1
|
Stewart G, Tazzyman S, Sun Y, Andrews RE, Harrison J, Lath D, Down J, Robinson G, Wang X, Muthana M, Chantry AD, Lawson MA. An oncolytic adenovirus targeting SLAMF7 demonstrates anti-myeloma efficacy. Leukemia 2025:10.1038/s41375-025-02617-3. [PMID: 40247106 DOI: 10.1038/s41375-025-02617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
We investigated a novel SLAMF7-promoter driven oncolytic adenovirus (Ad[CE1A]) as a potential therapeutic for multiple myeloma, an incurable hematological malignancy. Ad[CE1A] infection, replication, and oncolysis were assessed in a panel of myeloma cell lines (n = 8) and ex vivo samples from myeloma patients (n = 17) and healthy donors (HDs) (n = 14). Ad[CE1A] efficiently infected, replicated, and induced oncolysis in myeloma cells, but not in control cell lines or HDs, demonstrating selective cytotoxicity. Mechanistic studies revealed Ad[CE1A]-induced cell death is caspase-independent, with a potential involvement of necroptosis. Ad[CE1A] also altered immunogenic cell death markers (calreticulin, CD47, extracellular ATP), enhanced antigen presentation via increased MHC class I and II receptor expression (HLA-ABC and HLA-DR), and stimulated bystander cytokine killing, indicating potential for direct and immune-mediated anti-myeloma responses. In vivo experiments with 5TGM1 syngeneic and U266 xenograft models showed Ad[CE1A] significantly reduced myeloma tumor burden compared to vehicle control. Combination therapy with anti-myeloma drugs, bortezomib, melphalan, panobinostat and pomalidomide, enhanced Ad[CE1A] efficacy, with melphalan upregulating SLAMF7, resulting in increased viral replication. In summary, these findings support Ad[CE1A] as a promising myeloma therapy.
Collapse
Affiliation(s)
- Georgia Stewart
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Simon Tazzyman
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Yidan Sun
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Rebecca E Andrews
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Jack Harrison
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Darren Lath
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Jenny Down
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Georgia Robinson
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Xue Wang
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Munitta Muthana
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Andrew D Chantry
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Michelle A Lawson
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield, UK.
- Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK.
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Chen Y, Wang C, Hu S, Liu X. HRS Facilitates Newcastle Disease Virus Replication in Tumor Cells by Promoting Viral Budding. Int J Mol Sci 2024; 25:10060. [PMID: 39337546 PMCID: PMC11432301 DOI: 10.3390/ijms251810060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Newcastle disease virus (NDV) is a highly pathogenic avian infectious disease agent and also a promising oncolytic virus with broad application prospects. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery has been increasingly recognized for its crucial role in the life cycles of enveloped viruses, influencing processes such as viral entry, replication, and budding. In this study, we employed an RNA interference screening approach to identify key ESCRT components that regulate NDV replication in tumor cells. qPCR, immunofluorescence, and Western blot assays demonstrated that knockdown of HRS, CHMP4A, CHMP4B, and CHMP4C significantly impaired NDV replication in HeLa cells, with HRS exhibiting the most pronounced inhibitory effect. Additionally, HRS knockout significantly inhibited viral budding and suppressed NDV-induced cell death in HeLa cells. Notably, NDV infection was shown to significantly upregulate HRS gene and protein expression in a time-dependent manner. In conclusion, this study systematically identifies critical ESCRT components involved in NDV replication within tumor cells, with a particular focus on the role of HRS in promoting NDV's replication by promoting viral budding, offering new insights for the development of NDV-based oncolytic therapies.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225012, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225012, China
| | - Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225012, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225012, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225012, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
3
|
Si Y, Zhang H, Zhou Z, Zhu X, Yang Y, Liu H, Zhang L, Cheng L, Wang K, Ye W, Lv X, Zhang X, Hou W, Zhao G, Lei Y, Zhang F, Ma H. RIPK3 promotes hantaviral replication by restricting JAK-STAT signaling without triggering necroptosis. Virol Sin 2023; 38:741-754. [PMID: 37633447 PMCID: PMC10590702 DOI: 10.1016/j.virs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Hantaan virus (HTNV) is a rodent-borne virus that causes hemorrhagic fever with renal syndrome (HFRS), resulting in a high mortality rate of 15%. Interferons (IFNs) play a critical role in the anti-hantaviral immune response, and IFN pretreatment efficiently restricts HTNV infection by triggering the expression of a series of IFN-stimulated genes (ISGs) through the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT) pathway. However, the tremendous amount of IFNs produced during late infection could not restrain HTNV replication, and the mechanism remains unclear. Here, we demonstrated that receptor-interacting protein kinase 3 (RIPK3), a crucial molecule that mediates necroptosis, was activated by HTNV and contributed to hantavirus evasion of IFN responses by inhibiting STAT1 phosphorylation. RNA-seq analysis revealed the upregulation of multiple cell death-related genes after HTNV infection, with RIPK3 identified as a key modulator of viral replication. RIPK3 ablation significantly enhanced ISGs expression and restrained HTNV replication, without affecting the expression of pattern recognition receptors (PRRs) or the production of type I IFNs. Conversely, exogenously expressed RIPK3 compromised the host's antiviral response and facilitated HTNV replication. RIPK3-/- mice also maintained a robust ability to clear HTNV with enhanced innate immune responses. Mechanistically, we found that RIPK3 could bind STAT1 and inhibit STAT1 phosphorylation dependent on the protein kinase domain (PKD) of RIPK3 but not its kinase activity. Overall, these observations demonstrated a noncanonical function of RIPK3 during viral infection and have elucidated a novel host innate immunity evasion strategy utilized by HTNV.
Collapse
Affiliation(s)
- Yue Si
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Haijun Zhang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China; Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, 710032, China
| | - Ziqing Zhou
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xudong Zhu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yongheng Yang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Kerong Wang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xin Lv
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xijing Zhang
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Wugang Hou
- Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China; The College of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China; Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Mukhopadhyay U, Patra U, Chandra P, Saha P, Gope A, Dutta M, Chawla-Sarkar M. Rotavirus activates MLKL-mediated host cellular necroptosis concomitantly with apoptosis to facilitate dissemination of viral progeny. Mol Microbiol 2021; 117:818-836. [PMID: 34954851 DOI: 10.1111/mmi.14874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022]
Abstract
Reprogramming the host cellular environment is an obligatory facet of viral pathogens to foster their replication and perpetuation. One of such reprogramming events is the dynamic cross-talk between viruses and host cellular death signaling pathways. Rotaviruses (RVs) have been reported to develop multiple mechanisms to induce apoptotic programmed cell death for maximizing viral spread and pathogenicity. However, the importance of non-apoptotic programmed death events has remained elusive in context of RV infection. Here, we report that RV-induced apoptosis accompanies another non-apoptotic mode of programmed cell death pathway called necroptosis to promote host cellular demise at late phase of infection. Phosphorylation of mixed lineage kinase-domain like (MLKL) protein indicative of necroptosis was observed to concur with caspase-cleavage (apoptotic marker) beyond 6 hours of RV infection. Subsequent studies demonstrated phosphorylated-MLKL to oligomerize and to translocate to plasma membrane in RV infected cells, resulting in loss of plasma membrane integrity and release of alarmin molecules e.g., high mobility group box protein 1 (HMGB1) in the extracellular media. Moreover, inhibiting caspase-cleavage and apoptosis could not fully rescue virus-induced cell death but rather potentiated the necroptotic trigger. Interestingly, preventing both apoptosis and necroptosis by small molecules significantly rescued virus-induced host cytopathy by inhibiting viral dissemination.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Upayan Patra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Pritam Chandra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Priyanka Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Animesh Gope
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme- XM, Beliaghata, Kolkata, 700010, India
| |
Collapse
|
5
|
Pfitzner S, Bosse JB, Hofmann-Sieber H, Flomm F, Reimer R, Dobner T, Grünewald K, Franken LE. Human Adenovirus Type 5 Infection Leads to Nuclear Envelope Destabilization and Membrane Permeability Independently of Adenovirus Death Protein. Int J Mol Sci 2021; 22:13034. [PMID: 34884837 PMCID: PMC8657697 DOI: 10.3390/ijms222313034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
The human adenovirus type 5 (HAdV5) infects epithelial cells of the upper and lower respiratory tract. The virus causes lysis of infected cells and thus enables spread of progeny virions to neighboring cells for the next round of infection. The mechanism of adenovirus virion egress across the nuclear barrier is not known. The human adenovirus death protein (ADP) facilitates the release of virions from infected cells and has been hypothesized to cause membrane damage. Here, we set out to answer whether ADP does indeed increase nuclear membrane damage. We analyzed the nuclear envelope morphology using a combination of fluorescence and state-of-the-art electron microscopy techniques, including serial block-face scanning electron microscopy and electron cryo-tomography of focused ion beam-milled cells. We report multiple destabilization phenotypes of the nuclear envelope in HAdV5 infection. These include reduction of lamin A/C at the nuclear envelope, large-scale membrane invaginations, alterations in double membrane separation distance and small-scale membrane protrusions. Additionally, we measured increased nuclear membrane permeability and detected nuclear envelope lesions under cryoconditions. Unexpectedly, and in contrast to previous hypotheses, ADP did not have an effect on lamin A/C reduction or nuclear permeability.
Collapse
Affiliation(s)
- Søren Pfitzner
- Leibniz Institute for Experimental Virology (HPI), Martinistraße 52, 20251 Hamburg, Germany; (S.P.); (J.B.B.); (H.H.-S.); (F.F.); (R.R.); (T.D.)
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
| | - Jens B. Bosse
- Leibniz Institute for Experimental Virology (HPI), Martinistraße 52, 20251 Hamburg, Germany; (S.P.); (J.B.B.); (H.H.-S.); (F.F.); (R.R.); (T.D.)
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Hannover Medical School, Institute of Virology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Helga Hofmann-Sieber
- Leibniz Institute for Experimental Virology (HPI), Martinistraße 52, 20251 Hamburg, Germany; (S.P.); (J.B.B.); (H.H.-S.); (F.F.); (R.R.); (T.D.)
| | - Felix Flomm
- Leibniz Institute for Experimental Virology (HPI), Martinistraße 52, 20251 Hamburg, Germany; (S.P.); (J.B.B.); (H.H.-S.); (F.F.); (R.R.); (T.D.)
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Hannover Medical School, Institute of Virology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Rudolph Reimer
- Leibniz Institute for Experimental Virology (HPI), Martinistraße 52, 20251 Hamburg, Germany; (S.P.); (J.B.B.); (H.H.-S.); (F.F.); (R.R.); (T.D.)
| | - Thomas Dobner
- Leibniz Institute for Experimental Virology (HPI), Martinistraße 52, 20251 Hamburg, Germany; (S.P.); (J.B.B.); (H.H.-S.); (F.F.); (R.R.); (T.D.)
| | - Kay Grünewald
- Leibniz Institute for Experimental Virology (HPI), Martinistraße 52, 20251 Hamburg, Germany; (S.P.); (J.B.B.); (H.H.-S.); (F.F.); (R.R.); (T.D.)
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Institute for Biochemistry and Molecular Biology, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Linda E. Franken
- Leibniz Institute for Experimental Virology (HPI), Martinistraße 52, 20251 Hamburg, Germany; (S.P.); (J.B.B.); (H.H.-S.); (F.F.); (R.R.); (T.D.)
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
6
|
Zhao W, Li C, Zhang H, Zhou Q, Chen X, Han Y, Chen X. Dihydrotanshinone I Attenuates Plaque Vulnerability in Apolipoprotein E-Deficient Mice: Role of Receptor-Interacting Protein 3. Antioxid Redox Signal 2021; 34:351-363. [PMID: 32323566 DOI: 10.1089/ars.2019.7796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Vulnerable plaque disruption in advanced atherosclerosis leads to acute thrombus and subsequent myocardial infarction and severely threatens human health. Necroptosis of macrophage involved in the necrotic core is one key factor for plaque vulnerability. Dihydrotanshinone I (DHT) is a natural diterpenoid isolated from Danshen demonstrating effective anti-inflammatory property. It is accepted that inflammation plays a crucial role in the process of atherogenesis. However, whether DHT prevents atherosclerosis is poorly understood. Here, we investigated the effect of DHT on vulnerable plaque in an apolipoprotein E-deficient (ApoE-/-) mice model of atherosclerosis and the underlying protective mechanisms. Results: In the in vitro experiment, first LPS/ZVAD (LPS, lipopolysaccharide; ZVAD, ZVAD-FMK, a cell-permeable pan-caspase inhibitor) stimulated necroptosis of macrophage in a receptor-interacting protein 3 (RIP3)-dependent pathway, which was regulated by Toll-like receptor 4 (TLR4) dimerization. Further study illustrated that activated RIP3 evoked endoplasmic reticulum stress as well as reactive oxygen species generation. Both DHT and RIP3 silence reversed the above phenomena. In the in vivo experiment, aorta and serum samples were collected to determine features of plaque stability, including plaque size, necrotic core area, as well as collagen content in fibrous cap and the expression of related protein molecules. Both DHT and RIP3 inhibitor GSK872 significantly enhanced plaque stability in ApoE-/- mice by reducing oxidative stress, shrinking necrotic core area, increasing collagen content, and decreasing RIP3 expression. Innovation and Conclusion: Our study showed that DHT may stabilize vulnerable plaque by suppressing RIP3-mediated necroptosis of macrophage, which indicates its potential application as a lead compound for cardiovascular treatments, especially for advanced atherosclerosis. Antioxid. Redox Signal. 34, 351-363.
Collapse
Affiliation(s)
- Wenwen Zhao
- Qingdao University Medical College, Qingdao, China
| | - Chunxia Li
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, China
| | - Hao Zhang
- Qingdao University Medical College, Qingdao, China
| | - Qihui Zhou
- Institute for Translational Medicine, Qingdao University, Qingdao, China.,Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuehong Chen
- Qingdao University Medical College, Qingdao, China
| | - Yantao Han
- Qingdao University Medical College, Qingdao, China
| | - Xiuping Chen
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
7
|
Laevskaya A, Borovjagin A, Timashev PS, Lesniak MS, Ulasov I. Metabolome-Driven Regulation of Adenovirus-Induced Cell Death. Int J Mol Sci 2021; 22:ijms22010464. [PMID: 33466472 PMCID: PMC7796492 DOI: 10.3390/ijms22010464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
A viral infection that involves virus invasion, protein synthesis, and virion assembly is typically accompanied by sharp fluctuations in the intracellular levels of metabolites. Under certain conditions, dramatic metabolic shifts can result in various types of cell death. Here, we review different types of adenovirus-induced cell death associated with changes in metabolic profiles of the infected cells. As evidenced by experimental data, in most cases changes in the metabolome precede cell death rather than represent its consequence. In our previous study, the induction of autophagic cell death was observed following adenovirus-mediated lactate production, acetyl-CoA accumulation, and ATP release, while apoptosis was demonstrated to be modulated by alterations in acetate and asparagine metabolism. On the other hand, adenovirus-induced ROS production and ATP depletion were demonstrated to play a significant role in the process of necrotic cell death. Interestingly, the accumulation of ceramide compounds was found to contribute to the induction of all the three types of cell death mentioned above. Eventually, the characterization of metabolite analysis could help in uncovering the molecular mechanism of adenovirus-mediated cell death induction and contribute to the development of efficacious oncolytic adenoviral vectors.
Collapse
Affiliation(s)
- Anastasia Laevskaya
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Anton Borovjagin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Peter S. Timashev
- Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 4 Kosygin St., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60601, USA;
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Correspondence:
| |
Collapse
|
8
|
Wang Y, Chen H, Chang W, Chen R, Xu S, Tao D. Protective effects of selenium yeast against cadmium-induced necroptosis via inhibition of oxidative stress and MAPK pathway in chicken liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111329. [PMID: 32979722 DOI: 10.1016/j.ecoenv.2020.111329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The aim of the study was to investigate the protective effects of selenium yeast (SeY) against necroptosis triggered by Cd via inhibition of oxidative stress and MAPK pathway in the liver of chicken. Two hundred 120-day-old layers were randomly divided into four groups and raised for 120 days. The histopathological examination showed that necrosis characteristics were observed in Cd-exposed chicken livers. The exposure of Cd significantly reduced the activities of SOD, GSH-Px and CAT while improving MDA level in both serum and liver of chickens (P < 0.05), and induced oxidative stress. The MLKL, Rip1, RIP3, ERK, JNK and P38 mRNA expression of Cd group were significantly higher than other three groups (P < 0.01), and those in the Se + Cd group were significantly higher than control group and Se group (P < 0.01). However, the mRNA expression level of caspase8 of Cd was significantly lower than other three groups (P < 0.01), and that in the Se + Cd group was significantly higher than control group and Se group (P < 0.01), so the supplement of SeY could improve these situations. Similar results were also detected at the protein level. The results of the present study indicated that Cd could induce oxidative stress, activate MAPK pathway and evoke necroptosis damage in chicken livers, whereas SeY had protective effects in preventing this kind of Cd-induced injury by inhibition of oxidative stress and down-regulation MAPK pathway.
Collapse
Affiliation(s)
- Yong Wang
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Hongwei Chen
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Weihua Chang
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Rong Chen
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Shiwen Xu
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China.
| | - Dayong Tao
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China.
| |
Collapse
|
9
|
Pharmacological Inhibition of WEE1 Potentiates the Antitumoral Effect of the dl922-947 Oncolytic Virus in Malignant Mesothelioma Cell Lines. Int J Mol Sci 2020; 21:ijms21197333. [PMID: 33020398 PMCID: PMC7582744 DOI: 10.3390/ijms21197333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive asbestos-related cancer, for which no therapy proves to be effective. We have recently shown that the oncolytic adenovirus dl922-947 had antitumor effects in MM cell lines and murine xenografts. Previous studies demonstrated that dl922-947-induced host cell cycle checkpoint deregulation and consequent DNA lesions associated with the virus efficacy. However, the cellular DNA damage response (DDR) can counteract this virus action. Therefore, we assessed whether AZD1775, an inhibitor of the G2/M DNA damage checkpoint kinase WEE1, could enhance MM cell sensitivity to dl922-947. Through cell viability assays, we found that AZD1775 synergized with dl922-947 selectively in MM cell lines and increased dl922-947-induced cell death, which showed hallmarks of apoptosis (annexinV-positivity, caspase-dependency, BCL-XL decrease, chromatin condensation). Predictably, dl922-947 and/or AZD1775 activated the DDR, as indicated by increased levels of three main DDR players: phosphorylated histone H2AX (γ-H2AX), phospho-replication protein A (RPA)32, phospho-checkpoint kinase 1 (CHK1). Dl922-947 also increased inactive Tyr-15-phosphorylated cyclin-dependent kinase 1 (CDK1), a key WEE1 substrate, which is indicative of G2/M checkpoint activation. This increase in phospho-CDK1 was effectively suppressed by AZD1775, thus suggesting that this compound could, indeed, abrogate the dl922-947-induced DNA damage checkpoint in MM cells. Overall, our data suggest that the dl922-947-AZD1775 combination could be a feasible strategy against MM.
Collapse
|
10
|
A20 promotes melanoma progression via the activation of Akt pathway. Cell Death Dis 2020; 11:794. [PMID: 32968045 PMCID: PMC7511359 DOI: 10.1038/s41419-020-03001-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Melanoma is the most life-threatening skin cancer with increasing incidence around the world. Although recent advances in targeted therapy and immunotherapy have brought revolutionary progress of the treatment outcome, the survival of patients with advanced melanoma remains unoptimistic, and metastatic melanoma is still an incurable disease. Therefore, to further understand the mechanism underlying melanoma pathogenesis could be helpful for developing novel therapeutic strategy. A20 is a crucial ubiquitin-editing enzyme implicated immunity regulation, inflammatory responses and cancer pathogenesis. Herein, we report that A20 played an oncogenic role in melanoma. We first found that the expression of A20 was significantly up-regulated in melanoma cell lines. Then, we showed that knockdown of A20 suppressed melanoma cell proliferation in vitro and melanoma growth in vivo through the regulation of cell-cycle progression. Moreover, A20 could potentiate the invasive and migratory capacities of melanoma cell in vitro and melanoma metastasis in vivo by promoting epithelial–mesenchymal transition (EMT). Mechanistically, we found that Akt activation mediated the oncogenic effect of A20 on melanoma development, with the involvement of glycolysis. What’s more, the up-regulation of A20 conferred the acquired resistance to Vemurafenib in BRAF-mutant melanoma. Taken together, we demonstrated that up-regulated A20 promoted melanoma progression via the activation of Akt pathway, and that A20 could be exploited as a potential therapeutic target for melanoma treatment.
Collapse
|
11
|
The diverse roles of RIP kinases in host-pathogen interactions. Semin Cell Dev Biol 2020; 109:125-143. [PMID: 32859501 PMCID: PMC7448748 DOI: 10.1016/j.semcdb.2020.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Receptor Interacting Protein Kinases (RIPKs) are cellular signaling molecules that are critical for homeostatic signaling in both communicable and non-communicable disease processes. In particular, RIPK1, RIPK2, RIPK3 and RIPK7 have emerged as key mediators of intracellular signal transduction including inflammation, autophagy and programmed cell death, and are thus essential for the early control of many diverse pathogenic organisms. In this review, we discuss the role of each RIPK in host responses to bacterial and viral pathogens, with a focus on studies that have used pathogen infection models rather than artificial stimulation with purified pathogen associated molecular patterns. We also discuss the intricate mechanisms of host evasion by pathogens that specifically target RIPKs for inactivation, and finally, we will touch on the controversial issue of drug development for kinase inhibitors to treat chronic inflammatory and neurological disorders, and the implications this may have on the outcome of pathogen infections.
Collapse
|
12
|
Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, Schlenner S, Krysko DV, Parys JB, Bultynck G, Vandenabeele P, Garg AD. Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells 2020; 9:E1823. [PMID: 32752206 PMCID: PMC7464343 DOI: 10.3390/cells9081823] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Immune-checkpoint blockers (ICBs) have revolutionized oncology and firmly established the subfield of immuno-oncology. Despite this renaissance, a subset of cancer patients remain unresponsive to ICBs due to widespread immuno-resistance. To "break" cancer cell-driven immuno-resistance, researchers have long floated the idea of therapeutically facilitating the immunogenicity of cancer cells by disrupting tumor-associated immuno-tolerance via conventional anticancer therapies. It is well appreciated that anticancer therapies causing immunogenic or inflammatory cell death are best positioned to productively activate anticancer immunity. A large proportion of studies have emphasized the importance of immunogenic apoptosis (i.e., immunogenic cell death or ICD); yet, it has also emerged that necroptosis, a programmed necrotic cell death pathway, can also be immunogenic. Emergence of a proficient immune profile for necroptosis has important implications for cancer because resistance to apoptosis is one of the major hallmarks of tumors. Putative immunogenic or inflammatory characteristics driven by necroptosis can be of great impact in immuno-oncology. However, as is typical for a highly complex and multi-factorial disease like cancer, a clear cause versus consensus relationship on the immunobiology of necroptosis in cancer cells has been tough to establish. In this review, we discuss the various aspects of necroptosis immunobiology with specific focus on immuno-oncology and cancer immunotherapy.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Pieter De Wijngaert
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Cell Death Investigation and Therapy Laboratory, Ghent University, 9000 Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Wang M, Wan H, Wang S, Liao L, Huang Y, Guo L, Liu F, Shang L, Huang J, Ji D, Xia X, Jiang B, Chen D, Xiong K. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat 2020; 237:29-47. [PMID: 32162697 PMCID: PMC7309291 DOI: 10.1111/joa.13185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) plays an important role in the necroptosis signaling pathway. Our previous studies have shown that the RIP3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis occurs in retinal ganglion cell line 5 (RGC-5) following oxygen-glucose deprivation (OGD). However, upstream regulatory pathways of RIP3 are yet to be uncovered. The purpose of the present study was to investigate the role of p90 ribosomal protein S6 kinase 3 (RSK3) in the phosphorylation of RIP3 in RGC-5 cell necroptosis following OGD. Our results showed that expression of RSK3, RIP3, and MLKL was upregulated in necroptosis of RGC-5 after OGD. A computer simulation based on our preliminary results indicated that RSK3 might interact with RIP3, which was subsequently confirmed by co-immunoprecipitation. Further, we found that the application of a specific RSK inhibitor, LJH685, or rsk3 small interfering RNA (siRNA), downregulated the phosphorylation of RIP3. However, the overexpression of rip3 did not affect the expression of RSK3, thereby indicating that RSK3 could be a possible upstream regulator of RIP3 phosphorylation in OGD-induced necroptosis of RGC-5 cells. Moreover, our in vivo results showed that pretreatment with LJH685 before acute high intraocular pressure episodes could reduce the necroptosis of retinal neurons and improve recovery of impaired visual function. Taken together, our findings suggested that RSK3 might work as an upstream regulator of RIP3 phosphorylation during RGC-5 necroptosis.
Collapse
Affiliation(s)
- Mi Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Hao Wan
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Shuchao Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lvshuang Liao
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Yanxia Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Limin Guo
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Fengxia Liu
- Department of Human AnatomySchool of Basic Medical ScienceXinjiang Medical UniversityUrumqiChina
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual SciencesAffiliated Eye Hospital of Nanchang UniversityNanchangChina
| | - Jufang Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Dan Ji
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaobo Xia
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Dan Chen
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Kun Xiong
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| |
Collapse
|
14
|
Carlin CR. New Insights to Adenovirus-Directed Innate Immunity in Respiratory Epithelial Cells. Microorganisms 2019; 7:microorganisms7080216. [PMID: 31349602 PMCID: PMC6723309 DOI: 10.3390/microorganisms7080216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) family of transcription factors is a key component of the host innate immune response to infectious adenoviruses and adenovirus vectors. In this review, we will discuss a regulatory adenoviral protein encoded by early region 3 (E3) called E3-RIDα, which targets NFκB through subversion of novel host cell pathways. E3-RIDα down-regulates an EGF receptor signaling pathway, which overrides NFκB negative feedback control in the nucleus, and is induced by cell stress associated with viral infection and exposure to the pro-inflammatory cytokine TNF-α. E3-RIDα also modulates NFκB signaling downstream of the lipopolysaccharide receptor, Toll-like receptor 4, through formation of membrane contact sites controlling cholesterol levels in endosomes. These innate immune evasion tactics have yielded unique perspectives regarding the potential physiological functions of host cell pathways with important roles in infectious disease.
Collapse
Affiliation(s)
- Cathleen R Carlin
- Department of Molecular Biology and Microbiology and the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Di Somma S, Iannuzzi CA, Passaro C, Forte IM, Iannone R, Gigantino V, Indovina P, Botti G, Giordano A, Formisano P, Portella G, Malfitano AM, Pentimalli F. The Oncolytic Virus dl922-947 Triggers Immunogenic Cell Death in Mesothelioma and Reduces Xenograft Growth. Front Oncol 2019; 9:564. [PMID: 31355131 PMCID: PMC6639422 DOI: 10.3389/fonc.2019.00564] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure that urgently requires effective therapeutic strategies. Current treatments are unable to increase significantly patient survival, which is often limited to <1 year from diagnosis. Virotherapy, based on the use of oncolytic viruses that exert anti-cancer effects by direct cell lysis and through the induction of anti-tumor immune response, represents an alternative therapeutic option for rare tumors with limited life expectancy. In this study, we propose the use of the adenovirus dl922-947, engineered to allow selective replication in cancer cells, to counteract MPM. Methods: We performed a thorough preclinical assessment of dl922-947 effects in a set of MPM cell lines and xenografts. Cytotoxicity of dl922-947 alone and in combination assays was evaluated by sulforhodamine B assay. Cell cycle, calreticulin expression, and high mobility group box protein 1 (HMGB1) secretion were determined by flow cytometry, whereas ATP content was determined by a luminescence-based bioassay. The modulation of angiogenic factors in MPM-infected cells was evaluated through ELISA. Results: We found that dl922-947 infection exhibits cytotoxic effects in MPM cell lines, affecting cell viability, cell cycle progression, and regulating main hallmarks of immunogenic cell death inducing calreticulin surface exposure, HMGB1 and ATP release. Our results also suggest that dl922-947 may affect angiogenic signals by regulation of VEGF-A and IL-8 secretion. Furthermore, dl922-947 shows anti-tumor efficacy in murine xenograft models reducing tumor growth and enhancing survival. Finally, the combination with cisplatin potentiated the cytotoxic effect of dl922-947. Conclusions: Overall our data identify virotherapy, based on the use of dl922-947, as a new possible therapeutic strategy against MPM, which could be used alone, in combination with standard chemotherapy drugs, as shown here, or other approaches also aimed at enhancing the antitumoral immune response elicited by the virus.
Collapse
Affiliation(s)
- Sarah Di Somma
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | | | - Carmela Passaro
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Raffaella Iannone
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Paola Indovina
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Formisano
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Giuseppe Portella
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Anna Maria Malfitano
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
16
|
Chlorpyrifos Suppresses Neutrophil Extracellular Traps in Carp by Promoting Necroptosis and Inhibiting Respiratory Burst Caused by the PKC/MAPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1763589. [PMID: 30881588 PMCID: PMC6383406 DOI: 10.1155/2019/1763589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are reticular structures formed by myeloperoxidase (MPO), histones, and neutrophil elastase (NE) that are released from neutrophils in response to pathogenic stimuli. Chlorpyrifos (CPF) is wildly used as an organophosphorus pesticide that causes a range of toxicological and environmental problems. Exposure to CPF can increase the production of neutrophils in carps, and this increase can be considered a biomarker of water pollution. To explore a relationship between NETs and CPF and its mechanism of influence, we treated neutrophils from the blood of carp with 1 μg/mL phorbol 12-myristate 13-acetate (PMA), 0.325 mg/L CPF, or 20 μM necrostatin-1 (Nec-1). The production of MPO and NETs was reduced in the CPF+PMA group compared with that in the PMA group. CPF can cause an increase in reactive oxygen species (ROS), while inhibiting respiratory burst caused by PMA stimulation. We found that the expression levels of protein-coupled receptor 84 (gpr84), dystroglycan (DAG), proto-oncogene serine/threonine kinase (RAF), protein kinase C (PKC), and mitogen-activated protein kinase 3 (MAPK3) in the CPF+PMA group were lower than those in the PMA group, indicating that the PKC-MAPK pathway was suppressed. The expression levels of cylindromatosis (CYLD), mixed lineage kinase domain-like pseudokinase (MLKL), receptor-interacting serine-threonine kinase 1 (RIP1), and receptor-interacting serine-threonine kinase 3 (RIP3) were increased, and the expression levels of caspase 8 were reduced by CPF, indicating that CPF may cause necroptosis. The addition of Nec-1 restored the number of NETs in the CPF+PMA group. The results indicate that CPF reduced the production of NETs by inhibiting respiratory burst and increasing necroptosis. The results contribute to the understanding of the immunotoxicological mechanism of CPF and provide a reference for comparative medical studies.
Collapse
|