1
|
Deng J, Zhang J, Su M, Li J, Su Y, Zhong Q, Hu J, Chen Y, Liao S, Lin D, Guo X. Fusobacterium mortiferum and its metabolite 5-aminovaleric acid promote the development of colorectal cancer in obese individuals through Wnt/β-catenin pathway by DKK2. Gut Microbes 2025; 17:2502138. [PMID: 40340623 PMCID: PMC12064068 DOI: 10.1080/19490976.2025.2502138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, with high incidence and mortality rates. An increasing body of research suggests that obesity is a significant risk factor for the development of CRC. Moreover, recent findings have highlighted the close association between the gut microbiota and both obesity and CRC. Despite this, the specific mechanisms by which the gut microbiota influences obesity and CRC remain unclear. This study aims to explore the role of the gut bacterium Fusobacterium mortiferum and its metabolite 5-aminovaleric acid (5-AVA) in the development of obesity and CRC. Our study found that the metabolite 5-aminovaleric acid produced by Fusobacterium mortiferum significantly inhibits the expression of the tumor suppressor DKK2. This inhibition leads to enhanced proliferation of CRC cells. Furthermore, we discovered that Fusobacterium mortiferum and 5-AVA can activate the Wnt/β-catenin signaling pathway by inhibiting DKK2, thereby promoting tumor growth. This finding was validated in CRC mouse models and in vitro experiments. Additional mechanistic studies revealed that 5-AVA interacts with the demethylase KDM6B, affecting the demethylation process of DKK2 and subsequently activating the Wnt/β-catenin signaling pathway. Our study retrospectively collected fecal samples from patients who underwent gastrointestinal endoscopy at the Sixth Affiliated Hospital of Sun Yat-sen University over the past five years. Participants were stratified into a healthy control group and an adenoma group based on the outcomes of their colonoscopies. Following this, we conducted metagenomic analysis to identify differential bacteria, and based on the results, we performed bacterial cultivation and metabolomic profiling. The roles of the targeted bacteria and their metabolites were further validated through animal models and cellular assays, employing techniques such as Western Blot, qPCR, immunohistochemistry, molecular docking simulations, and gene overexpression studies. This study uncovers the potential carcinogenic effects of Fusobacterium mortiferum and 5-AVA in the development of obesity and CRC. Our research emphasizes the complex interplay between the gut microbiota and host metabolism and suggests new directions for future research to explore how modulation of the gut microbiota could prevent and treat CRC.
Collapse
Affiliation(s)
- Jiaxin Deng
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Zhang
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingli Su
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Li
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuping Su
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinghua Zhong
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiancong Hu
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongcheng Chen
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sen Liao
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dezheng Lin
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuefeng Guo
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Garcia-Sanchez JA, Bonnet E, Loubatier C, Doye A, Paillier G, Segui F, Larbret F, Chaintreuil P, Batistic L, Torre C, Deckert M, Polanowska J, Munro P, Boyer L, Visvikis O. Evolutionary conserved regulation of TFEB stability by the E3 ubiquitin ligase WWP2 modulates response to stress in vivo. iScience 2025; 28:111838. [PMID: 39995862 PMCID: PMC11848471 DOI: 10.1016/j.isci.2025.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Transcription factor EB (TFEB) is a key transcription factor that orchestrates the cellular response to stress. Dysregulation of TFEB is associated with a range of human diseases, and understanding the regulatory mechanisms of TFEB is crucial for identifying potential drug targets. In this study, we used Caenorhabditis elegans to screen for E3 ubiquitin ligases regulating the activity of TFEB's homolog, HLH-30, upon pathogenic infection. We identified WWP-1 as a regulator of HLH-30-dependent immune response controlling HLH-30 stability to mediate host defense in vivo. We found that HLH-30 interacts with WWP-1, supporting a model of WWP-1 directly regulating HLH-30. Furthermore, we found that WWP-1's human homolog WWP2 binds TFEB, directly induces TFEB ubiquitination and stabilizes TFEB. Finally, we found that WWP2 is required for TFEB-dependent host response in human monocytes-derived macrophages upon infection. Overall, our work has identified an evolutionarily conserved regulation of TFEB by WWP2 and highlighted its role in modulating stress response.
Collapse
Affiliation(s)
| | - Estelle Bonnet
- Université Côte d’Azur, INSERM, C3M, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Anne Doye
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | - Fabien Segui
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | | | | | - Cédric Torre
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | | | | | | | | |
Collapse
|
3
|
Huang D, Wang J, Chen L, Jiang W, Inuzuka H, Simon DK, Wei W. Targeting the PARylation-Dependent Ubiquitination Signaling Pathway for Cancer Therapies. Biomolecules 2025; 15:237. [PMID: 40001540 PMCID: PMC11852910 DOI: 10.3390/biom15020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a dynamic protein post-translational modification (PTM) mediated by ADP-ribosyltransferases (ARTs), which regulates a plethora of essential biological processes, such as DNA repair, gene expression, and signal transduction. Among these, PAR-dependent ubiquitination (PARdU) plays a pivotal role in tagging PARylated substrates for subsequent ubiquitination and degradation events through the coordinated action of enzymes, including the E3 ligase RNF146 and the ADP-ribosyltransferase tankyrase. Notably, this pathway has emerged as a key regulator of tumorigenesis, immune modulation, and cell death. This review elucidates the molecular mechanisms of the PARdU pathway, including the RNF146-tankyrase interaction, substrate specificity, and upstream regulatory pathways. It also highlights the biological functions of PARdU in DNA damage repair, signaling pathways, and metabolic regulation, with a focus on its therapeutic potential in cancer treatment. Strategies targeting PARdU, such as tankyrase and RNF146 inhibitors, synthetic lethality approaches, and immune checkpoint regulation, offer promising avenues for precision oncology. These developments underscore the potential of PARdU as a transformative therapeutic target in combating various types of human cancer.
Collapse
Affiliation(s)
- Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Weiwei Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Esbin MN, Dahal L, Fan VB, McKenna J, Yin E, Darzacq X, Tjian R. TFEB controls expression of human syncytins during cell-cell fusion. Genes Dev 2024; 38:718-737. [PMID: 39168638 PMCID: PMC11444194 DOI: 10.1101/gad.351633.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
During human development, a temporary organ is formed, the placenta, which invades the uterine wall to support nutrient, oxygen, and waste exchange between the mother and fetus until birth. Most of the human placenta is formed by a syncytial villous structure lined by syncytialized trophoblasts, a specialized cell type that forms via cell-cell fusion of underlying progenitor cells. Genetic and functional studies have characterized the membrane protein fusogens Syncytin-1 and Syncytin-2, both of which are necessary and sufficient for human trophoblast cell-cell fusion. However, identification and characterization of upstream transcriptional regulators regulating their expression have been limited. Here, using CRISPR knockout in an in vitro cellular model of syncytiotrophoblast development (BeWo cells), we found that the transcription factor TFEB, mainly known as a regulator of autophagy and lysosomal biogenesis, is required for cell-cell fusion of syncytiotrophoblasts. TFEB translocates to the nucleus, exhibits increased chromatin interactions, and directly binds the Syncytin-1 and Syncytin-2 promoters to control their expression during differentiation. Although TFEB appears to play a critical role in syncytiotrophoblast differentiation, ablation of TFEB largely does not affect lysosomal gene expression or lysosomal biogenesis in differentiating BeWo cells, suggesting a previously uncharacterized role for TFEB in controlling the expression of human syncytins.
Collapse
Affiliation(s)
- Meagan N Esbin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA;
| | - Liza Dahal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Vinson B Fan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Joey McKenna
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Eric Yin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA;
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Naillat F, Deshar G, Hankkila A, Rak-Raszewska A, Sharma A, Prunskaite-Hyyrylainen R, Railo A, Shan J, Vainio SJ. Calcium signaling induces partial EMT and renal fibrosis in a Wnt4 mCherry knock-in mouse model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167180. [PMID: 38653356 DOI: 10.1016/j.bbadis.2024.167180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The renal tubular epithelial cells (TEC) have a strong capacity for repair after acute injury, but when this mechanism becomes uncontrollable, it leads to chronic kidney diseases (CKD). Indeed, in progress toward CKDs, the TECs may dedifferentiate, undergo epithelial-to-mesenchyme transition (EMT), and promote inflammation and fibrosis. Given the critical role of Wnt4 signaling in kidney ontogenesis, we addressed whether changes in this signaling are connected to renal inflammation and fibrosis by taking advantage of a knock-in Wnt4mCh/mCh mouse. While the Wnt4mCh/mCh embryos appeared normal, the corresponding mice, within one month, developed CKD-related phenotypes, such as pro-inflammatory responses including T-cell/macrophage influx, expression of fibrotic markers, and epithelial cell damage with a partial EMT. The Wnt signal transduction component β-catenin remained unchanged, while calcium signaling is induced in the injured TECs involving Nfat and Tfeb transcription factors. We propose that the Wnt4 signaling pathway is involved in repairing the renal injury, and when the signal is overdriven, CKD is established.
Collapse
Affiliation(s)
- Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland.
| | - Ganga Deshar
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Anni Hankkila
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | | | - Abhishek Sharma
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | | | - Antti Railo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Jingdong Shan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Infotech Oulu, Kvantum Institute, University of Oulu, Finland
| |
Collapse
|
6
|
Koh M, Lim H, Jin H, Kim M, Hong Y, Hwang YK, Woo Y, Kim ES, Kim SY, Kim KM, Lim HK, Jung J, Kang S, Park B, Lee HB, Han W, Lee MS, Moon A. ANXA2 (annexin A2) is crucial to ATG7-mediated autophagy, leading to tumor aggressiveness in triple-negative breast cancer cells. Autophagy 2024; 20:659-674. [PMID: 38290972 PMCID: PMC10936647 DOI: 10.1080/15548627.2024.2305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.
Collapse
Affiliation(s)
- Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Minjoo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yeji Hong
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Young Keun Hwang
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yunjung Woo
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women’s University, Seoul, Korea
| | - Kyung Mee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hyun Kyung Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| |
Collapse
|
7
|
Chen H, Gong S, Zhang H, Chen Y, Liu Y, Hao J, Liu H, Li X. From the regulatory mechanism of TFEB to its therapeutic implications. Cell Death Discov 2024; 10:84. [PMID: 38365838 PMCID: PMC10873368 DOI: 10.1038/s41420-024-01850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Transcription factor EB (TFEB), known as a major transcriptional regulator of the autophagy-lysosomal pathway, regulates target gene expression by binding to coordinated lysosomal expression and regulation (CLEAR) elements. TFEB are regulated by multiple links, such as transcriptional regulation, post-transcriptional regulation, translational-level regulation, post-translational modification (PTM), and nuclear competitive regulation. Targeted regulation of TFEB has been victoriously used as a treatment strategy in several disease models such as ischemic injury, lysosomal storage disorders (LSDs), cancer, metabolic disorders, neurodegenerative diseases, and inflammation. In this review, we aimed to elucidate the regulatory mechanism of TFEB and its applications in several disease models by targeting the regulation of TFEB as a treatment strategy.
Collapse
Affiliation(s)
- Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhan-jiang Central Hospital, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yonghan Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
8
|
He K, Wang X, Li T, Li Y, Ma L. Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules 2024; 29:760. [PMID: 38398512 PMCID: PMC10892528 DOI: 10.3390/molecules29040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3β (GSK-3β) while concurrently attenuating the expression of the core protein β-catenin in the Wnt/β-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/β-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Linlin Ma
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| |
Collapse
|
9
|
Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal 2024; 22:77. [PMID: 38291457 PMCID: PMC10826278 DOI: 10.1186/s12964-024-01482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
AXIN1, has been initially identified as a prominent antagonist within the WNT/β-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/β-catenin, Hippo, TGFβ, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.
Collapse
Affiliation(s)
- Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
10
|
Ma C, Li Q, Yang Y, Ge L, Cai J, Wang J, Zhu M, Xiong Y, Zhang W, Xie J, Cao Y, Zhao H, Wei Q, Huang C, Shi J, Zhang JV, Duan E, Lei X. mTOR hypoactivity leads to trophectoderm cell failure by enhancing lysosomal activation and disrupting the cytoskeleton in preimplantation embryo. Cell Biosci 2023; 13:219. [PMID: 38037142 PMCID: PMC10688112 DOI: 10.1186/s13578-023-01176-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Metabolic homeostasis is closely related to early impairment of cell fate determination and embryo development. The protein kinase mechanistic target of rapamycin (mTOR) is a key regulator of cellular metabolism in the body. Inhibition of mTOR signaling in early embryo causes postimplantation development failure, yet the mechanisms are still poorly understood. METHODS Pregnancy mice and preimplantation mouse embryo were treated with mTOR inhibitor in vivo and in vitro respectively, and subsequently examined the blastocyst formation, implantation, and post-implantation development. We used immunofluorescence staining, RNA-Seq smart2, and genome-wide bisulfite sequencing technologies to investigate the impact of mTOR inhibitors on the quality, cell fate determination, and molecular alterations in developing embryos. RESULTS We showed mTOR suppression during preimplantation decreases the rate of blastocyst formation and the competency of implantation, impairs the post implantation embryonic development. We discovered that blocking mTOR signaling negatively affected the transformation of 8-cell embryos into blastocysts and caused various deficiencies in blastocyst quality. These included problems with compromised trophectoderm cell differentiation, as well as disruptions in cell fate specification. mTOR suppression significantly affected the transcription and DNA methylation of embryos. Treatment with mTOR inhibitors increase lysosomal activation and disrupts the organization and dynamics of the actin cytoskeleton in blastocysts. CONCLUSIONS These results demonstrate that mTOR plays a crucial role in 8-cell to blastocyst transition and safeguards embryo quality during early embryo development.
Collapse
Affiliation(s)
- Chiyuan Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qin Li
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuxin Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Lei Ge
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxuan Cai
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juan Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Maoxian Zhu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue Xiong
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenya Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingtong Xie
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junchao Shi
- CAS Key Laboratory of Genome Sciences and Information, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Takla M, Keshri S, Rubinsztein DC. The post-translational regulation of transcription factor EB (TFEB) in health and disease. EMBO Rep 2023; 24:e57574. [PMID: 37728021 PMCID: PMC10626434 DOI: 10.15252/embr.202357574] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factor EB (TFEB) is a basic helix-loop-helix leucine zipper transcription factor that acts as a master regulator of lysosomal biogenesis, lysosomal exocytosis, and macro-autophagy. TFEB contributes to a wide range of physiological functions, including mitochondrial biogenesis and innate and adaptive immunity. As such, TFEB is an essential component of cellular adaptation to stressors, ranging from nutrient deprivation to pathogenic invasion. The activity of TFEB depends on its subcellular localisation, turnover, and DNA-binding capacity, all of which are regulated at the post-translational level. Pathological states are characterised by a specific set of stressors, which elicit post-translational modifications that promote gain or loss of TFEB function in the affected tissue. In turn, the resulting increase or decrease in survival of the tissue in which TFEB is more or less active, respectively, may either benefit or harm the organism as a whole. In this way, the post-translational modifications of TFEB account for its otherwise paradoxical protective and deleterious effects on organismal fitness in diseases ranging from neurodegeneration to cancer. In this review, we describe how the intracellular environment characteristic of different diseases alters the post-translational modification profile of TFEB, enabling cellular adaptation to a particular pathological state.
Collapse
Affiliation(s)
- Michael Takla
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - Swati Keshri
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| |
Collapse
|
12
|
Liang H, Luo R, Li G, Zhang W, Zhu D, Wu D, Zhou X, Tong B, Wang B, Feng X, Wang K, Song Y, Yang C. Lysine methylation of PPP1CA by the methyltransferase SUV39H2 disrupts TFEB-dependent autophagy and promotes intervertebral disc degeneration. Cell Death Differ 2023; 30:2135-2150. [PMID: 37605006 PMCID: PMC10482945 DOI: 10.1038/s41418-023-01210-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Impaired transcription factor EB (TFEB) function and deficient autophagy activity have been shown to aggravate intervertebral disc (IVD) degeneration (IDD), yet the underlying mechanisms remain less clear. Protein posttranslational modifications (PTMs) are critical for determining TFEB trafficking and transcriptional activity. Here, we demonstrate that TFEB activity is controlled by protein methylation in degenerated nucleus pulposus cells (NPCs), even though TFEB itself is incapable of undergoing methylation. Specifically, protein phosphatase 1 catalytic subunit alpha (PPP1CA), newly identified to dephosphorylate TFEB, contains a K141 mono-methylated site. In degenerated NPCs, increased K141-methylation of PPP1CA disrupts its interaction with TEFB and subsequently blocks TEFB dephosphorylation and nuclear translocation, which eventually leads to autophagy deficiency and NPC senescence. In addition, we found that the PPP1CA-mediated targeting of TFEB is facilitated by the protein phosphatase 1 regulatory subunit 9B (PPP1R9B), which binds with PPP1CA and is also manipulated by K141 methylation. Further proteomic analysis revealed that the protein lysine methyltransferase suppressor of variegation 3-9 homologue 2 (SUV39H2) is responsible for the K141 mono-methylation of PPP1CA. Targeting SUV39H2 effectively mitigates NPC senescence and IDD progression, providing a potential therapeutic strategy for IDD intervention.
Collapse
Affiliation(s)
- Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Liu C, Zhou D, Zhang Q, Wei H, Lu Y, Li B, Zhan H, Cheng J, Wang C, Yang Y, Li S, Hu C, Liao X. Transcription factor EB (TFEB) improves ventricular remodeling after myocardial infarction by inhibiting Wnt/ β-catenin signaling pathway. PeerJ 2023; 11:e15841. [PMID: 37609444 PMCID: PMC10441526 DOI: 10.7717/peerj.15841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Background Adverse left ventricular remodeling after myocardial infarction (MI) compromises cardiac function and increases heart failure risk. Until now, comprehension of the role transcription factor EB (TFEB) plays after MI is limited. Objectives The purpose of this study was to describe the effects of TFEB on fibroblasts differentiation and extracellular matrix expression after MI. Methods AAV9 (adeno-associated virus) mediated up- and down-regulated TFEB expressions were generated in C57BL/6 mice two weeks before the MI modeling. Echocardiography, Masson, Sirius red staining immunofluorescence, and wheat germ agglutinin staining were performed at 3 days, and 1, 2, and 4 weeks after MI modeling. Fibroblasts collected from SD neonatal rats were transfected by adenovirus and siRNA, and cell counting kit-8 (CCK8), immunofluorescence, wound healing and Transwell assay were conducted. Myocardial fibrosis-related proteins were identified by Western blot. PNU-74654 (100 ng/mL) was used for 12 hours to inhibit β-catenin-TCF/LEF1 complex. Results The up-regulation of TFEB resulted in reduced fibroblasts proliferation and its differentiation into myofibroblasts in vitro studies. A significant up-regulation of EF and down-regulation of myocyte area was shown in the AAV9-TFEB group. Meanwhile, decreased protein level of α-SMA and collagen I were observed in vitro study. TFEB didn't affect the concentration of β-catenin. Inhibition of TFEB, which promoted cell migration, proliferation and collagen I expression, was counteracted by PNU-74654. Conclusions TFEB demonstrated potential in restraining fibrosis after MI by inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong Liu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dawang Zhou
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiang Zhang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanzheng Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingge Cheng
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chuyue Wang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yilin Yang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuhao Li
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
14
|
Dang TT, Kim MJ, Lee YY, Le HT, Kim KH, Nam S, Hyun SH, Kim HL, Chung SW, Chung HT, Jho EH, Yoshida H, Kim K, Park CY, Lee MS, Back SH. Phosphorylation of EIF2S1 (eukaryotic translation initiation factor 2 subunit alpha) is indispensable for nuclear translocation of TFEB and TFE3 during ER stress. Autophagy 2023; 19:2111-2142. [PMID: 36719671 PMCID: PMC10283430 DOI: 10.1080/15548627.2023.2173900] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3β: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.
Collapse
Affiliation(s)
- Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Mi-Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Yoon Young Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Hien Thi Le
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 03722, Seoul, Korea
| | - Somi Nam
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Seung Hwa Hyun
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Wol Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, 678-1297, Hyogo, Japan
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, 02841, Seoul, Korea
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science & Division of Endocrinology, Department of Internal Medicine, SIMS (Soonchunhyang Institute of Medi-bio Science) & Soonchunhyang University Hospital, Soonchunhyang University, 31151, Cheonan, Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| |
Collapse
|
15
|
Sul OJ, Choi HW, Oh J, Ra SW. GSPE attenuates CSE-induced lung inflammation and emphysema by regulating autophagy via the reactive oxygen species/TFEB signaling pathway. Food Chem Toxicol 2023; 177:113795. [PMID: 37116776 DOI: 10.1016/j.fct.2023.113795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Cigarette smoke can enhance reactive oxygen species (ROS) production in inflammatory and epithelial cells. Subsequently, ROS enhance autophagy-induced inflammation due to alveolar macrophages (AMs), the primary source of cytokines implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, we hypothesized that grape seed proanthocyanidin extract (GSPE), an effective antioxidant, could inhibit emphysema and airway inflammation by ameliorating cigarette smoke extract (CSE)-induced autophagy via suppressing oxidative stress in macrophages. We observed that GSPE significantly attenuated histological changes observed in CSE-induced emphysema and airway inflammation in the lungs of mice. Moreover, GSPE ameliorated lung inflammation by reducing the number of cells, macrophages, and neutrophils and the tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels measured in bronchioloalveolar lavage fluid. ROS levels increased after CSE instillation and significantly decreased with in vitro GSPE treatment. GSPE decreased transcription factor EB (TFEB) oxidation by reducing ROS, inhibiting TFEB nuclear translocation. Furthermore, GSPE inhibited ROS-induced autophagy in RAW 264.7 cells, bone marrow-derived macrophages, and AMs. Inhibiting autophagy through GSPE treatment diminishes CSE-induced lung inflammation by inhibiting the NLRP3 inflammasome. This study demonstrates that GSPE can ameliorate CSE-induced inflammation and emphysema via autophagy-induced NLRP3 inflammasome regulation through the ROS/TFEB signaling pathway in a COPD mouse model.
Collapse
Affiliation(s)
- Ok Joo Sul
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, 44033, Republic of Korea
| | - Hye Won Choi
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, 44033, Republic of Korea
| | - Jimi Oh
- Department of Anesthesiology and Pain Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea
| | - Seung Won Ra
- Department of Pulmonary and Critical Care Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea.
| |
Collapse
|
16
|
Kikuchi A, Takagi J, Takada S, Ishitani T, Minami Y. Wnt 2022 EMBO | the Company of Biologists workshop and Yamada conference. Genes Cells 2023; 28:249-257. [PMID: 36846946 DOI: 10.1111/gtc.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Wnt2022 was held on November 15th-19th, 2022, in Awaji Yumebutai International Conference Center, Hyogo Prefecture, Japan, as an in-person meeting for the first time in last 3 years. Wnt signaling is a highly conserved pathway among various species. Since Wnt1 was discovered in 1982, a number of studies using many model animals and human samples have revealed that Wnt signaling plays crucial roles in embryonic development, tissue morphogenesis, and regeneration, as well as many other physiological and pathological processes. Since the year 2022 marks the 40th anniversary of Wnt research, we aimed to look back at our research progress and discuss the future direction of this field. The scientific program consisted of plenary lectures, invited talks, short talks selected from abstracts, and poster sessions. Whereas several different Wnt meetings have been held almost every year in Europe and the United States, this was the first Wnt meeting convened in Asia. Therefore, Wnt2022 was highly anticipated to bring together leaders and young scientists from Europe, the United States, and especially Asia and Oceania. In fact, 148 researchers from 21 countries attended this meeting. Although there were travel and administrative restrictions due to COVID-19, the meeting was highly successful in enabling face-to-face discussions.
Collapse
Affiliation(s)
- Akira Kikuchi
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Shinji Takada
- National Institutes of Basic Biology, Okazaki, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Tohru Ishitani
- Reserach Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | |
Collapse
|
17
|
Son S, Kim H, Lim H, Lee JH, Lee KM, Shin I. CCN3/NOV promotes metastasis and tumor progression via GPNMB-induced EGFR activation in triple-negative breast cancer. Cell Death Dis 2023; 14:81. [PMID: 36737605 PMCID: PMC9898537 DOI: 10.1038/s41419-023-05608-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. TNBC patients typically exhibit unfavorable outcomes due to its rapid growth and metastatic potential. Here, we found overexpression of CCN3 in TNBC patients. We identified that CCN3 knockdown diminished cancer stem cell formation, metastasis, and tumor growth in vitro and in vivo. Mechanistically, ablation of CCN3 reduced activity of the EGFR/MAPK pathway. Transcriptome profiling revealed that CCN3 induces glycoprotein nonmetastatic melanoma protein B (GPNMB) expression, which in turn activates the EGFR pathway. An interrogation of the TCGA dataset further supported the transcriptional regulation of GPNMB by CCN3. Finally, we showed that CCN3 activates Wnt signaling through a ligand-dependent or -independent mechanism, which increases microphthalmia-associated transcription factor (MITF) protein, a transcription factor inducing GPNMB expression. Together, our findings demonstrate the oncogenic role of CCN3 in TNBC, and we propose CCN3 as a putative therapeutic target for TNBC.
Collapse
Affiliation(s)
- Seogho Son
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Hogeun Lim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Joo-Hyung Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Kyung-Min Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
- Natural Science Institute, Hanyang University, Seoul, 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, 04763, Korea.
- Natural Science Institute, Hanyang University, Seoul, 04763, Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
18
|
Choi C, Kim H, Oh J, Park C, Kim M, Kim CS, Park J. DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer's disease by enhancing microglial activity. Life Sci Alliance 2023; 6:6/2/e202201556. [PMID: 36450444 PMCID: PMC9713304 DOI: 10.26508/lsa.202201556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Microglial phagocytosis and clearance are important for the removal of amyloid-β (Aβ) plaques in Alzheimer's disease (AD). Chronic exposure of microglia to Aβ plaques leads to microglial metabolic dysfunction, and dysregulation of microglia can accelerate the deposition of Aβ plaques and cause learning and memory impairment. Thus, regulating microglial Aβ clearance is crucial for the development of therapeutics for AD-related dementia. Here, Down syndrome critical region 1 (DSCR1) deficiency ameliorated Aβ plaque deposition in the 5xFAD mouse model of AD by altering microglial activity; however, the Aβ synthesis pathway was not affected. DSCR1 deficiency improved spatial learning and memory impairment in 5xFAD mice. Furthermore, DSCR1-deficient microglia exhibited accelerated lysosomal degradation of Aβ after phagocytosis, and BV2 cells with stable knockdown of DSCR1 demonstrated enhanced lysosomal activity. RNA-sequencing analysis showed that the transcriptional signatures associated with responses to IFN-γ were significantly up-regulated in DSCR1-knockdown BV2 cells treated with Aβ. Our data strongly suggest that DSCR1 is a critical mediator of microglial degradation of amyloid plaques and a new potential microglial therapeutic target in AD.
Collapse
Affiliation(s)
- Chiyeol Choi
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyerin Kim
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Min Kim
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chu-Sook Kim
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
19
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
20
|
Wang X, He K, Ma L, Wu L, Yang Y, Li Y. Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway. Mol Med Rep 2022; 26:306. [PMID: 35946454 PMCID: PMC9437969 DOI: 10.3892/mmr.2022.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Myocardial hypertrophy (MH) is an independent risk factor for cardiovascular disease, which in turn lead to arrhythmia or heart failure. Therefore, attention must be paid to formulation of therapeutic strategies for MH. Puerarin is a key bioactive ingredient isolated from Pueraria genera of plants that is beneficial for the treatment of MH. However, its molecular mechanism of action has not been fully determined. In the present study, 40 µM puerarin was demonstrated to be a safe dose for human AC16 cells using Cell Counting Kit‑8 assay. The protective effects of puerarin against MH were demonstrated in AC16 cells stimulated with isoproterenol (ISO). These effects were characterized by a significant decrease in surface area of cells (assessed using fluorescence staining) and mRNA and protein expression levels of MH‑associated biomarkers, including atrial and brain natriuretic peptide, assessed using reverse transcription‑quantitative PCR and western blotting, as well as β‑myosin heavy chain mRNA expression levels. Mechanistically, western blotting demonstrated that puerarin inhibited activation of the Wnt signaling pathway. Puerarin also significantly decreased phosphorylation of p65; this was mediated via crosstalk between the Wnt and NF‑κB signaling pathways. An inhibitor (Dickkopf‑1) and activator (IM‑12) of the Wnt signaling pathway were used to demonstrate that puerarin‑mediated effects alleviated ISO‑induced MH via the Wnt signaling pathway. The results of the present study demonstrated that puerarin pre‑treatment may be a potential therapeutic strategy for preventing ISO‑induced MH and managing MH in the future.
Collapse
Affiliation(s)
- Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Linlin Ma
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lan Wu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
21
|
Mechanical Stretch Induced Skin Regeneration: Molecular and Cellular Mechanism in Skin Soft Tissue Expansion. Int J Mol Sci 2022; 23:ijms23179622. [PMID: 36077018 PMCID: PMC9455829 DOI: 10.3390/ijms23179622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Skin soft tissue expansion is one of the most basic and commonly used techniques in plastic surgery to obtain excess skin for a variety of medical uses. However, skin soft tissue expansion is faced with many problems, such as long treatment process, poor skin quality, high retraction rate, and complications. Therefore, a deeper understanding of the mechanisms of skin soft tissue expansion is needed. The key to skin soft tissue expansion lies in the mechanical stretch applied to the skin by an inflatable expander. Mechanical stimulation activates multiple signaling pathways through cellular adhesion molecules and regulates gene expression profiles in cells. Meanwhile, various types of cells contribute to skin expansion, including keratinocytes, dermal fibroblasts, and mesenchymal stem cells, which are also regulated by mechanical stretch. This article reviews the molecular and cellular mechanisms of skin regeneration induced by mechanical stretch during skin soft tissue expansion.
Collapse
|
22
|
Tan A, Prasad R, Lee C, Jho EH. Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Cell Death Differ 2022; 29:1433-1449. [PMID: 35739255 PMCID: PMC9345944 DOI: 10.1038/s41418-022-01028-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/16/2022] Open
Abstract
Transcription factor EB (TFEB), a member of the MiT/TFE family of basic helix-loop-helix leucine zipper transcription factors, is an established central regulator of the autophagy/lysosomal-to-nucleus signaling pathway. Originally described as an oncogene, TFEB is now widely known as a regulator of various processes, such as energy homeostasis, stress response, metabolism, and autophagy-lysosomal biogenesis because of its extensive involvement in various signaling pathways, such as mTORC1, Wnt, calcium, and AKT signaling pathways. TFEB is also implicated in various human diseases, such as lysosomal storage disorders, neurodegenerative diseases, cancers, and metabolic disorders. In this review, we present an overview of the major advances in TFEB research over the past 30 years, since its description in 1990. This review also discusses the recently discovered regulatory mechanisms of TFEB and their implications for human diseases. We also summarize the moonlighting functions of TFEB and discuss future research directions and unanswered questions in the field. Overall, this review provides insight into our understanding of TFEB as a major molecular player in human health, which will take us one step closer to promoting TFEB from basic research into clinical and regenerative applications.
Collapse
Affiliation(s)
- Anderson Tan
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Renuka Prasad
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chaerin Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
23
|
Liu Q, Han B, Zhang Y, Jiang T, Ning J, Kang A, Huang X, Zhang H, Pang Y, Zhang B, Wang Q, Niu Y, Zhang R. Potential molecular mechanism of cardiac hypertrophy in mice induced by exposure to ambient PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112659. [PMID: 34418850 DOI: 10.1016/j.ecoenv.2021.112659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Cardiac hypertrophy could be induced by ambient fine particulate matter (PM2.5) exposure. Since cardiac hypertrophy represents an early event leading to heart dysfunction, it is necessary to explore the molecular mechanisms, which are largely unknown. In the present study, an ambient particulate matter exposure mice model was established to explore its adverse effects related to the heart and the potential mechanisms. Forty-eight male C57BL/6 mice were randomly subjected to three groups: filtered air group, unfiltered air group and concentrated air group, and were exposed for 8 and 16 weeks, 6 h/day, respectively. In vitro experiments, the cardiac muscle cell line (HL-1) was treated with PM2.5 (0, 25, 50 and 100 μg/mL) for 24 h. In the present study, cardiac hypertrophy was occurred in vivo and vitro after exposure to PM2.5. Mechanistically, circ_0001859 could sponge miR-29b-3p, which could interact with 3'UTRs of Ctnnb1 (gene name of β-catenin). And Ctnnb1 expression was transcriptionally inhibited by si-circ_0001859 or miR-29b-3p mimic in HL-1 cells. Additionally, miR-29b-3p inhibitor could also make a reversion about the inhibition effect of circ_0001859 silencing on Ctnnb1 mRNA level in HL-1 cells. Functionally, knockout of circ_0001859 or overexpression of miR-29b-3p could inhibit LEF1/IGF-2R pathway and alleviate the progress of hypertrophy induced by PM2.5 in HL-1 cells. And miR-29b-3p inhibitor could reverse the inhibition effect of circ_0001859 silencing on hypertrophic response induced by PM2.5 in HL-1 cells. Consequently, the data demonstrated that circRNA_0001859 promoted the process of cardiac hypertrophy through suppressing miR-29b-3p leading to enhance Ctnnb1 level, and activated downstream pathway molecules LEF1/IGF-2R.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Tao Jiang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Aijuan Kang
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - XiaoYan Huang
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Huaxing Zhang
- Research Core Facilities, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qian Wang
- Experimental Center, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|