and metastasis in this subtype of cancer in vivo. In clinical samples, FBXL6 expression positively correlates with p-ERK (χ2 = 85.067, P < 0.001), p-mTOR (χ2 = 66.919, P < 0.001) and PRELID2 (χ2 = 20.891, P < 0.001). The Kaplan-Meier survival analyses suggested that HCC patients with high FBXL6/p-ERK levels predicted worse overall survival (log‑rank P < 0.001). CONCLUSIONS FBXL6 activates KRAS or KRASG12D via ubiquitination at the site K128, leading to activation of the ERK/mTOR/PRELID2/ROS axis and tumorigenesis. Dual inhibition of MEK and mTOR effectively protects against FBXL6- and KRASG12D-induced tumorigenesis, providing a potential therapeutic strategy to treat this aggressive subtype of liver cancer.
Collapse
Affiliation(s)
- Hao-Jun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
11
|
Li C, Li Y, Wang W, Scimeca M, Melino G, Du R, Shi Y. Deer antlers: the fastest growing tissue with least cancer occurrence. Cell Death Differ 2023; 30:2452-2461. [PMID: 37864097 PMCID: PMC10733395 DOI: 10.1038/s41418-023-01231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Deer antlers are a bony organ solely able to acquired distinct unique attributes during evolution and all these attributes are against thus far known natural rules. One of them is as the fastest animal growing tissue (2 cm/day), they are remarkably cancer-free, despite high cell division rate. Although tumor-like nodules on the long-lived castrate antlers in some deer species do occur, but they are truly benign in nature. In this review, we tried to find the answer to this seemingly contradictory phenomenon based on the currently available information and give insights into possible clinic application. The antler growth center is located in its tip; the most intensive dividing cells are resident in the inner layer of reserve mesenchyme (RM), and these cells are more adopted to osteosarcoma rather than to normal bone tissues in gene expression profiles but acquire their energy mainly through aerobic oxidative phosphorylation pathway. To counteract propensity of neoplastic transformation, antlers evolved highly efficient apoptosis exactly in the RM, unparalleled by any known tissues; and annual wholesale cast to jettison the corps. Besides, some strong cancer suppressive genes including p53 cofactor genes and p53 regulator genes are highly positively selected by deer, which would have certainly contributed to curb tumorigenesis. Thus far, antler extracts and RM cells/exosomes have been tried on different cancer models either in vitro or in vivo, and all achieved positive results. These positive experimental results together with the anecdotal folklore that regular consumption of velvet antler is living with cancer-free would encourage us to test antlers in clinic settings.
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Yan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wenying Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Li F, He HY, Fan ZH, Li CM, Gong Y, Wang XJ, Xiong HJ, Xie CM, Bie P. Silencing of FAM111B inhibited proliferation, migration and invasion of hepatoma cells through activating p53 pathway. Dig Liver Dis 2023; 55:1679-1689. [PMID: 37270349 DOI: 10.1016/j.dld.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND The function of Family with sequence similarity 111 member B (FAM111B) has been reported in multiple malignancies, but its involvement in occurrence and development of hepatocellular carcinoma (HCC) is still unclear. PURPOSE To investigate the role of FAM111B in HCC and explore the potential molecular mechanism. METHODS We examined the mRNA level of FAM111B via qPCR and protein level via immunohistochemistry in human HCC tissues. siRNA was used to construct a FAM111B-knockdown model in HCC cell lines. CCK-8, colony formation, transwell, and wound healing assays were performed to investigate the effect of FAM111B on proliferation, migration and invasion of HCC cell. Gene Set Enrichment Analysis, western blotting, and flow cytometry were carried out to find the related molecular mechanism. RESULTS Human HCC tumor tissues exhibited higher expression of FAM111B, and high FAM111B expression was associated with poor prognosis. Vitro assays demonstrated that knockdown of FAM111B greatly repressed proliferation, migration and invasion of HCC cells. Furthermore, silencing of FAM111B significantly resulted in cell cycle arrest at G0/G1 and downregulation of epithelial-mesenchymal transition (EMT)-related proteins MMP7 and MMP9 via activation of p53 pathway. CONCLUSION FAM111B played an essential role in promoting HCC development by regulation of p53 pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, PR China
| | - Hong-Ye He
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, PR China
| | - Zhi-Hao Fan
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, PR China
| | - Chun-Ming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yi Gong
- Department of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Xiao-Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Hao-Jun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China.
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China.
| | - Ping Bie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, PR China.
| |
Collapse
|
13
|
Meng L, Hu YT, Xu AM. F-box and leucine-rich repeat 6 promotes gastric cancer progression via the promotion of epithelial-mesenchymal transition. World J Gastrointest Oncol 2023; 15:490-503. [PMID: 37009323 PMCID: PMC10052668 DOI: 10.4251/wjgo.v15.i3.490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/06/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND F-box and leucine-rich repeat 6 (FBXL6) have reportedly been associated with several cancer types. However, the role and mechanisms of FBXL6 in gastric cancer (GC) require further elucidation.
AIM To investigate the effect of FBXL6 in GC tissues and cells and the underlying mechanisms.
METHODS TCGA and GEO database analysis was performed to evaluate the expression of FBXL6 in GC tissues and adjacent normal tissues. Reverse transcription-quantitative polymerase chain reaction, immunofluorescence, and western blotting were used to detect the expression of FBXL6 in GC tissue and cell lines. Cell clone formation, 5-ethynyl-2’-deoxyuridine (EdU) assays, CCK-8, transwell migration assay, and wound healing assays were performed to evaluate the malignant biological behavior in GC cell lines after transfection with FBXL6-shRNA and the overexpression of FBXL6 plasmids. Furthermore, in vivo tumor assays were performed to prove whether FBXL6 promoted cell proliferation in vivo.
RESULTS FBXL6 expression was upregulated more in tumor tissues than in adjacent normal tissues and positively associated with clinicopathological characteristics. The outcomes of CCK-8, clone formation, and Edu assays demonstrated that FBXL6 knockdown inhibited cell proliferation, whereas upregulation of FBXL6 promoted proliferation in GC cells. Additionally, the transwell migration assay revealed that FBXL6 knockdown suppressed migration and invasion, whereas the overexpression of FBXL6 showed the opposite results. Through the subcutaneous tumor implantation assay, it was evident that the knockdown of FBXL6 inhibited GC graft tumor growth in vivo. Western blotting showed that the effects of FBXL6 on the expression of the proteins associated with the epithelial-mesenchymal transition-associated proteins in GC cells.
CONCLUSION Silencing of FBXL6 inactivated the EMT pathway to suppress GC malignancy in vitro. FBXL6 can potentially be used for the diagnosis and targeted therapy of patients with GC.
Collapse
Affiliation(s)
- Lei Meng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yu-Ting Hu
- Department of Immunology, College of Basic Medicine, Anhui Medical University, Hefei 230022, Anhui Province, China
| | - A-Man Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
14
|
Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discov 2023; 9:26. [PMID: 36878899 PMCID: PMC9988979 DOI: 10.1038/s41421-022-00515-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/30/2022] [Indexed: 03/08/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. However, it is not well known how metabolism affects cancer progression. We identified that metabolic enzyme acyl-CoA oxidase 1 (ACOX1) suppresses colorectal cancer (CRC) progression by regulating palmitic acid (PA) reprogramming. ACOX1 is highly downregulated in CRC, which predicts poor clinical outcome in CRC patients. Functionally, ACOX1 depletion promotes CRC cell proliferation in vitro and colorectal tumorigenesis in mouse models, whereas ACOX1 overexpression inhibits patient-derived xenograft growth. Mechanistically, DUSP14 dephosphorylates ACOX1 at serine 26, promoting its polyubiquitination and proteasomal degradation, thereby leading to an increase of the ACOX1 substrate PA. Accumulated PA promotes β-catenin cysteine 466 palmitoylation, which inhibits CK1- and GSK3-directed phosphorylation of β-catenin and subsequent β-Trcp-mediated proteasomal degradation. In return, stabilized β-catenin directly represses ACOX1 transcription and indirectly activates DUSP14 transcription by upregulating c-Myc, a typical target of β-catenin. Finally, we confirmed that the DUSP14-ACOX1-PA-β-catenin axis is dysregulated in clinical CRC samples. Together, these results identify ACOX1 as a tumor suppressor, the downregulation of which increases PA-mediated β-catenin palmitoylation and stabilization and hyperactivates β-catenin signaling thus promoting CRC progression. Particularly, targeting β-catenin palmitoylation by 2-bromopalmitate (2-BP) can efficiently inhibit β-catenin-dependent tumor growth in vivo, and pharmacological inhibition of DUSP14-ACOX1-β-catenin axis by Nu-7441 reduced the viability of CRC cells. Our results reveal an unexpected role of PA reprogramming induced by dephosphorylation of ACOX1 in activating β-catenin signaling and promoting cancer progression, and propose the inhibition of the dephosphorylation of ACOX1 by DUSP14 or β-catenin palmitoylation as a viable option for CRC treatment.
Collapse
|
15
|
Zhao X, Fang K, Liu X, Yao R, Wang M, Li F, Hao S, He J, Wang Y, Fan M, Huang W, Li Y, Gao C, Lin C, Luo Z. QSER1 preserves the suppressive status of the pro-apoptotic genes to prevent apoptosis. Cell Death Differ 2023; 30:779-793. [PMID: 36371602 PMCID: PMC9984391 DOI: 10.1038/s41418-022-01085-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of the pro-apoptotic genes by the p53 family is a critical step in induction of apoptosis. However, the molecular signaling underlying their suppression remains largely unknown. Here, we report a general role of QSER1 in preventing apoptosis. QSER1 is widely up-regulated in multiple cancers, and its up-regulation correlates with poor clinic outcomes. QSER1 knockdown significantly promotes apoptosis in both p53 wild type and mutant cancer cells. Interestingly, we show that QSER1 and p53 occupy distinct cis-regulatory regions in a common subset of the pro-apoptotic genes, and function antagonistically to maintain their proper expression. Furthermore, we identify a key regulatory DNA element named QSER1 binding site in PUMA (QBP). Deletion of QBP de-represses PUMA and induces apoptosis. Mechanistically, QSER1 functions together with SIN3A to suppress PUMA in a p53-dependent and -independent manner, suggesting that QSER1 inhibition might be a potential therapeutic strategy to induce apoptosis in cancers.
Collapse
Affiliation(s)
- Xiru Zhao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ke Fang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Xiaoxu Liu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ruihuan Yao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Min Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Fanfan Li
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Shaohua Hao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Jingjing He
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Yan Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Menghan Fan
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yiping Li
- Department of Pathology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chun Gao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Nanshan District, Shenzhen, 518063, China.
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
| | - Zhuojuan Luo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Nanshan District, Shenzhen, 518063, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
16
|
Panatta E, Butera A, Celardo I, Leist M, Melino G, Amelio I. p53 regulates expression of nuclear envelope components in cancer cells. Biol Direct 2022; 17:38. [PMID: 36461070 PMCID: PMC9716746 DOI: 10.1186/s13062-022-00349-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Nuclear organisation and architecture are essential for the maintenance of genomic integrity as well as for the epigenetic regulations and gene expression. Disruption of lamin B1, major structural and functional member of the nuclear lamina, is observed in human laminopathies and in sporadic cancers, and leads to chromosomal rearrangements and alterations of gene expression. The tumour suppressor p53 has been shown to direct specific transcriptional programmes by regulating lamin A/C, however its relationship with lamin B1 has remained elusive. Here, we show that loss of p53 correlates with increased expression of members belonging to the nuclear pore complex and nuclear lamina and directly regulates transcription of lamin B1. We show that the genomic loci of a fraction of p53-dependent genes physically interact with lamin B1 and Nup210. This observation provides a possible mechanistic explanation for the p53-depedent changes of chromatin accessibility, with the consequent influence of expression and rearrangement of these genomic sites in pancreatic cancer. Overall, these data suggest a potential functional and biochemical regulatory network connecting p53 and nuclear architecture.
Collapse
Affiliation(s)
- Emanuele Panatta
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessio Butera
- grid.9811.10000 0001 0658 7699Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivana Celardo
- grid.9811.10000 0001 0658 7699Division of in-Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- grid.9811.10000 0001 0658 7699Division of in-Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gerry Melino
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ivano Amelio
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy ,grid.9811.10000 0001 0658 7699Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
17
|
Yu Y, Yao W, Wang T, Xue W, Meng Y, Cai L, Jian W, Yu Y, Zhang C. FBXL6 depletion restrains clear cell renal cell carcinoma progression. Transl Oncol 2022; 26:101550. [PMID: 36183674 PMCID: PMC9526225 DOI: 10.1016/j.tranon.2022.101550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND F-box proteins play important roles in cell cycle and tumorigenesis. However, its prognostic value and molecular function in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, we established a survival model to evaluate the prognosis of patients with ccRCC using the F-box gene signature and investigated the function of FBXL6 in ccRCC. METHODS Comprehensive bioinformatics analyses were used to identify differentially expressed F-box and hub genes associated with ccRCC carcinogenesis. Based on the F-box gene signature, we constructed a risk model and nomogram to predict the overall survival (OS) of patients with ccRCC and assist clinicians in decision-making. Finally, we verified the function and underlying molecular mechanisms of FBXL6 in ccRCC using CCK-8 and EdU assays, flow cytometry, and subcutaneous xenografts. RESULTS A risk model based on FBXO39, FBXL6, FBXO1, and FBXL16 was developed. In addition, we drew a nomogram based on the risk score and clinical features to assess the prognosis of patients with ccRCC. Subsequently, we identified FBXL6 as an independent prognostic marker that was highly expressed in ccRCC cell lines. In vivo and in vitro assays revealed that the depletion of FBXL6 inhibited cell proliferation and induced apoptosis. We also demonstrated that SP1 regulated the expression of FBXL6. CONCLUSIONS FBXL6 was first identified as a diagnostic and prognostic marker in patients with ccRCC. Loss of FBXL6 attenuates proliferation and induces apoptosis in ccRCC cells. SP1 was also found to regulate the expression of FBXL6.
Collapse
Affiliation(s)
- Yongchun Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wenhao Yao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tengda Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wei Xue
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yuyang Meng
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Licheng Cai
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wengang Jian
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yipeng Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Cui K, Gong L, Zhang H, Chen Y, Liu B, Gong Z, Li J, Wang Y, Sun S, Li Y, Zhang Q, Cao Y, Li Q, Fei B, Huang Z. EXOSC8 promotes colorectal cancer tumorigenesis via regulating ribosome biogenesis-related processes. Oncogene 2022; 41:5397-5410. [PMID: 36348012 DOI: 10.1038/s41388-022-02530-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Extensive protein synthesis is necessary for uncontrolled cancer cell proliferation, requiring hyperactive ribosome biogenesis. Our previous Pan-cancer study has identified EXOSC8 as a potential copy number variation (CNV)-driven rRNA metabolism-related oncogene in colorectal cancer (CRC). Herein, we further investigated proliferation-prompting functions and mechanisms of EXOSC8 in CRC by performing in silico analyses and wet-lab experiments. We uncovered that increased EXOSC8 expression and CNV levels are strongly associated with ribosome biogenesis-related factor levels in CRC, including ribosome proteins (RPs), eukaryotic translation initiation factors and RNA polymerase I/III. EXOSC8 silence decreases nucleolar protein and proliferation marker levels, as well as rRNA/DNA and global protein syntheses. Clinically, EXOSC8 is upregulated across human cancers, particularly CNV-driven upregulation in CRC was markedly associated with poor clinical outcomes. Mechanistically, EXOSC8 knockdown increased p53 levels in CRC, and the oncogenic proliferation phenotypes of EXOSC8 depended on p53 in vitro and in vivo. We discovered that EXOSC8 knockdown in CRC cells triggers ribosomal stress, nucleolar RPL5/11 being released into the nucleoplasm and "hijacking" Mdm2 to block its E3 ubiquitin ligase function, thus releasing and activating p53. Furthermore, our therapeutic experiments provided initial evidence that EXOSC8 might serve as a potential therapeutic target in CRC. Our findings revealed, for the first time, that the RNA exosome gene (EXOSC8) promotes CRC tumorigenesis by regulating cancer-related ribosome biogenesis in CRC. This study further extends our previous Pan-cancer study of the rRNA metabolism-related genes. The inhibition of EXOSC8 is a novel therapeutic strategy for the RPs-Mdm2-p53 ribosome biogenesis surveillance pathway in CRC.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
| | - Liang Gong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Han Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Ying Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Bingxin Liu
- The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zhicheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Jiuming Li
- Key Laboratory of Environment Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yuanben Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Yajun Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453000, China
| | - Qiang Zhang
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Qilin Li
- Computer Vision Lab, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bojian Fei
- Department of Surgical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
| |
Collapse
|
19
|
Feng G, Sun H, Piao M. FBXL6 is dysregulated in keloids and promotes keloid fibroblast growth by inducing c-Myc expression. Int Wound J 2022; 20:131-139. [PMID: 35606330 PMCID: PMC9797926 DOI: 10.1111/iwj.13847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 01/07/2023] Open
Abstract
C-MYC-mediated keloid fibroblasts proliferation and collagen deposit may contribute to the development of keloids. F-box and leucine-rich repeat protein 6 (FBXL6) is reported to be involved in tumour progression, while the role of FBXL6 in keloid fibroblasts is not deciphered. Normal control skins, hypertrophic scars and keloid tissues were collected and prepared for FBXL6 detection. FBXL6 short hairpin RNAs (shRNAs) or FBXL6 over-expression plasmids were transfected into keloid fibroblasts, and then c-MYC plasmids were further transfected. Cell viability was assayed with a Cell-Counting Kit-8 kit. The relative expression of FBXL6, Cyclin A1, Cyclin D2, Cyclin E1 and Collagen I was detected with real-time PCR and Western blot. Elevated FBXL6 expression could be observed in keloid tissues and hypertrophic scars. FBXL6 shRNAs transfection could inhibit the viability of keloid fibroblasts with diminished c-MYC expression and down-regulated Cyclin A1, Cyclin D2, Cyclin E1 and Collagen I expression. At the same time, overexpressed FBXL6 could promote the proliferation of keloid fibroblasts. Overexpression of c-MYC could promote the proliferation of keloid fibroblasts reduced by FBXL6 shRNAs with up-regulated Cyclin A1 and Collagen I expression. FBXL6 could promote the growth of keloid fibroblasts by inducing c-MYC expression, which could be targeted in keloids treatment.
Collapse
Affiliation(s)
- Guangdong Feng
- Department of DermatologyThe Affiliated Wuxi No.2 People's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| | - Hui Sun
- Department of DermatologyThe Affiliated Wuxi No.2 People's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| | - Meishan Piao
- Department of DermatologyThe Affiliated Wuxi No.2 People's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| |
Collapse
|
20
|
Xiang G, Wang S, Chen L, Song M, Song X, Wang H, Zhou P, Ma X, Yu J. UBR5 targets tumor suppressor CDC73 proteolytically to promote aggressive breast cancer. Cell Death Dis 2022; 13:451. [PMID: 35551175 PMCID: PMC9098409 DOI: 10.1038/s41419-022-04914-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
UBR5, a HECT-domain E3 ubiquitin ligase, is an attractive therapeutic target for aggressive breast cancers. Defining the substrates of UBR5 is crucial for scientific understanding and clinical intervention. Here, we demonstrate that CDC73, a component of the RNA polymerase II-associated factor 1 complex, is a key substrate that impedes UBR5's profound tumorigenic and metastatic activities in triple-negative breast cancer (TNBC) via mechanisms of regulating the expression of β-catenin and E-cadherin, tumor cell apoptosis and CD8+ T cell infiltration. Expression of CDC73 is also negatively associated with the progression of breast cancer patients. Moreover, we show that UBR5 destabilizes CDC73 by polyubiquitination at Lys243, Lys247, and Lys257 in a non-canonical manner that is dependent on the non-phosphorylation state of CDC73 at Ser465. CDC73 could serve as a molecular switch to modulate UBR5's pro-tumor activities and may provide a potential approach to developing breast cancer therapeutic interventions.
Collapse
Affiliation(s)
- Gang Xiang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuxuan Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiaoxu Song
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huan Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jing Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
21
|
Zhu Y, Gu L, Lin X, Zhou X, Lu B, Liu C, Lei C, Zhou F, Zhao Q, Prochownik EV, Li Y. USP19 exacerbates lipogenesis and colorectal carcinogenesis by stabilizing ME1. Cell Rep 2021; 37:110174. [PMID: 34965422 DOI: 10.1016/j.celrep.2021.110174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022] Open
Abstract
Lipogenesis plays a critical role in colorectal carcinogenesis, but precisely how remains unclear. Here, we show that ERK2 phosphorylates ME1 at T103, thereby inhibiting its polyubiquitination and proteasomal degradation and enhancing its interaction with USP19. USP19 antagonizes RNF1-mediated ME1 degradation by deubiquitination, which in turn promotes lipid metabolism and NADPH production and suppresses ROS. Meanwhile, ROS dramatically increases PD-L1 mRNA levels through accelerating expression of the transcription factor NRF2. Increased lipid metabolism is correlated with ERK2 activity and colorectal carcinogenesis in human patients. Therefore, the combination of ERK2 inhibitor and anti-PD-L1 antibody significantly inhibits spontaneous and chemically induced colorectal carcinogenesis. Collectively, the USP19-ME1 axis plays a vital role in colorectal carcinogenesis and may also provide a potential therapeutic target.
Collapse
Affiliation(s)
- Yahui Zhu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China.
| | - Li Gu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Xi Lin
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Xinyi Zhou
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Bingjun Lu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Cheng Liu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Caoqi Lei
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071, China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071, China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Youjun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
22
|
Proteasome inhibitors restore the STAT1 pathway and enhance the expression of MHC class I on human colon cancer cells. J Biomed Sci 2021; 28:75. [PMID: 34758826 PMCID: PMC8579664 DOI: 10.1186/s12929-021-00769-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A new strategy, particularly a novel combination, for immunotherapy in microsatellite stable metastatic colorectal cancer (mCRC) treatment needs to be formulated. Studies on the interferon-γ (IFN-γ)/ Janus kinase (JAK)/ signal transducer and activator of transcription (STAT)1 pathway provide new directions in this regard. METHODS Our study applies three colon cancer cell lines, including microsatellite stable (MSS) cell lines, which are SW480 and SW620, and microsatellite instability-high (MSI-H) cell line, which is DLD-1. We compared the expressions of immune surface markers on colon cancer cells in response to IFN-γ. We elucidated these mechanisms, which involved the upregulation of immune surface markers. Furthermore, we examined real-world clinical samples using the PerkinElmer Opal multiplex system and NanoString analysis. RESULTS We established that the baseline expression of major histocompatibility complex (MHC) class I alleles and programmed death-ligand 1 (PD-L1) were generally low in cell line models. The immune surface markers were significantly increased after IFN-γ stimulation on SW480 but were notably unresponsive on the SW620 cell line. We discovered that STAT1 and phosphorylated STAT1 (pSTAT1) were downregulated in the SW620 cell line. We verified that the STAT1/pSTAT1 could be restored through the application of proteasome inhibitors, especially bortezomib. The expression of MHC class I as downstream signals of STAT1 was also up-regulated by proteasome inhibitors. The similar results were reproduced in DLD-1 cell line, which was also initially unresponsive to IFN-γ. In real-world samples of patients with mCRC, we found that higher STAT1 expression in tumor cells was strongly indicative of a highly immunogenic microenvironment, with significantly higher expression levels of MHC class I and PD-L1, not only on tumor cells but also on non-tumor cells. Furthermore, tumor infiltrating lymphocytes (TILs) were increased in the positive-STAT1 group. Through NanoString analysis, we confirmed that the mRNA expressions of IFN-γ, human leukocyte antigen (HLA)-A, HLA-E, and HLA-G were also significantly higher in the positive-STAT1 group than those in the negative-STAT1 group. CONCLUSION Our study provides a novel rationale for the addition of bortezomib, a proteasome inhibitor, into new immunotherapy combinations.
Collapse
|